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Operations Preserving the Global Rigidity of

Graphs and Frameworks in the Plane

Tibor Jordán⋆ and Zoltán Szabadka⋆⋆

Abstract

A straight-line realization of (or a bar-and-joint framework on) graph G

in Rd is said to be globally rigid if it is congruent to every other realization
of G with the same edge lengths. A graph G is called globally rigid in Rd

if every generic realization of G is globally rigid. We give an algorithm for
constructing a globally rigid realization of globally rigid graphs in R2. If G is
triangle-reducible, which is a subfamily of globally rigid graphs that includes
Cauchy graphs as well as Grünbaum graphs, the constructed realization will
also be infinitesimally rigid.

Our algorithm is based on an inductive construction of globally rigid graphs
which uses Henneberg 1-extensions and edge additions. We show that vertex
splitting, which is another well-known operation in combinatorial rigidity, also
preserves global rigidity in R2.

1 Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. A
d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is a map
from V to Rd. We consider the framework to be a straight line realization of G in
Rd. Two frameworks (G, p) and (G, q) are equivalent if ||p(u)− p(v)|| = ||q(u)− q(v)||
holds for all pairs u, v with uv ∈ E, where ||.|| denotes the Euclidean norm in Rd.
Frameworks (G, p), (G, q) are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all
pairs u, v with u, v ∈ V . This is the same as saying that (G, q) can be obtained from
(G, p) by an isometry of Rd.

We say that (G, p) is globally rigid if every framework (G, q) which is equivalent to
(G, p) is congruent to (G, p). The framework (G, p) is rigid if there exists an ǫ > 0
such that if (G, q) is equivalent to (G, p) and ||p(v) − q(v)|| < ǫ for all v ∈ V then
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dapest, Hungary. Supported by the Hungarian Scientific Research Fund grant No. K60802. e-mail:
sinus@cs.elte.hu.

June 22, 2007



Section 1. Introduction 2

(G, q) is congruent to (G, p). Intuitively, this means that if we think of a d-dimensional
framework (G, p) as a collection of bars and joints where points correspond to joints
and each edge to a rigid bar joining its end-points, then the framework is rigid if it has
no non-trivial continuous deformations (see also [6],[15, Section 3.2]). It seems to be a
hard problem to decide if a given framework is rigid or globally rigid. Indeed Saxe [12]
has shown that it is NP-hard to decide if even a 1-dimensional framework is globally
rigid. These problems become more tractable, however, if we assume that there are
no algebraic dependencies between the coordinates of the points of the framework.

A framework (G, p) is said to be generic if the set containing the coordinates of all
its points is algebraically independent over the rationals. It is known [15] that rigidity
of frameworks in Rd is a generic property, that is, the rigidity of (G, p) depends only
on the graph G and not the particular realization p, if (G, p) is generic. We say that
the graph G is rigid in Rd if every (or equivalently, if some) generic realization of G in
Rd is rigid. The characterization of rigid graphs in Rd is known only for d ≤ 2, see [11].
Similarly, we say that a graph G is globally rigid in Rd if every generic realization of
G in Rd is globally rigid. The characterization of globally rigid graphs in Rd (and the
fact that global rigidity is a generic property) is known only for d ≤ 2. See Subsection
1.1 below.

The rigidity matrix of the framework is the matrix R(G, p) of size |E| × d|V |,
where, for each edge vivj ∈ E, in the row corresponding to vivj, the entries in the
d columns corresponding to vertices i and j contain the d coordinates of (p(vi) −
p(vj)) and (p(vj) − p(vi)), respectively, and the remaining entries are zeros. We say
that a framework (G, p) on n vertices in Rd is infinitesimally rigid if rank R(G, p) =
max{rank R(Kn, q) : q ∈ Rnd}, where Kn is the complete graph on n vertices. It is
known that the infinitesimal rigidity of (G, p) implies rigidity, and that the reverse
implication holds if the realization is generic. See [15] for a survey on rigidity.

In this paper we are concerned with the following algorithmic problem: given a
graph G, how to create, in polynomial time, a globally rigid realization (G, p) in Rd,
if such a realization exists? We shall develop an algorithm for the case when d = 2
and G is globally rigid. We are not aware of any previous results on this problem.

One of the difficulties is due to the fact that the output of the algorithm, which is a
realization of G with rational coordinates, is non-generic. However, there is no ‘simple’
sufficient condition for the global rigidity of a non-generic framework. As an additional
illustration, consider the problem of constructing a rigid realization of a rigid graph G
in Rd. In this case infinitesimal rigidity turns out to be a ‘simple’ sufficient condition
that is essentially expressed by polynomials of the coordinates. Based on this fact, it
was shown that a rigid realization, even with integer coordinates in a small grid, can
be found in polynomial time, see [5].

