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Uniquely Localizable Networks with Few Anchors

Zsolt Fekete? and Tibor Jordán??

Abstract

In the network localization problem the locations of some nodes (called
anchors) as well as the distances between some pairs of nodes are known, and
the goal is to determine the location of all nodes. The localization problem is
said to be solvable (or uniquely localizable) if there is a unique set of locations
consistent with the given data. Recent results from graph rigidity theory made
it possible to characterize the solvability of the localization problem in two
dimensions.

In this paper we address the following related optimization problem: given
the set of known distances in the network, make the localization problem solv-
able by computing the locations of as few nodes as possible, that is, by minimiz-
ing the number of anchor nodes. We develop a polynomial-time 3-approximation
algorithm for this problem by proving new structural results in graph rigidity
and by using tools from matroid theory.

1 Introduction

In the network localization problem the locations of some nodes (called anchors)
as well as the distances between some pairs of nodes are known, and the goal is
to determine the location of all nodes. This is one of the fundamental algorithmic
problems in the theory of wireless sensor networks and it has been in the focus of a
number of recent research articles, see e.g. [1, 3, 15].

The localization problem is said to be solvable (or the network is said to be uniquely
localizable) if there is a unique set of locations consistent with the given data. Recent
results from graph rigidity theory made it possible to characterize the solvability of
the localization problem in two dimensions, assuming that the nodes are in ‘general
position’. In this case the solvability of the problem depends only on the combinatorial
properties of the network. In the graph of the network vertices correspond to nodes,
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1/A, Budapest, Hungary, H-1117. Email: fezso@cs.elte.hu
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Section 2. Rigid and globally rigid graphs 2

and two vertices are connected by an edge if either the corresponding distance is
known, or both endvertices are anchors. See Figures 1, 2. As it was observed earlier
[3, 15], a two-dimensional network in ‘general position’ is uniquely localizable if and
only if it has at least three anchors and the graph of the network is globally rigid (or
uniquely realizable).

In this paper we address the following related optimization problem: given the set of
known distances in the network, make the localization problem solvable by computing
the locations of as few nodes as possible, that is, by minimizing the number of anchor
nodes. (This problem was also posed in [15] as an open question.)

We develop a polynomial-time 3-approximation algorithm for this problem by prov-
ing new structural results in graph rigidity and by using tools from matroid theory.
Due to space limitations, we focus on the combinatorial aspects. For more details and
other related results see the full version [4] and the list of references.
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Figure 1: A uniquely localizable network with six nodes. Edges correspond to known
distances between pairs of nodes. The anchor nodes u1, u2, u4, u5 are indicated by
boxes. This is a smallest anchor set which can guarantee solvability for the given
distances.
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Figure 2: The graph of the network in Figure 1.

2 Rigid and globally rigid graphs

In this section we give a brief summary of the basic definitions and results concerning
rigid and globally rigid graphs. See [5, 7, 13, 16] for more details on rigid graphs and
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frameworks. For a graph G = (V, E) and a subset X ⊆ V let EG(X) denote the set,
and iG(X) the number, of edges in G[X], that is, in the subgraph induced by X in
G. For F ⊆ E we shall use iF (X) to denote the number of those edges in F which
are induced by X.

Let G = (V, E) be a graph and let F ⊆ E. We say that F is sparse if

iF (X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2. (1)

It is well-known that the sparse subsets of E form the independent sets of a matroid
R(G) on groundset E, with rank function r.

Roughly speaking, a graph is rigid if, when realized as a bar-and-joint framework
in ‘general position’, it has no non-trivial continous deformation which preserves the
bar lengths. The following fundamental theorem of Laman gives a combinatorial
characterization of rigidity in R2.

Theorem 2.1. [8] A graph G = (V, E) is rigid in R2 if and only if r(E) = 2|V | − 3.

