
Egerváry Research Group
on Combinatorial Optimization

Technical reportS

TR-2006-12. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Source location in undirected and
directed hypergraphs

Attila Bernáth

December 2006

EGRES Technical Report No. 2006-12 1

Source location in undirected and directed
hypergraphs

Attila Bernáth?

Abstract

In this paper we generalize source location problems with edge-connectivity
requirements on undirected and directed graphs to similar problems on undi-
rected and directed hypergraphs. In the undirected case we consider an abstract
framework which contains the source location for undirected hypergraphs as a
special case and which can be solved in polynomial time. For the directed case,
the asymmetry of the results we get reflects the asymmetry of the model of
directed hypergraph we consider.

1 Introduction and preliminaries
A wide range of source location problems can be formulated the following way: given
a graph (either directed or undirected) find a nonempty subset S of the nodes (called
source set) such that contracting the set S will result in a (di)graph with “good
connectivity properties”. The objective is to minimize the total weight of the source
set to be found (where nodes have nonnegative weights). Tractability, of course,
depends heavily on our definition for “good connectivity properties”.

We will mainly concentrate on the following special cases (R⊕ denotes the set of
nonnegative reals):

Problem 1 (Source Location in Graphs). Given a graph G = (V,E), a weight func-
tion w : V → R⊕ and a requirement function r : V → R⊕ on the nodes (we will also
call r as the demand function). Find a nonempty subset of nodes S such that for
every node v ∈ V −S there are at least r(v) edge-disjoint paths each starting at v and
ending in a node of S and w(S) :=

∑
s∈S w(s) is minimum.

This problem was raised in [1] where they show the NP -completeness of this prob-
lem. However, it is shown in [1] that the special case when w is constant can be solved
in O(|V |M) time, where M is the time needed for one maximum flow computation
in our network. A minor observation shows that the same algorithm solves another

?Dept. of Operations Research, Eötvös University, Pázmány P. s. 1/C, Budapest, Hungary H-
1117. The author is a member of the Egerváry Research Group (EGRES). Research supported
by European MCRTN Adonet, Contract Grant No. 504438, by OTKA grant K 060802 and by the
Mobile Innovation Centre, Hungary. E-mail: bernath@cs.elte.hu

December 2006

Section 1. Introduction and preliminaries 2

special case, namely when r is constant, but the authors of [1] give another algorithm
for this case that improves the running time to O(|V |(|E|+ |V | log |V |)).

To introduce the problems we want to consider for directed graphs, we need a
definition.

Definition 1. Given a digraph D = (V,A), a nonempty subset of the nodes S and a
node v ∈ V − S, then λD(S, v) denotes the maximum number of arc-disjoint directed
paths, each starting at a vertex of S and ending at v. Similarly, λD(v, S) denotes the
maximum number of arc-disjoint directed paths starting at v and ending at a vertex of
S. If u, v ∈ V are distinct vertices then we write λD(u, v) instead of λD({u}, v). If no
confusion can arise then we will leave out D from the subscript. A digraph is called
(k, l)-arc-connected from node s if λ(s, v) ≥ k and λ(v, s) ≥ l for every v ∈ V − {s}.

Problem 2 (Source Location in Digraphs). Given a directed graph D = (V,A) and
nonnegative integers k, l, find a nonempty subset S of the nodes such that λD(S, v) ≥
k and λD(v, S) ≥ l for every node v ∈ V − S and |S| is minimum. (In other words:
find a smallest possible nonempty set S such that contracting S to a node s results in
a (k, l)-arc-connected graph from s).

This problem was raised in [8] where it was shown that it lies in NP ∩ co(NP).
Later, Bárász, Becker and Frank in [3] gave a strongly polynomial time algorithm that
solves this problem. We have to mention that the weighted version of this problem is
NP-hard, as was shown in [8].

In this paper we generalize the above given source location problems for hypergraphs
and directed hypergraphs. We should note that the above given references actually
solve the capacitated versions of the above given problems (that is, edges or arcs have
nonnegative capacities and we consider flow value instead of edge- or arc-connectivity),
but this only means a minor technical difficulty in both cases.

Let us conclude this section with some more notations and definitions. For general
graph-theoretic terms we refer the reader to [14].

Definition 2. A set-function b : 2V → R is said to be submodular if

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X, Y ⊆ V.