Another issue is the level of degeneracy of the framework (G, p) output by the
algorithm. Since rather degenerate frameworks may be globally rigid (for example, if
G is connected and all vertices are mapped to the same point), it is natural to impose
certain additional requirements. It is natural to try to make (G, p) infinitesimally
rigid, too1.

1It is known, see e.g. [2], that if (G, p) is a globally rigid and infinitesimally rigid framework then
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1.1 Globally rigid graphs in two dimensions 3

If G is triangle-reducible, which is a subfamily of globally rigid graphs that includes
Cauchy graphs as well as Grünbaum graphs, the constructed realization will also be
infinitesimally rigid. Our algorithm is based on a sufficient condition for global rigidity
which is based on stress matrices as well as an inductive construction of globally rigid
graphs which uses the 1-extension operation.

In the last part of the paper we investigate another operation that can be used in
inductive constructions and show that it also preserves global rigidity in R2. This
verifies a conjecture of Cheung and Whiteley [2].

1.1 Globally rigid graphs in two dimensions

In the rest of the paper we assume that d = 2, unless specified otherwise.
The 1-extension operation (which is one of the two well-known Henneberg opera-

tions [8]) on edge uw and vertex t deletes an edge uw from a graph G and adds a new
vertex v and new edges vu, vw, vt for some vertex t ∈ V (G) − {u,w}.

The characterization of globally rigid graphs in Rd follows from results of Hendrick-
son [7], Connelly [4, Proof of Corollary 1.7], and Jackson and Jordán [9]. We say that
G is redundantly rigid if G − e is rigid for all edges e of G.

Theorem 1.1. [7, 4, 9] Let (G, p) be a generic framework. Then (G, p) is globally
rigid if and only if either G is a complete graph on two or three vertices, or G is
3-connected and redundantly rigid.

A key step in the proof of the above combinatorial characterization is the following
inductive construction.

Theorem 1.2. [9, Theorem 6.15] Let G be a 3-connected and redundantly rigid graph.
Then G can be obtained from K4 by a sequence of 1-extensions and edge additions.

2 Sufficient conditions for global rigidity of frame-

works

The sufficient conditions known for the global rigidity of frameworks are in terms of
stresses. Let G = (V,E) be a graph, where V is the set of vertices labelled 1, 2, ..., n.
A stress is a map ω : E → R. The stress is non-zero (nowhere-zero), if wij 6= 0 for at
least one (for all, resp.) ij ∈ E. The stress matrix Ω associated with a stress ω is an
n-by-n symmetric matrix defined by

Ωij =






∑

ki∈E

ωki if i = j

− ωij if i 6= j and ij ∈ E

0 if i 6= j and ij /∈ E

there exists an ǫ > 0 such that if ||p(v) − q(v)|| < ǫ for all v ∈ V then (G, q) is also globally rigid.
Thus infinitesimal rigidity makes the framework ‘stable’, too.
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Section 2. Sufficient conditions for global rigidity of frameworks 4

Let (G, p) be a framework. We say that ω : E → R is a self stress for a framework
(G, p) if for each i ∈ V , ∑

ij∈E

ωij(pi − pj) = 0.

It is easy to see that Ω is the stress matrix of a self stress of framework (G, p) if and
only if Ω is symmetric, Ωij = 0 whenever ij /∈ E (i 6= j), and PΩ = 0, where

P =




p11 p21 . . . pn1

p12 p22 . . . pn2

1 1 . . . 1





is the augmented configuration matrix of p.
For completeness, we provide a proof of the following theorem, which can be ex-

tracted from [3] and [13]. We say that a framework (G, p) is bidirectional if there exist
vectors v1, v2 ∈ R2 such that for each ij ∈ E either pi − pj = λv1 or pi − pj = λv2

holds for some λ ∈ R. Otherwise (G, p) is said to be multidirectional.

Theorem 2.1. Let (G, p) be a multidirectional framework on n vertices for which there
is a self-stress ω, such that the associated stress matrix Ω is positive semi-definite and
has rank n − 3. Then (G, p) is globally rigid.

Proof. Let q = (q11, q21, . . . , qn1, q12, q22, . . . , qn2) ∈ R2n and let

H(q) =
∑

ij∈E

ωij(qi − qj)
2 = qΩ̂q⊤

be a quadratic form, where qi = (qi1, qi2) and

Ω̂ =

[
Ω 0
0 Ω

]

Since Ω is positive semi-definite, so is Ω̂. Thus H(q) ≥ 0 for all q ∈ R2n.

Claim 2.2. If ∇H(q) = 0, then H(q) = 0.

Proof. Let g(t) = H(tq) = t2H(q). Then g′(t) = ∇H(tq)q = t∇H(q)q = 0. Hence
g(t) is constant and H(q) = g(1) = g(0) = 0.

The gradient of this form at a point q can be written as

∇H(q) = 2

(
∑

1j∈E

ω1j(q1 − qj), . . . ,
∑

nj∈E

ωnj(qn − qj)

)
= 2Ω̂q.