Thus the matroid R(G) is called the rigidity matroid of G. We say that a graph
G = (V, E) is M-independent if E is independent in R(G). We have the follow-
ing formula for the rank of a set of edges of G. A cover of G = (V, E) is a col-
lection of subsets X = {X1, X2, . . . , Xt} of V , each of size at least two, such that
{EG(X1), EG(X2), . . . , EG(Xt)} partitions E. The cover is non-trivial if t ≥ 2. The
value of the cover is equal to val(X ) =

∑t

i=1(2|Xi| − 3).

Theorem 2.2. [11] Let G = (V, E) be a graph. The rank of a non-empty set E ′ ⊆ E
of edges in R(G) is given by

r(E ′) = min val(X ),

where the minimum is taken over covers X of (V, E ′).

Given a graph G = (V, E), a subgraph H = (W, C) is said to be an M-circuit in
G if C is a circuit (i.e. a minimal dependent set) in R(G). In particular, G is an
M-circuit if E is a circuit in R(G). Using Theorem 2.1 we may deduce that G is an
M-circuit if and only if |E| = 2|V |−2 and E − e is sparse for all e ∈ E. G− e is rigid
for all e ∈ E.

Given a matroid M = (E, I), we define a relation on E by saying that e, f ∈ E are
related if e = f or if there is a circuit C in M with e, f ∈ C. It is well-known that
this is an equivalence relation. The equivalence classes are called the components of
M. If M has at least two elements and only one component then M is said to be
connected.

We say that a graph G = (V, E) is M-connected if its rigidity matroid R(G) is
connected. For example, complete graphs Km with m ≥ 4 and complete bipartite
graphs K3,m with m ≥ 4 are M-connected. Note that M-connected graphs are rigid
[7]. The M-components of G are the subgraphs of G induced by the components of
R(G). For example, the graph in Figure 1 has three M-components: the edges u1u2,
u2u3, and the K4. Note that the M-components of G are induced subgraphs. For
more examples and basic properties of M-connected graphs see [7].

Globally rigid graphs were characterized in [7], see also [6].
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Theorem 2.3. [7] A graph on at least four vertices is globally rigid in R2 if and only
if it is 3-connected and M-connected.

3 The M-connected relaxation of the anchor min-

imization problem

The previous discussions and Theorem 2.3 imply that the anchor minimization prob-
lem can be reformulated as the following purely combinatorial problem: given a graph
G = (V, E), find a smallest set P ⊆ V , |P | ≥ 3, for which G + K(P ), the graph
obtained from G by adding a complete graph on vertex set P , is 3-connected and
M-connected.

To find an approximate solution for the anchor minimization problem we first ne-
glect the 3-connectivity condition and consider its ‘M-connected relaxation’. (Note
that the complexity status of both problems is still open.)

The following lemma is easy to prove by standard matroid techniques.

Lemma 3.1. Let M = (E, I) be a matroid with components E1, E2, . . . , Et. Then
(i) r(M) =

∑t

1 r(Ei), and
(ii) if r(M) =

∑q

1 r(Fi) for some partition F1, F2, . . . , Fq of E and Ei is a component
of M for some 1 ≤ i ≤ t, then Ei ⊆ Fj for some 1 ≤ j ≤ q.

The next lemma can be deduced from Theorem 2.2, Lemma 3.1, and the fact that
the M-connected components are induced rigid subgraphs.

Lemma 3.2. G = (V, E) is M-connected if and only if val(X ) ≥ 2|V | − 2 for all
non-trivial covers X of G.

The following key lemma characterizes the feasible solutions of the ‘M-connected
relaxation’.

Lemma 3.3. Let G = (V, E) be a graph, let H = {H1, H2, ..., Ht} be the M-components
of G, and let P ⊆ V with |P | ≥ 4. Then G + K(P ) is M-connected if and only if

2|V | − 2 ≤ 2|Z| − 3 +
∑

Hi∈H:V (Hi)∩(V −Z)6=∅

(2|V (Hi)| − 3) (2)

holds for all Z ⊂ V with P ⊆ Z, Z 6= V .

Proof. First suppose that G + K(P ) is M-connected. Since H is a cover of G and
P ⊆ Z, Z ∪ {Hi ∈ H : V (Hi) ∩ (V − Z) 6= ∅} is a cover of G + K(P ). This cover is
non-trivial, since Z 6= V . Thus (2) follows from Lemma 3.2.