It is called symmetric if

b(X) = b(V −X) for any X ⊆ V.

It is called posi-modular if

b(X) + b(Y) ≥ b(X − Y) + b(Y −X) ∀X, Y ⊆ V.

Note that a symmetric submodular function is also posi-modular.

Notations: For nodes s, t ∈ V we will say that X ⊆ V is an st-set to mean that
s /∈ X, t ∈ X. If we say that a set X ⊆ V is minimal to some property then we mean
that there is no set Y (X with this property. The term maximal will be used in the
same sense. We will usually use n = |V |. If S ∩X 6= ∅ for two sets S,X then we will
also say that S covers X. A set containing exactly one point will be called a singleton
sometimes.

EGRES Technical Report No. 2006-12

1.1 Preliminaries on hypergraphs 3

1.1 Preliminaries on hypergraphs

An undirected hypergraph (or shortly hypergraph) H = (V, E) is a pair of a finite set
V and a family E of subsets of V (repetitions are allowed). The set V is called the
node set of the hypergraph, the family E is called the edge set of the hypergraph. An
element of E will be called a hyperedge.

In a hypergraph H, a path between nodes s and t is an alternating sequence of
distinct nodes and hyperedges s = v0, e1, v1, e2, . . . , ek, vk = t, such that vi−1, vi ∈ ei

for all i between 1 and k. H is connected if there is a path between any two distinct
nodes. A hyperedge e enters a set X if e ∩ X 6= ∅ and e ∩ (V − X) 6= ∅. For a set
X we define dH(X) = |{e ∈ E : e enters X}| (the degree of set X in H). This is a
symmetric submodular function.

Definition 3. Given a hypergraph H = (V, E), a set S ⊆ V and node x ∈ V . Let
λH(x, S) denote the maximum number of edge-disjoint paths starting at x and ending
at a vertex of S (we agree that λH(x, S) =∞ if x ∈ S). We will write λH(x, y) instead
of λH(x, {y}), if x, y ∈ V . Subscript H may be omitted if no confusion can arise.

It is well known that Menger’s theorem can be generalized for hypergraphs:

Theorem 1.1. Let H = (V, E) be a hypergraph, and s, t ∈ V distinct nodes. Then

λH(x, y) = min{dH(X) : X ⊆ V is an st-set}.

Definition 4. For any nonnegative real number r define the binary relation ∼r as
follows

x ∼r y ⇐⇒ λH(x, y) ≥ r.

It is easy to see that this is an equivalence relation. The equivalence classes are
called r-connectivity components.

1.2 Preliminaries on directed hypergraphs

We will use the notion of directed hypergraphs (or dypergraphs, for short) as it is
introduced in [5].

A directed hypergraph H = (V,A) is a pair of a finite set V and a family A of
subsets of V (repetitions are allowed) where each member a of A contains a designated
head node, denoted by h(a). The rest of the elements of a are called the tails and
we introduce the notation T (a) = a − h(a) for the tail set of a (we will assume that
|a| ≥ 2 for each a ∈ A). The set V is called the node set of the dypergraph, the family
A is called the hyperarc set (or sometimes shortly the arc set) of the dypergraph. An
element of A will be called a hyperarc.

In a dypergraph H, a path between nodes s and t is an alternating sequence of
distinct nodes and hyperarcs s = v0, a1, v1, a2, . . . , ak, vk = t, such that vi−1 ∈ T (ai)
and vi = h(ai) for all i between 1 and k. A hyperarc a enters a set X if h(a) ∈ X
and T (a) ∩ (V −X) 6= ∅. A hyperarc leaves a set if it enters the complement of this
set. For a set X we define %H(X) = |{a ∈ A : a enters X}| (the in-degree of X) and
δH(X) = %H(V −X) (the out-degree of X). It is easy to check that functions % and
δ are submodular functions.

EGRES Technical Report No. 2006-12

Section 2. Source location in undirected hypergraphs 4

Definition 5. Given a dypergraph H = (V,A) and nodes x, y ∈ V the maximum
number of arc-disjoint paths from x to y in H will be denoted by λH(x, y). For a set
S ⊆ V and node x ∈ V − S, λH(S, x) denotes the maximum number of arc-disjoint
paths starting at a vertex of S and ending at x (λH(x, S) is defined analogously).
Subscript H may be omitted if no confusion can arise.