Since ω is a self-stress for p, we have ∇H(p) = 0. Thus H(p) = 0 by Claim 2.2.
Consider a framework (G, p′) that is equivalent to (G, p). First we show that p′ is

an affine image of p. By definition, H(p′) = H(p) = 0. Thus, since H(q) ≥ 0, the
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2.1 Gale transforms 5

point p′ is a local minimum of H, and hence ∇H(p′) = 2Ω̂p′ = 0. Let us define the
following two subspaces of R2n:

S1 = {q ∈ R2n | qi = Api + b, 1 ≤ i ≤ n, A ∈ R2×2, b ∈ R2}

S2 = {q ∈ R2n | Ω̂q = 0} = ker Ω̂

It is clear that dim S1 = 6. Since rank Ω̂ = 2 rank Ω = 2n − 6, this implies dim S2 =
dim ker Ω̂ = 6. To prove that S1 = S2, it is enough to show that S1 ⊆ S2. To see this
suppose that q ∈ S1. Then

(Ω̂q)i =
∑

ij∈E

ωij(qi − qj) =
∑

ij∈E

ωij(Api − Apj) = A
∑

ij∈E

ωij(pi − pj) = 0,

which gives q ∈ S2. Since p′ ∈ S2, there exist A ∈ R2×2 and b ∈ R2, such that
p′i = Api + b for each 1 ≤ i ≤ n. Thus p′ is an affine image of p, as claimed.

Next we show that the affine map x 7→ Ax + b is a congruence. Let C = I − A⊤A.
Since (G, p′) is equivalent to (G, p), we have

(p′i−p′j)
2 = (p′i−p′j)

⊤(p′i−p′j) = (pi−pj)
⊤A⊤A(pi−pj) = (pi−pj)

⊤(pi−pj) = (pi−pj)
2

for each ij ∈ E. Hence (pi − pj)
⊤C(pi − pj) = 0 for each ij ∈ E. Thus either the set

{x ∈ R2 |x⊤Cx = 0} is the union of two lines, or C = 0. In the former case (G, p)
would be bidirectional, contradicting a hypothesis of the theorem. Hence we must
have C = 0 and A⊤A = I, which implies that A is orthogonal and p′ is congruent to
p.

We note that if a framework (G, p) satisfies the conditions of Theorem 2.1 then it
is in fact universally globally rigid, which means that it is globally rigid in Rd for all
d ≥ 2. The proof of this fact can be found in unpublished work of Connelly. Since
we use Theorem 2.1 to verify the global rigidity of the frameworks output by our
algorithm, it follows that the constructed frameworks are also universally globally
rigid.

2.1 Gale transforms

Let (G, p) be a framework and suppose that the points in p affinely span R2. Let
A be an (n − 3) × n matrix with linearly independent rows, satisfying AP⊤ = 0.
Then we say that the columns of A, treated as points a1, . . . , an ∈ Rn−3, form the
Gale transform of the original points p1, . . . , pn ∈ R2 [13]. We say that the four-
tuple (G, p, ω,A) is a Gale-framework if (G, p) is a framework, ω is a stress for (G, p)
and A = (a1, . . . , an) ∈ R(n−3)×n is a Gale transform of p satisfying a⊤

i aj = −ωij

for all ij ∈ E and a⊤
i aj = 0 for all i, j ∈ V , i 6= j, ij /∈ E. A Gale-framework is

multidirectional if (G, p) is multidirectional.
For example, the following is a multidirectional Gale framework on K4, given by its

augmented configuration matrix P , A, and a self-stress ω. (Note that ω is nowhere-
zero and the framework is infinitesimally rigid and is in general position.)
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Section 3. Extension of frameworks and Gale frameworks 6

P =




0 1 1 0
0 0 1 1
1 1 1 1





A =
[

1 −1 1 −1
]

ω12 = ω23 = ω34 = ω14 = 1

ω13 = ω24 = −1

Lemma 2.3. Let (G, p, ω,A) be a Gale-framework on n vertices. Then ω is a self-
stress for (G, p) with a positive semi-definite stress matrix of rank n − 3.

Proof. Let Ω = A⊤A. By the definition of Gale-frameworks and the fact that ΩP⊤ =
A⊤AP⊤ = A⊤0 = 0 we get that Ω is the stress matrix of ω and ω is a self-stress
for (G, p). Ω has rank n − 3 since A has n − 3 independent rows and it is positive
semi-definite since q⊤Ωq = q⊤A⊤Aq = (Aq)⊤(Aq) ≥ 0 for all q ∈ Rn.

By Theorem 2.1 and Lemma 2.3 we obtain:

Theorem 2.4. Let (G, p, ω,A) be a multidirectional Gale-framework. Then (G, p) is
globally rigid.