To prove the other direction suppose, for a contradiction, that (2) holds but G′ =
G + K(P ) is not M-connected. Let H′ = {H ′

1, H
′
2, ..., H

′
q} denote the M-components

of G′. Since complete graphs on at least four vertices are M-connected, and |P | ≥ 4,
it follows that G′[P ] is M-connected. Thus there is an M-component H ′

1, say, for
which P ⊆ V (H ′

1).
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Section 4. The matroid matching problem 5

Now consider a graph H on vertex set V . We claim that H = H ′
j for some M-

component H ′
j of G′ with 2 ≤ j ≤ q, if and only if H = Hi for some M-component Hi

of G with V (Hi) ∩ (V − V (H ′
1)) 6= ∅. To see this focus on an M-component H ′

j ∈ H′

with j ≥ 2. Since P ⊆ V (H ′
1) and EG′(H ′

1)∩EG′(H ′
j) = ∅, it follows that G[V (H ′

j)] is
M-connected. Thus, since G′ is a supergraph of G and H ′

1 is an induced subgraph, we
must have H ′

j = Hi for some Hi ∈ H with V (Hi)∩ (V −V (H ′
1)) 6= ∅. Now let Hi ∈ H

with V (Hi) ∩ (V − V (H ′
1)) 6= ∅. Since H ′

1 is M-connected in G′ and M-components
are edge-disjoint, it follows that V (Hi) induces a maximal M-connected subgraph in
G′. This proves the claim.

By using the previous claim and Lemma 3.1(i), and by applying (2) with Z =
V (H ′

1), we obtain

2|V |−3 ≥ r(G′) = 2|V (H ′
1)|−3+

∑

Hi∈H:V (Hi)∩(V −V (H′

1
))6=∅

(2|V (Hi)|−3) ≥ 2|V |−2, (3)

a contradiction.

Let H̃ = (V, E) be the hypergraph obtained from H by replacing each set Hi by
2|V (Hi)| − 3 copies of V (Hi), 1 ≤ i ≤ t. For some X ⊆ V let eH̃(X) denote the
number of hyperedges e ∈ E with e ∩ X 6= ∅. By letting S = V − Z in Lemma 3.3
and using the above definitions we obtain:

Lemma 3.4. Let G = (V, E) be a graph, let H = {H1, H2, ..., Ht} be the M-components
of G, and let P ⊆ V with |P | ≥ 4. Then G + K(P ) is M-connected if and only if

eH̃(S) ≥ 2|S| + 1 (4)

holds for all non-empty subsets S ⊆ V − P .

4 The matroid matching problem

Let M be a matroid on gound-set S and suppose that S is partitioned into a set A
of pairs. A subset M ⊆ A is a matroid matching if the union of the pairs in M is
independent in M. A set P ⊆ S is a co-matching if S − P is the union of pairs of
a matroid matching. In the matroid matching problem the goal is to find a largest
matroid matching, see [14, Chapter 43], or equivalently, to find a smallest co-matching.
Lovász [10] has shown that this problem may require exponential time in general but
can be solved polynomially if the matroid is presented by a set of vectors in some
linear space.

We claim that the ‘M-connected relaxation’, i.e. the problem of finding a smallest
set P for which G+K(P ) is M-connected, is a special case of the smallest co-matching
problem. To see this consider the bipartite graph G∗ obtained from the bipartite
incidence graph of H̃ by splitting each vertex ui ∈ V into two vertices u′

i, u
′′
i . Let U

denote the color class containing the split vertices. See Figure 3. It is not difficult to
see that there is a one-to-one correspondence between the subsets P ⊆ V satisfying
(4) and the subsets P ′ ⊆ U for which U − P ′ consist of pairs of split vertices and
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Section 5. The approximation algorithm for the anchor minimization problem 6

which satisfy the strong Hall condition in G∗. (A subset of U is said to satisfy the
strong Hall condition if all non-empty subsets of U satisfy the Hall condition with
strict inequality.)