Again it is well known that Menger’s theorem can be generalized for dypergraphs:

Theorem 1.2. Let H = (V,A) be a directed hypergraph, and s, t ∈ V distinct nodes.
The maximum number of arc-disjoint directed paths from s to t is

min{%H(X) : X ⊆ V is an st-set}.

2 Source location in undirected hypergraphs
In this section we introduce a generalization of Problem 1 for (undirected) hyper-
graphs. Then we generalize the problem further and formulate an abstract source
location problem. Of course we can not solve this problem in general (it contains an
NP -complete problem), but we observe that it can be solved with an adaptation of
the greedy algorithm introduced in [1] in the special case when the demand and the
weight functions are compatible. This contains the case when either of these functions
is uniform (constant, in other words), but in the subsequent subsection we give an-
other algorithm for uniform demand functions that gives a better running time. In
every case we also specialize our results for the hypergraphic source location problem,
too.

A straightforward generalization of Problem 1 introduced above is the following:

Problem 3 (Source Location in Hypergraphs). Given an undirected hypergraph H =
(V, E), a weight function w : V → R⊕ and a demand function r : V → R⊕ on the
nodes. Find a nonempty subset of nodes S such that for every node v ∈ V − S there
are at least r(v) edge-disjoint paths each starting at v and ending in a node of S and
w(S) :=

∑
s∈S w(s) is minimum.

By Theorem 1.1 we can reformulate the problem in the following way: find a subset
of nodes S such that dH(X) ≥ max{r(v) : v ∈ X} for every ∅ 6= X ⊆ V − S and
w(S) is minimum. However, since Problem 1 is a special case of this problem, this
is an NP -complete problem. In what follows we will concentrate on the two special
cases of this problem that were solvable for graphs; namely the constant weight and
the constant demand case. We will show that the algorithms given in [1] can be
modified appropriately to work in this more general setting, too. What is more, we
will show that they work in an even more abstract environment, too. To this end let
us introduce the following, abstract form of Problem 3.

Problem 4 (Abstract Source Location). Given a function d : 2V → R⊕ that is posi-
modular and submodular, a weight function w : V → R⊕ and a demand function r :
V → R⊕ on the nodes. Find a subset of nodes S such that d(X) ≥ max{r(v) : v ∈ X}
for every X ⊆ V − S and w(S) is minimum.

EGRES Technical Report No. 2006-12

2.1 Compatible demand- and weight function 5

As a remark we mention that the nonnegativity of the function d is not really a
restriction: an arbitrary symmetric submodular function d′ attains its minimum at the
empty set, so defining d(X) = d′(X)−d′(∅) gives a nonnegative symmetric submodular
function and we can modify the demand function similarly to be able to reduce the
more general problem without the nonnegativity constraints to our problem. On the
other hand, the nonnegativity of the weight function is a natural requirement, since
any superset of a valid source set is again a valid source set. Also, we could have
required the nonemptyness of a source set: that would not have changed the problem
significantly.

In the following sections we will show that the special case of this abstract prob-
lem when the demand and the weight functions are compatible can be solved using
appropriate adaptations of the algorithms given in [1].

Let us introduce some terminology. A set X ⊆ V is called deficient if d(X) <
max{r(v) : v ∈ X} (if X = ∅ then max{r(v) : v ∈ X} = −∞, so the empty set will
never be deficient). It is obvious that a set S is a valid source set if and only if it
meets every deficient set, which is equivalent to requiring that S has to meet every
minimal deficient set.

2.1 Compatible demand- and weight function

In this section we will give an algorithm to solve Problem 4 in the special case when the
demand- and weight functions are compatible. This is an adaptation of the greedy
algorithm given in [1]. Let us define first what we mean by these functions being
compatible.

Definition 6. Two functions r, w : V → R will be called compatible if there is an
ordering v1, v2, . . . , vn of V such that r(v1) ≤ r(v2) ≤ · · · ≤ r(vn) and w(v1) ≥ w(v2) ≥
· · · ≥ w(vn).

Observe that compatibility of two functions can be easily checked in O(n log n) time
and it is indeed a symmetric relation. Now we can give the greedy algorithm to solve
Problem 4: in this algorithm we only assume the posi-modularity of function d but
we leave one question open that will only be answered when d is also submodular!