3 Extension of frameworks and Gale frameworks

Let (G, p) be a framework and let uw ∈ E(G) and t ∈ V (G) − {u,w}. The 1-
extension operation on edge uw and vertex t with parameters αu, αw, αt consists of
performing a 1-extension on G as well as extending the realization p by letting p(v) =
αup(u) + αwp(w) + αtp(t), where αu + αw + αt = 1 and v is the new vertex added to
G.

Lemma 3.1. Let (G, p) be a multidirectional framework and (G∗, p∗) its 1-extension
with parameters αu, αw, αt. If αt = 0 or αuαw 6= 0, then (G∗, p∗) is multidirectional.

Proof. If pu, pw, pt are collinear or αt = 0, then the set of edge directions of (G∗, p∗)
are the same as that of (G, p). Otherwise, pu, pw, pt are affinely independent and
αu, αw, αt 6= 0. In this case the edges vu, vw, vt define three independent directions,
so (G∗, p∗) is multidirectional.

Let (G, p, ω,A) be a Gale framework. The 1-extension operation with parameters
αu, αw, αt, β, where β 6= 0 and αu + αw + αt = 1, consists of performing a 1-extension
of (G, p) with parameters αu, αw, αt as well as replacing ω and A by ω∗ and A∗ by
letting

ω∗

ij =






ωij if ij ∈ E − {uw, ut, wt}

ωij − β2αiαj if ij ∈ {ut, wt}

β2αj if i = v and j ∈ {u,w, t}
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Section 3. Extension of frameworks and Gale frameworks 7

A∗ =

[
a1 . . . au aw at . . . an 0
0 . . . βαu βαw βαt . . . 0 −β

]

Lemma 3.2. Let (G, p, ω,A) be a Gale-framework and let (G∗, p∗, ω∗, A∗) be its 1-
extension with parameters αu, αw, αt, β. If αuαw = ωuw/β2, and if αt = 0 whenever
{ut, wt} * E, then (G∗, p∗, ω∗, A∗) is a Gale-framework.

Proof. Let a∗
i denote the columns of A∗, 1 ≤ i ≤ n + 1. It is easy to check that A∗ is

a Gale-transform of p∗ and a∗
i
⊤a∗

j = −ω∗
ij if ij ∈ E∗. Let us suppose now that ij /∈ E∗

for some i, j ∈ V ∗, i 6= j. Then either i = v and j /∈ V − {u,w, t}, or i ∈ {u,w, t}
and j ∈ V − {u,w, t} and ij /∈ E, or ij ∈ E − {ut, wt}, or ij = uw. In the first case
a∗

i
⊤a∗

j = 0⊤aj + β0 = 0. In the second case a∗
i
⊤a∗

j = a⊤
i aj + βαi0 = a⊤

i aj = 0. In the

third case a∗
i
⊤a∗

j = a⊤
i at + β2αiαt = 0. In the last case a∗

i
⊤a∗

j = a⊤
u aw + β2αuαw =

−ωuw + ωuw = 0.

Our algorithm will create a globally rigid realization of G by iteratively constructing
a multidirectional Gale framework on each graph in an inductive construction of G
using edge additions and 1-extensions. To this end we shall use the following specific
operations on Gale frameworks. Let (G, p, ω,A) be a Gale framework.

• Edge addition In this case G∗ is obtained from G by an edge addition.

Let p∗ = p, A∗ = A, ω∗
ij = ωij if ij ∈ E and ω∗

uw = 0.

• 1-Extension

In this case G∗ is obtained from G by a 1-extension on edge uw and vertex t.
We define (G∗, p∗, ω∗, A∗) by defining the parameters β, αu, αw, αt. This will also
determine p(v). We consider three cases.

Case 1 ωuw = 0.

Let β = 1, αt = 0 and αu = 0 or αw = 0.

(Note: It means that in this case p(v) = p(w) or p(v) = p(u).)

Case 2 ωuw 6= 0 and {ut, wt} * E.

Let αt = 0 and let αu, αw be chosen so that αuαw has the same sign as ωuw. Let
β2 = ωuw

αuαw

.

(Note: now p(v) = αup(u)+αwp(w) lies on the line of p(u)p(w) or p(v) = p(u) =
p(w). If ωuw > 0 then p(v) lies on the segment [p(u), p(w)] (eg. αu = αw = 1

2
)

and if ωuw < 0 then it lies in its complement (eg. αu = 2, αw = −1).)

Case 3 ωuw 6= 0 and {ut, wt} ⊆ E.

Let αu, αw, αt be chosen so that αuαw has the same sign as ωuw, and so that
αt /∈ {0, ωut

ωuw

αu,
ωwt

ωuw

αw}. Let β2 = ωuw

αuαw

.