We say that a hypergraph H ′ = (V, E ′) is a hyperforest) if | ∪ F| ≥ |F| + 1 for all
∅ 6= F ⊆ E ′. Lorea [9] proved that in a hypergraph H = (V, E) the edge sets of the
hyperforest subhypergraphs of H form a family of independent sets of a matroid on
ground set E . This matroid is the hypergraphic matroid M(H) of H . It is easy to
see that a subhypergraph of H is a hyperforest if and only if the corresponding set of
vertices in the bipartite incidence graph of H satisfies the strong Hall condition.
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Figure 3: The bipartite graph G∗ obtained from the graph G in Figure 1.

The above discussion, the construction of G∗, and Lemma 3.4 imply that the prob-
lem of finding a smallest set P for which G+K(P ) is M-connected can be formulated
as finding a smallest co-matching in a hypergraphic matroid.

Hypergraphic matroids are known to be linear, but it is not known how to find a
suitable linear representation. Thus the complexity status of the matroid matching
(and co-matching) problems in hypergraphic matroids is still open. However, as we
shall see, the greedy algorithm provides a good approximation.

5 The approximation algorithm for the anchor min-

imization problem

Let M = (S, I) be a matroid with rank function r and suppose that S is partitioned
into a set A of pairs. A subset M ⊆ A is a matroid matching if the union of the pairs
in M belongs to I. A set P ⊆ S is a co-matching if S − P is the union of pairs of a
matroid matching.

Lemma 5.1. Let P ′ be an inclusionwise minimal co-matching and let P be a smallest
co-matching in M. Then |P ′| ≤ 2|P |.

Proof. Let X = S−P ′. The minimality of P ′ implies that r(X +e) ≤ r(X)+1 for all
pairs e ∈ E with e ⊆ P ′. Thus r(S) ≤ |X| + |S − X|/2, and hence |P ′| = |S − X| ≤
2|S|−2r(S). On the other hand, since S−P is independent, we have |P | ≥ |S|−r(S).
This gives |P ′| ≤ 2|P |.
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Section 6. Concluding remarks 7

Note that if H = G + K(P ) is M-connected then it must be 2-connected. The
following simple lemmas imply that a smallest set P ′ for which H + K(P ′) is 3-
connected can be found efficiently.

Let H = (V, E) be a graph. For some X ⊆ V let N(X) denote the set of neighbours
of X and let S(X) = X ∪ N(X). We say that X ⊂ V is tight if |N(X)| = 2 and
S(X) 6= V .

Lemma 5.2. Let H = (V, E) be 2-connected and let X, Y ⊂ V be distinct minimal
tight sets in G. Then X ∩ Y = ∅.

Lemma 5.3. Let H = (V, E) be 2-connected and let P ′ ⊆ V . Then H + K(P ′) is
3-connected if and only if P ′ ∩ X 6= ∅ for all minimal tight sets X of H.

It follows from Lemmas 5.2 and 5.3 that every inclusionwise minimal set P ′ for
which H + K(P ′) is 3-connected is in fact a smallest set.

Thus in the second phase of the algorithm we find a smallest set P ′ for which
H + K(P ′) is 3-connected. It is easy to see that P ∪ P ′ will be a feasible solution
of the anchor minimization problem whose size is not more than twice the size of an
optimal solution.

6 Concluding remarks

In this paper we considered the M-connected pinning problem and the anchor min-
imization problem. For these minimization problems we gave polynomial-time 2-
approximation (resp. 3-approximation) algorithms, by using new structural results
on rigid graphs and matroid theoretical tools.

The complexity status of both problems remains open. In the full version of this
paper [4] we also give a randomized polynomial-time algorithm which can optimally
solve the former problem and leads to a 2-approximation algorithm for the latter.
We note that in a recent paper Makai [12] gave a good characterization (a minimax
formula) for the maximum size of a matroid matching in a hypergraphic matroid. This
indicates that the M-connected pinning problem might turn out to be polynomially
solvable.

Further open problems include the unit disk graph case and the pinning extension
problem for both.
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