Algorithm GREEDY
begin

INPUT A posi-modular function d : 2V → R⊕, a demand function r : V → R⊕
and a weight function w : V → R⊕ on the finite set V . Assume that r and w are
compatible functions.
OUTPUT A minimum weight source set S.

1.1. Let S = V . Order V s.t. r(v1) ≤ r(v2) ≤ · · · ≤ r(vn) and w(v1) ≥ w(v2) ≥ · · · ≥
w(vn).

1.2. For i = 1 to n do
1.3. (*) If there is no deficient set X with S ∩X = {vi} then S := S − vi.
1.4. Output S.
end

EGRES Technical Report No. 2006-12

2.2 Implementation of Step (*) 6

One thing remains to make clear: how to implement Step (*); to be able to do this
we will also assume the submodularity of the function d. Let us speak about this later
and first check the correctness of the algorithm. Let us denote the current set S in
the ith iteration before executing step (*) by Si (so S1 = V) and let the output of the
algorithm be Sn+1 = {vi1 , vi2 , . . . , vit} for some t ≥ 0. A simple inductive argument
shows that Si is a valid source set for any i between 1 and n + 1. We only need to
show that Sn+1 has minimum weight among the source sets. If, in the ith step of the
for loop, Si − vi is not a valid source set then there must be a deficient set Xi with
Si ∩Xi = {vi}. We can assume that this Xi is minimal deficient: there is a minimal
deficient set in Xi but it must contain vi otherwise Si was not a valid source set. In
particular Xi ⊆ {v1, v2, . . . , vi} which also implies that max{r(v) : v ∈ Xi} = r(vi).
We will show that these sets Xi1 , Xi2 , . . . , Xit are pairwise disjoint minimal deficient
sets. Assume that this is not the case and suppose ij < ik are such that Xij ∩Xik 6= ∅.
It is clear that vik /∈ Xij because Xij ⊆ {v1, v2, . . . , vij}. But vij ∈ Xik can not hold
either since in the ikth iteration Xik is only covered by vik from among the nodes of
Sik which also contains vij . But then we have a contradiction from

r(vij) + r(vik) > d(Xij) + d(Xik) ≥ d(Xij −Xik) + d(Xik −Xij) ≥ r(vij) + r(vik).

(The first inequality follows from the deficiency of sets Xij and Xik and the last is
because they are minimal deficient sets.) From these observations the optimality of
the algorithm follows: we have given an optimal covering of the disjoint minimal
deficient sets Xi1 , Xi2 , . . . , Xit .

2.2 Implementation of Step (*)

The only thing to show is the subroutine that implements Step (*). We note that
a subroutine checking whether a given set S is a valid source set or not would also
suffice but the one we gave is easier to implement in our case (and also gives a better
running time). It is an open question already mentioned in [13] whether this can be
done for a posi-modular set function d: so we also assume that d is submodular. Then
we define the following set function d′ : 2V−S → R with d′(X) := d(X + vi) for any
X ⊆ V − S. This is a submodular function and S − vi is a valid source set if and
only if min{d′(X) : X ⊆ V − S} ≥ r(vi). So any algorithm for submodular function
minimization will solve this problem. This yields the following result:

Theorem 2.1. Algorithm GREEDY solves the Abstract Source Location Problem with
compatible demand and weight function in O(n SFM(n, γ)) time, where SFM(n, γ)
denotes the time needed to solve submodular function minimization on an n element
ground set if γ denotes the time of a call to the function-evaluation oracle.

We mention that the dual solution (disjoint deficient sets) can be obtained, since
algorithms for submodular function minimization can produce these, too. We also
point out, that deciding whether a submodular function takes a value less than a given
bound B can be formulated as Problem 4 with uniform weight function (following
the ideas of Narayanan [11], for example), so any algorithm solving Problem 4 with
uniform weight function will need essentially at least SFM(n, γ) time.

EGRES Technical Report No. 2006-12

2.3 Improving the running time for uniform demands 7

The following corollary is a direct extension of Theorems 1 and 2 of [1] and it
improves the result (Theorem 24) in [13] by a factor of n:

Corollary 2.2. Problem 4 with a uniform weight function (and arbitrary demands)
can be solved in O(n SFM(n, γ)) time.

Another corollary of Theorem 2.1 is that Problem 4 with a uniform demand function
(and arbitrary weights) can be solved in O(n SFM(n, γ)) time. However, in Section
2.3 we will improve this running time for this special case.