(Note: For example, if ωuw > 0 we can define αu = αw = αt = 1
3

and if
ωuw < 0 then let αu = 3, αw = αt = −1. Consider the case when p(u), p(w), p(t)
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Section 4. Globally rigid realizations 8

u

t

ωuw < 0

ωuw > 0

ωuw > 0

w

ωuw < 0

Figure 1: The possible placements of pv in Case 3.

are not collinear. If ωuw > 0 then p(v) can be placed anywhere in the angle
p(u)p(t)p(w) and in its mirror image to p(t) (the lines p(u)p(t) and p(w)p(t) are
excluded). Otherwise p(v) can be in the two other angles defined by the lines
through p(u)p(t) and p(w)p(t), but not on the lines themselves (see Figure 1).
By excluding the three values for αt we have excuded three lines.

Lemma 3.3. Suppose that (G, p, ω,A) is a multidirectional Gale framework for which
(G, p) is infinitesimally rigid, ω is nowhere-zero, and the points p(v), v ∈ V , are in
general position. Let (G∗, p∗, ω∗, A∗) be obtained from (G, p, ω,A) by a 1-extension as
decribed in Case 3. Then (G∗, p∗, ω∗, A∗) is a multidirectional Gale framework, for
which (G∗, p∗) is infinitesimally rigid and ω∗ is nowhere-zero.

Proof. By Lemmas 3.1 and 3.2 (G∗, p∗, ω∗, A∗) is a multidirectional Gale-framework.
Since ω is nowhere-zero, we have ωuw 6= 0. Thus we must have αu 6= 0 and αw 6= 0.
Hence ω∗

vi = β2αi 6= 0 for i ∈ {u,w, t}. Furthermore, the choice of αt implies that
ω∗

ut = ωut − β2αuαt = ωut − ωuwαt/αw 6= 0. Similarly, ω∗
wt 6= 0. Thus ω∗ is a

nowhere-zero stress.
To show that (G∗, p∗) is infinitesimally rigid first observe that (G − uw, p) is in-

finitesimally rigid, since ω is nowhere-zero. Moreover, the addition of the new point
p(v) preserves infinitesimal rigidity, since p(u), p(w) and p(t) are in general position
and αt 6= 0, so p(v) is not on the line through p(u)p(w).

4 Globally rigid realizations

Given a graph G = (V,E) we say that a 1-extension on the edge uw and vertex
t is a triangle-split if {ut, wt} ⊆ E (that is, if u,w, t induce a triangle of G). A
graph will be called triangle-reducible if it can be obtained from K4 by a sequence of
triangle-splits. We note that triangle-reducible graphs are 3-connected redundantly
rigid planar graphs with 2|V | − 2 edges.

Theorem 4.1. Let G be a globally rigid graph on at least four vertices. Then one
can construct, in polynomial time, a globally rigid realization (G, p). Furthermore, if
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Section 4. Globally rigid realizations 9

G is triangle-reducible, the constructed realization can be chosen to be infinitesimally
rigid, too.

Proof. Let K4 = H1, H2, ..., Hm = G be an inductive construction of G from K4 using
edge-additions and 1-extensions. Such a sequence exists by Theorem 1.2. Further-
more, if G is triangle-reducible, we may assume that Hi+1 is obtained from Hi by
a triangle-split, 1 ≤ i ≤ m − 1. These inductive constructions can be obtained in
polynomial time, see [1] and Lemma 4.2 below.

Let (H1, p1, ω1, A1) be a multidirectional Gale framework on H1 = K4. If G is
triangle-reducible, we choose one with a nowhere-zero stress and for which (H1, p1) is
infinitesimally rigid and is in general position. The example in Subsection 2.1 satisfies
all these conditions.

To compute a globally rigid framework on G we follow the inductive construction
and perform edge additions and 1-extensions as described in Cases 1-3, to create
multidirectional Gale-frameworks (Hi, pi, ωi, Ai) for 1 ≤ i ≤ m. By Lemmas 3.1, 3.2,
and Theorem 2.4, the framework (Hm, pm) will be a globally rigid realization of G.

If, in addition, G is triangle-reducible, we only perform 1-extensions, as described
in Case 3, with the additional property that the points in each framework (Hi, pi),
1 ≤ i ≤ m, are in general position. In this case Lemma 3.3 implies that (Hm, pm) will
also be infinitesimally rigid.

Observe that the algorithm does not need to compute the Gale transforms Ai but
updates the stress and the realization. Without giving an explicit upper bound, we
note that the numbers (the values of the self-stress and the coordinates of the vertices)
occuring in the algorithm can always be chosen to be of polynomial size.

Figure 2: A globally rigid realization of a globally rigid graph produced by the algo-
rithm.