We can specialize our algorithm to the hypergraphic source location problem: in
this case Step (*) can be regarded as a minimum (S − vi, vi) cut problem in our
hypergraph H = (V, E) that can be translated to a maximum-flow problem in a graph
that has O(n + |E|) nodes and O(||E||) edges, where ||E|| denotes the sum of the
cardinalities of the hyperedges. This yields the following result:

Theorem 2.3. Algorithm GREEDY solves the Source Location Problem in Hyper-
graphs with compatible demand and weight function in O(nM(n + |E|, ||E||)) time,
where M(n′,m′) denotes the time needed for a maximum-flow computation in a graph
with n′ nodes and m′ edges.

2.3 Improving the running time for uniform demands

In this section we will give an algorithm to solve Problem 4 in the special case when
the demand function is constant, that is r(v) = k ∀v ∈ V with some k ∈ R⊕. This is
an adaptation of the algorithm solving a special case of this problem that was given
in [1]. Let us make one simple observation: minimal deficient sets are disjoint in this
case. This is proved by the following argument. Suppose X and Y are two such
sets with X ∩ Y 6= ∅. Since they can not contain each other, ∅ 6= X − Y (X and
∅ 6= Y −X (Y which gives a contradiction together with

k + k > d(X) + d(Y) ≥ d(X − Y) + d(Y −X) ≥ k + k.

(The first inequality follows from deficiency and the last from minimality.)
In [12] Queyranne introduces the notion of a pendent pair and gives an algorithm

to find a pendent pair. The algorithm computes an ordering of the nodes (that will be
called Max-Adj ordering here) and finds the pendent pair using this ordering. This
Max-Adj ordering is nothing else but the appropriate generalization of the ordering
used in the algorithm by Nagamochi and Ibaraki to find a minimum cut in a graph
[10]. Let us give the definitions and results.

Definition 7. If h : 2V → R is a symmetric submodular function then an ordering
(v1, v2, . . . , vn) is a Max-Adj ordering for this function if it satisfies the following:

h({vi})− h({v1, . . . , vi}) ≥ h({vj})− h({v1, . . . , vi−1, vj}) ∀2 ≤ i ≤ j ≤ n.

We note that the first element v1 of such an ordering can be specified arbitrarily.

EGRES Technical Report No. 2006-12

2.3 Improving the running time for uniform demands 8

Definition 8. If h : 2V → R is a symmetric submodular function then an ordered
pair of nodes (s, t) is called a pendent pair if

h({t}) = min{h(X) : X ⊆ V, s /∈ X, t ∈ X}.

Lemma 2.4 ([12]). If (v1, v2, . . . , vn) is a Max-Adj ordering for the function h then
(vn−1, vn) is a pendent pair. Such an ordering can be calculated with O(n2) calls to
the h-value oracle and O(n2) other operations.

After these preliminaries we can present the algorithm that solves Problem 4 when
the demand function is uniform. Let us first give a sketch of this algorithm.

We want to calculate a minimum weight source set S and we start with S = ∅.
The main idea is the following: the minimal deficient sets form a subpartition of V .
In each step of the algorithm we find a suitable pair of nodes that is not separated
by a (yet uncovered) minimal deficient set. Then we contract this pair of nodes, and
repeat this until one minimal deficient set becomes a singleton. Then we notice this
and include an element of this set in S. But what shall we do with the minimal
deficient sets that are already covered? We should somehow increase the value of
function d on sets that contain such a set: this is best described using an auxiliary
graph and its cut function.

After a certain number of such contractions every node in the resulting set is the
image of a contracted set in the original ground set: for every such contracted set we
remember the “cheapest” element in it (i.e. the one with the smallest weight: this is
done with the ancestor function in the algorithm below) so this way when we contract
a minimal deficient set into a singleton we can pick the cheapest element from it to
include in our set S. The correct formulation of the algorithm is described by the
succeeding pseudocode.

Algorithm CONSTANT_DEMAND
begin

INPUT A posi-modular and submodular function d : 2V → R⊕, a demand k ∈ R⊕
and a weight function w : V → R⊕ on the finite set V .
OUTPUT A minimum weight source set S.