We remark that even though the realization given by the algorithm will affinely
span R2, it may be rather degenerate: the positions of several vertices may coincide
and certain edges may have length zero. (For example, if a 1-extension is performed
on an edge whose stress is zero, the position of the new vertex will be on one of the
endpoints of the edge.) This can be overcome in the case of triangle-reducible graphs,
for which our algorithm outputs an infinitesimally rigid realization. We believe that,
possibly by using a different sufficient condition for global rigidity, it will be possible
to obtain such ‘non-degenerate’ and ‘stable’ realizations for all globally rigid graphs.
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4.1 Testing triangle-reducibility 10

4.1 Testing triangle-reducibility

In this subsection we show that testing triangle-reducibility (and finding an inductive
construction for triangle-reducible graphs) can be done efficiently in a greedy fashion.
Let G = (V,E) be a graph. If G is triangle-reducible and |V | > 4 then there must
be a vertex v with neighbors x, y, z spanning exactly two edges in G. The following
lemma says that we can eliminate any such vertex and get another triangle-reducible
graph. Thus triangle-reducibility can be tested with a simple greedy algorithm which
also provides a sequence of triangle-splits which generates G.

Lemma 4.2. Let G = (V,E) be a triangle-reducible graph with |V | ≥ 5 and let v ∈ V
with N(v) = {x, y, z}. Suppose that xz, yz ∈ E and xy /∈ E. Then G′ = G − v + xy
is triangle-reducible.

Proof. Let K4 = G0, G1, . . . , Gn = G be a sequence of graphs, where Gi+1 is obtained
from Gi by a triangle-split, 0 ≤ i ≤ n−1. Consider the first graph Gk in the sequence
which contains v. It is easy to see that, by modifying G0 and G1, if necessary, we
may assume that k ≥ 1. Thus v is created by a triangle split operation on Gk−1.
Since a triangle split does not decrease the degree of any vertex, and does not add
new edges connecting existing vertices, it follows that v has degree three and Nl(v)
induces exactly two edges in Gl for all k ≤ l ≤ n, where Ni(v) denotes the set of
neighbours of v in some Gi.

Let Nk(v) = {u,w, t} and suppose that ut, wt ∈ E(Gk) and uw /∈ E(Gk). Next
observe that as long as t remains a neighbour of v, the other two neighbours of v must
be non-adjacent. In fact, t must remain a neighbour of v in the rest of the sequence.

Claim 4.3. vt ∈ E(Gl) for all k ≤ l ≤ n.

Proof. Let i ≥ k be the largest index for which vt ∈ E(Gi). For a contradiction
suppose that i ≤ n − 1. Let Ni(v) = {ui, wi, t}. It follows from the previous obser-
vation that we must have uiwi /∈ E(Gi). Since vt /∈ E(Gi+1), it follows that Gi+1 is
obtained from Gi by ‘splitting’ the edge vt by a new vertex t′ of degree three. Hence
Ni+1(v) = {ui, wi, t

′} induces at most one edge in Gi+1. This contradicts the fact that
the neighbours of v induce exactly two edges in Gl for all k ≤ l ≤ n.

It follows from Claim 4.3 that Ni(v) = {ui, wi, t} and uiwi /∈ E(Gi) for all k ≤
i ≤ n. Thus z = t holds. Let G′

i = Gi − v + uiwi, k ≤ i ≤ n. Next we show,
by induction on i, that G′

i is triangle-reducible. Since G′
k = Gk−1, it is true for

i = k. Suppose that Ni+1(v) = Ni(v), i.e. the triangle-split, applied to Gi, leaves
the neighbour set of v unchanged. Then G′

i+1 can be obtained from G′
i by the same

triangle split, and hence, by induction, G′
i+1 is also triangle-reducible. Otherwise

Gi+1 is obtained from Gi by ‘splitting’ the edge vui (or vwi). Then, without loss of
generality, we have Gi+1 = Gi + ui+1 − vui + {ui+1v, ui+1ui, ui+1t}. Then wi+1 = wi

and G′
i+1 = G′

i + ui+1 − uiwi + {ui+1wi, ui+1ui, ui+1t}. So G′
i+1 can be obtained from

G′
i by a triangle-split. By induction, this gives that G′

i+1 is triangle-reducible. Thus
G′ = G′

n is triangle-reducible, which completes the proof.
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4.2 Cauchy and Grünbaum graphs 11

Figure 3: A Cauchy-polygon on 6 vertices.

4.2 Cauchy and Grünbaum graphs

Another sufficient condition for global rigidity, due to Connelly, is based on stresses
as well as convexity. Here we formulate a 2-dimensional version of his result for
bar-and-joint frameworks, which can be deduced from Corollary 1 and Theorem 5 of
[3].

Theorem 4.4. [3] Let (G, p) be a framework whose edges form a convex polygon P
in R2 with some chords. Suppose that there is a non-zero self-stress ω for (G, p) for
which ωij ≥ 0 if ij ∈ E is an edge on the boundary of P and ωij ≤ 0 if ij ∈ E is an
edge which is a chord of P . Then (G, p) is globally rigid.

The Cauchy-graphs Cn and Grünbaum graphs Gn are both defined on vertex set
{1, . . . , n} and both contain the edges {i, i + 1}, i = 1, 2, . . . , n (modulo n). In
addition, the Cauchy graph contains the chords {i, i + 2}, i = 1, . . . , n − 2, and the
Grünbaum graph has the edges 1, 3 and 2, i for i = 4, . . . , n.