1.1. Let S = ∅, V ′ = V + s with a new node s and G = (V ′, E) an auxiliary graph:
in the beginning E is empty but later we add edges in E (one endpoint of these
will always be s). Define the symmetric submodular function h : 2V ′ → R by
h(X) = d(X) + kdG(X) for any X ⊆ V and h(X) = h(V ′ −X) if s ∈ X ⊆ V ′.

1.2. For each v ∈ V
1.3. ancestor(v) := v.
1.4. If d({v}) < k then S := S + v and add an edge between s and v to G (so

function h changes here!).
1.5. End for.
1.6. While |V ′| > 2 and ∃v ∈ V ′ − s with (s, v) /∈ E
1.7. Construct the Max-Adj ordering of V ′ for function h starting with s and take

the last two elements in this ordering (a pendent pair) (vn′−1, vn′).

EGRES Technical Report No. 2006-12

2.3 Improving the running time for uniform demands 9

1.8. Contract vn′−1 and vn′ into a node v′ and let the ancestor of v′ be the cheaper
of the ancestor of vn′−1 and that of vn′ (so V ′ gets smaller: function h and
graph G follow these changes the obvious way).

1.9. If h({v′}) < k then add an edge between s and v′ toG and S := S+ancestor(v′)
(function h changes, too!).

1.10. End while.
1.11. Output S.
end

Let us prove the correctness of the above algorithm. In the argumentation below
we will think of the set V as the original ground set, while set V ′ always means the
current ground set after some contractions (note that s is never contracted with any
other node). Also, for a set X ⊆ V we will use the notation X ′ for the image of this
set after the contractions made so far: this only makes sense if there is no set Y ⊆ V
with X ∩ Y 6= ∅ and (V −X) ∩ Y 6= ∅ that was contracted.

Lemma 2.5. In Step 1.7 of the above algorithm

(i) if X ⊆ V is a minimal deficient set that is not covered yet (i.e. S ∩X = ∅ with
the current S) then the image X ′ of X makes sense, and

(ii) there is no (yet uncovered) minimal deficient set X ⊆ V for which |X ′ ∩
{vn′−1, vn′}| = 1.

Proof. Initially (i) is true. At any stage, if (i) is true, then the statement of (ii) makes
sense: assume it is not true and there is a minimal deficient set X ⊆ V for which X ′
separates vn′−1 and vn′ . But then d(X ′) = h(X ′) since X is not covered yet by S and

k > d(X) = d(X ′) = h(X ′) ≥ h(vn′) ≥ k,

gives a contradiction (the second inequality follows from the properties of the Max-
Adj ordering; for the last inequality observe that we always assure in the algorithm
that h(v) ≥ k for singletons v ∈ V ′ − s). Finally, if (ii) is true then (i) will be true in
the next iteration, after contracting vn′−1 and vn′ , too. �

Lemma 2.6. Algorithm CONSTANT_DEMAND solves Problem 4 with uniform de-
mand function in O(n3γ + n3) time (where γ denotes the time of a call to the d-value
oracle).

Proof. The correctness of the algorithm follows from Lemma 2.5 and the definition
of the ancestor function. It is straightforward to check that Step 1.7 dominates the
algorithm which gives the running time indicated above. �

If we specialize our algorithm to hypergraphs, that is to Problem 3, then we can
substitute Step 1.7 of our algorithm with a similar subroutine described in [9]. This
yields the following running time:

Lemma 2.7. Algorithm CONSTANT_DEMAND solves Problem 3 with uniform de-
mand function in O(n2 log(n)+n||E||) time (||E|| denotes the sum of the cardinalities
of the hyperedges).

EGRES Technical Report No. 2006-12

Section 3. Source location in directed hypergraphs 10

3 Source location in directed hypergraphs
We consider the following problem in dypergraphs.

Problem 5. Given a directed hypergraph H = (V,A) and nonnegative integers k, l,
find a subset S of nodes such that for every node v ∈ V − S

λH(S, v) ≥ k and λH(v, S) ≥ l

and |S| is minimum.

We will call this problem the (k, l) source location problem in dypergraphs. We
will show that this problem can be solved in polynomial time if l ≤ 1 and k is
arbitrary, but it is NP -complete if l is arbitrary. This asymmetry can be attributed
to the asymmetric definition of directed hypergraphs. We have to mention that one
can prove similar results for a capacitated version of Problem 5, too, but we do not
include this here.