A Cauchy-polygon (Grünbaum polygon) is a framework (Cn, p) ((Gn, p)), where the
positions p1, . . . , pn of the vertices are in general position and, in this order, they form
the set of vertices of a convex polygon in the plane. See Figure 3.

It is easy to check that Cauchy-graphs as well as Grünbaum-graphs are triangle-
reducible. One can also show, by induction on n, that any given Cauchy-polygon
(Cn, p) (or Grünbaum-polygon (Gn, p)) can be obtained as the output of our algorithm.
This gives a different proof of the first part of the next theorem.

Theorem 4.5. (i) [3, Lemma 4, Theorem 5] Every Cauchy-polygon (Cn, p) is globally
rigid.
(ii) Every Grünbaum-polygon (Gn, p) is globally rigid.

Note that our algorithm may also generate non-convex globally rigid realizations
of Cauchy-graphs, see Figure 4. Thus, in this sense, it gives an extension of Theorem
4.5(i).

5 Vertex splitting

Motivated by the usefulness of the 1-extension operation and by the following conjec-
ture, in this section we investigate the effect of another operation on global rigidity
in R2.
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Figure 4: A non-convex globally and infinitesimally rigid realization of the Cauchy-
graph C6.

Conjecture 5.1. [2] If G is globally rigid in Rd and G′ is obtained from G by a
(d-dimensional) vertex-splitting operation, so that each of the split vertices has degree
at least d + 1, then G′ is globally rigid in Rd.

Given a graph G = (V,E), an edge uv ∈ E and a bipartition F1, F2 of the edges
incident to v (except uv), the (2-dimensional) vertex-splitting operation replaces vertex
v by two new vertices v1 and v2, replaces the edge uv by three new edges uv1, uv2, v1v2,
and replaces all edges wv ∈ Fi by an edge wvi, i = 1, 2. See Figure 5. In this section
we will prove that this operation preserves global rigidity in R2, provided it does not
create vertices of degree two.

We need the following refinement of the well-known inductive construction of min-
imally rigid graphs2, which uses 0-extensions and 1-extensions. A 0-extension adds
a new vertex v and new edges vu, vw for two distinct vertices u,w ∈ V (G). We say
that a sequence H1, H2, ..., Hm is a Henneberg sequence of a minimally rigid graph
G if H1 is an edge, Hm = G, and Hi+1 is obtained from Hi by a 0- or 1-extension,
1 ≤ i ≤ m− 1. It is well-known that both extensions preserve rigidity. The existence
of a Henneberg sequence for each minimally rigid graph G follows from the facts that
G has 2|V (G)| − 3 edges and has minimum degree at least two, and hence it has at
least one vertex of degree two or three (if |V (G)| ≥ 3). Furthermore, if v is a vertex
of degree two or three in G, it is always possible to perform the inverse of the 0-
or 1-extension operation at v so that the resulting graph remains minimally rigid.
See e.g. Section 2.1 of [9]. A similar argument can be used to deduce the following
somewhat stronger result. It follows by observing that the small degree vertex v can
be chosen to be distinct from the end-vertices of a designated edge and a designated
vertex, since (i) G has at least three vertices of degree at most three, and (ii) if the
graph has at least four vertices and has exactly three vertices of degree at most three,
then these vertices must have degree two, and they must be pairwise non-adjacent.
Thus we have:

2A rigid graph G is minimally rigid if G − e is not rigid for all e ∈ E(G). Equivalently, G is
minimally rigid if it has 2|V (G)| − 3 edges and each of its subgraphs on a set X of vertices, |X| ≥ 2,
contains at most 2|X| − 3 edges.
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u u v2

v
v1

. . .

. . .

. . .

. . .

Figure 5: The vertex-splitting operation on edge uv and vertex v.

Lemma 5.2. Let G = (V,E) be a minimally rigid graph and let uv ∈ E be a designated
edge. If |V | ≥ 3 then let w be a designated vertex which is different from u, v. Then
(i) there exists a Henneberg sequence which starts with the edge uv and generates G,
(ii) if |V | ≥ 3 then there exists a Henneberg sequence which starts with the triangle
uvw and generates G.

It is well-known that vertex-splitting preserves rigidity [15]. The following proof
method, however, is new, and will be used to deal with redundant rigidity.

Lemma 5.3. Let G be a rigid graph and let G′ be obtained from G by a vertex splitting
operation. Then G′ is rigid.