Because of Theorem 1.2 we can obtain similar reformulations for this problem as
for undirected hypergraphs. We define the notion of deficient set appropriately: a
nonempty set X ⊆ V is deficient if %(X) < k or δ(X) < l. With this definition a
valid source set is a set that meets every deficient set (observe that apart from the
uninteresting k = l = 0 case a valid source set can never be empty: from now on we
will assume that this is not the case). Fortunately we can lead back this problem to
the digraph case if l ≤ 1.

3.1 Solution in the case l ≤ 1

For a directed hypergraph H = (V,A) consider the following digraph DH = (V ∪
VA, A): for each hyperarc a ∈ A introduce a new node va, the new nodes will form the
set VA (disjoint from V). The arc set A contains the following arcs: for each hyperarc
a ∈ A draw an arc from va to the head of the hyperarc a and from each tail of a draw
k′ = max(k, l) parallel arcs from this tail to va (see Figure 1).

va

a ∈ A

Figure 1: Constructing the digraph from the dypergraph (k′ = 2)

We will solve the source location in DH and obtain a solution for H. First observe
the following: if S ⊆ V ∪ VA is a source set in DH then we can easily obtain a source

EGRES Technical Report No. 2006-12

3.2 NP -completeness of the case when l is not fixed 11

set which lies already in V and is not bigger than S. Really, if va ∈ S for some a ∈ A
then do the following: if l = 0 then call function SIMPLE_REPLACE(S, a), if l = 1
then call function TRICKY_REPLACE(S, a). See the description of these functions
below.

Function SIMPLE_REPLACE(S, a)
begin
1.1. if T (a)∩S = ∅ then let S = S− va + t for some t ∈ T (a) otherwise let S = S− va

end

Function TRICKY_REPLACE(S, a)
begin
1.1. if h(a) ∈ S then SIMPLE_REPLACE(S, va)
1.2. else (there is a directed path from h(a) to S, since S is a source-set)
1.3. if there is a directed path from h(a) to S − va then

SIMPLE_REPLACE(S, va)
1.4. else: the last-but-one element of the directed path from h(a) to S is some

t ∈ T (a), let S = S − va + t
end

It is an easy exercise to check that S will remain a (k, l)-source set after this
operation.

This observation together with the following lemma gives a solution to our source
location problem in directed hypergraphs.

Lemma 3.1. For a nonempty S ⊆ V and nonnegative integers k, l with l ≤ 1

S is a (k, l) source set for DH ⇐⇒ S is a (k, l) source set for H.

Proof. ⇒ If v ∈ V − S then in DH there exist k edge-disjoint directed paths from
S to v: these correspond to edge-disjoint directed paths in H. Similarly, there are l
edge-disjoint directed paths from v to S.
⇐ For nodes in V − S it is the same as before. For va ∈ VA we have k edge-

disjoint paths from S to one of its tails, that can be completed, and similarly we have
l edge-disjoint paths to S from h(a) which can be completed. �

3.2 NP -completeness of the case when l is not fixed

We will prove that the (k, l) source location problem in dypergraphs is NP -complete
if l is not fixed. To be more precise formulate it as a decision-problem.

Problem 6. : DypergraphSourceLocation
Instance: A dypergraph H = (V,A), nonnegative integers k, l and a positive integer
B.
Question: Is there a nonempty set S ⊆ V with λ(S, v) ≥ k and λ(v, S) ≥ l for all
v ∈ V − S satisfying |S| ≤ B.

EGRES Technical Report No. 2006-12

Section 4. Tree- and in-branching packing requirements 12

Theorem 3.2. The problem DypergraphSourceLocation is NP -complete if l
is not fixed, even if k = 0.

Proof. The problem is clearly in NP , since given a set S it can be checked in poly-
nomial time whether it satisfies the requirements or not.

To prove completeness we will give a reduction from Vertex Cover(see [7], Prob-
lem GT1). An instance of the Vertex Cover problem consists of a graphG = (U,E)
and a positive integer K and the question is whether one can find a vertex set of car-
dinality at most K that covers all the edges of G. For such an instance let V = U∪UE

be the ground set of our dypergraph, where UE = {xe : e ∈ E} is disjoint from U .
The arc set will consist of 2 parts A = A1 ∪A2. A1 contains for all e ∈ E a hyperarc
with head xe and tail set V − xe (big hyperarcs). A2 will only contain digraph arcs:
for all e = (uv) ∈ E include the arcs (xe, u) and (xe, v) into A2. Finally let B = K,
k = 0 and l = |E|.