Proof. Let G′ be obtained from G by a vertex splitting at edge uv and with bipartition
F1, F2. Let H be a minimally rigid spanning subgraph of G which contains the edge
uv and consider a Henneberg sequence H1, . . . , Hm of H with H1 = uv. We define
a bipartition F j

1 , F j
2 of the edges incident to v (except uv) in each Hj, starting with

Hm. Let Fm
i = Fi, i = 1, 2. If j < n and wv ∈ E(Hj) ∩ E(Hj+1) then let wv

belong to the same partition as in Hj+1. If wv ∈ E(Hj) − E(Hj+1) then Hj+1 =
Hj + y − wv + {yv, yw, yt}, for some y and t. In this case let wv belong to the
same partition as yv in Hj+1. Now consider the triangle uv1v2 and apply the ’same’
Henneberg sequence in such a way that every time a new edge incident to v is added
in Hj, it is connected to either v1 or v2, according to the bipartition F j

1 , F j
2 . The

graph H ′ obtained this way is a minimally rigid spanning subgraph of G′. Thus G′ is
rigid.

Lemma 5.4. Let G be a redundantly rigid graph and let G′ be obtained from G by
a vertex splitting at edge uv and with bipartition F1, F2 such that F1 and F2 are both
non-empty (or equivalently, in such a way that v1, v2 have degree at least three in G′).
Then G′ is redundantly rigid.

Proof. We have to show that G′ − xy is rigid for all edges xy ∈ E(G′). This follows
from Lemma 5.3 for all edges xy ∈ E(G′) − {uv1, uv2, v1v2}, since G′ − xy can be
obtained from the rigid graph G − xy by a vertex splitting operation.

It remains to prove that G′ − uv1 and G′ − v1v2 is rigid. (By symmetry the rigidity
of G′ − uv2 will also follow.) First consider G′ − uv1. Let vy ∈ F2 and let H be a
minimally rigid spanning subgraph of G − vy which contains uv. Such an H exists,
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since G is redundantly rigid. Consider a Henneberg sequence H1, H2, ..., Hm of H for
which H2 is the triangle uvy (recall Lemma 5.2). Define the bipartition F j

1 , F j
2 of the

edges incident to v in each Hj as in Lemma 5.3. Now apply the ’same’ Henneberg
sequence, but by replacing the starting triangle uvy by the minimally rigid graph
Ku,v1,v2,y −uv1 and then, as above, in such a way that every time a new edge incident
to v is added to Hj, it is connected to either v1 or v2, according to the bipartition
F j

1 , F j
2 . (Here Ku,v1,v2,y denotes the complete graph on vertex set u, v1, v2, y.) The

graph H ′ obtained this way is a minimally rigid spanning subgraph of G′−uv1. Thus
G′ − uv1 is rigid.

The case of G′ − v1v2 is similar. The only difference is that the starting triangle
uvy is replaced by the minimally rigid graph Ku,v1,v2,y − v1v2.

Lemma 5.5. Let G be a 3-connected graph and let G′ be obtained from G by a vertex
splitting at edge uv and with bipartition F1, F2 such that F1 and F2 are both non-empty
(or equivalently, in such a way that v1, v2 have degree at least three in G′). Then G′

is 3-connected.

Proof. For a contradiction suppose that G′ is not 3-connected. Then there is a small
’separator’, i.e. a set S ⊂ V (G′) with |S| ≤ 2 for which G′ − S is disconnected. Since
each vertex has degree at least three in G′, it follows that each connected component
of G′ − S contains at least two vertices. Furthermore, since u, v1, v2 induce a triangle
in G′, there is exactly one component of G′ − S which intersects {u, v1, v2}. Thus by
’contracting’ the edge v1v2 in G′ (i.e. by performing the inverse of vertex splitting)
we obtain a graph H with a separator of size at most two. Since G = H, this is a
contradiction.

Lemma 5.4, 5.5, and Theorem 1.2 now implies an affirmative answer to the two-
dimensional version of Conjecture 5.1. (The one-dimensional case is easy to verify.)

Theorem 5.6. Let G be a globally rigid graph and let G′ be obtained from G by a
vertex splitting at edge uv and with bipartition F1, F2 in such a way that v1, v2 have
degree at least three in G′. Then G′ is globally rigid.

5.1 Diamond split

There is a second form of vertex splitting in two dimensions. Let uv, vw be two
adjacent edges and let F1, F2 be a bipartition of the edges incident to v (except
uv, vw). The operation diamond split deletes the edges uv, vw, and replaces them by
a four-cycle (diamond): it adds two new vertices v1, v2, edges uv1, uv2, wv1, wv2, and
replaces each edge zv ∈ Fi by an edge zvi, for i = 1, 2. See Figure 6.

Whiteley [16] asked whether the diamond-split operation also preserves the redun-
dant rigidity or global rigidity of a graph G, provided the new vertices have degree at
least three. It is not difficult to show that if G has 2|V (G)| − 2 edges then diamond-
split preserves redundant rigidity (that is, it takes an ‘M-circuit’ to an ‘M-circuit’).
In general, however, this is not always the case. See Figure 7. The diamond-split
operation may also destroy 3-connectivity, if u, v, w form a separating set of size three
in G. Thus, in general, it does not preserve global rigidity either.
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Figure 6: The diamond split operation.
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Figure 7: Diamond split may destroy redundant rigidity.
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