We claim that minimal deficient sets are exactly the sets of form {xe, u, v} for all
e = (u, v) ∈ E. Well, these have out-degree |E| − 1, proper subsets of them have
bigger out-degree, so they are minimal deficient sets.

Take a deficient set X ⊆ V . We claim that X contains {xe, u, v} for some e =
(u, v) ∈ E. Assume not and let |X ∩ UE| = t. Then there are exactly |E| − t big
hyperarcs leaving X. But for every xe ∈ X ∩UE one of the arcs (xe, u) or (xe, v) must
leave X (where e = (u, v)), because X does not contain {xe, u, v}. But then X has
out-degree at least |E| − t+ t = |E|, so it is not deficient.

The equivalence of the two problems is straightforward: we only need to notice
that an optimal solution to the problem DypergraphSourceLocation can easily
be made disjoint from UE. Finally, we can easily modify the construction to show
that Problem 6 is NP -complete if k is greater than zero, too. �

4 Tree- and in-branching packing requirements
In this section we consider some other related source-location type problems that
are tractable in (di)graphs, but turn out to be NP -complete in hypergraphs (dyper-
graphs). The first problem for graphs was considered in [4].

Problem 7 (Source Location with Tree-Packing Requirements). Given a hypergraph
H = (V, E) and a positive integer k. Find a nonempty subset S of the nodes such that
|S| is minimum and contracting S results in a hypergraph that has k edge-disjoint
connected spanning sub-hypergraphs.

Theorem 4.1 (Fekete, [4]). The source-location with tree-packing requirements is
solvable for graphs in polynomial time if k ≤ 2 but is NP -complete for k = 3. �

Not surprisingly this problem is already NP -complete for k = 2 in hypergraphs as
can be seen as an easy consequence of the following theorem (of course it is solvable
for k = 1).

EGRES Technical Report No. 2006-12

Section 4. Tree- and in-branching packing requirements 13

Theorem 4.2 (Frank, Király, Kriesell, [6]). The problem whether a hypergraph can
be decomposed into k connected sub-hypergraphs is NP -complete for every integer
k ≥ 2. �

Using these results and the techniques used in [2] we can show NP -completeness
of source-location problems with in-branching packing requirements. Let us give the
definitions.

Definition 9. Let H = (V,A) be a dypergraph and s ∈ V be a vertex. An out-
branching (in-branching) rooted at s is a collection of hyperarcs A′ ⊆ A with the
property that in the sub-dypergraph H = (V,A′) for every t ∈ V −s there exists a path
from s to t (from t to s, respectively) but if we leave out hyperarcs from A′ then this
is no longer true.

Because of the asymmetric definition of dypergraphs we have strange phenomena.
For example it can be checked directly that an out-branching always contains exactly
n − 1 hyperarcs (where |V | = n) with the property that every vertex except for s
is the head of exactly one hyperarc. However an in-branching can consist of only
one hyperarc. Similarly, Edmonds’ arborescence-packing theorem extends to out-
branchings while it does not extend to in-branchings (see [2] for a counterexample).

Theorem 4.3 (Edmonds’ Out-Branching Theorem for Dypergraphs [5]). A dyper-
graph H = (V,A) has k arc-disjoint out-branchings rooted at s ∈ V if and only if

%H(X) ≥ k for all ∅ 6= X ⊆ V − s.

�

Because of this theorem the source location problem in dypergraphs with out-
branching packing requirements is the same as the (k, 0) source location problem
defined and solved in section 3. However the following problem is different from the
(0, l) source-location problem: it is even harder.

Problem 8 (Source Location with In-Branching Packing Requirements). Given a
dypergraph H = (V,A) and a positive integer l. Find a nonempty subset S of the nodes
such that |S| is minimum and contracting S into a node s results in a dypergraph that
has l arc-disjoint in-branchings with root s.

So while we haven’t settled the status of the (0, l) source location problem in dyper-
graphs if l is fixed, we will show that the above problem is NP -hard even for l = 2:
it is an easy consequence of the theorem below.

Theorem 4.4. Given a dypergraph H = (V,A) and a vertex s ∈ V . Then it is an
NP -complete problem to decide whether H contains two arc-disjoint in-branchings
with root s or not.

Proof. The construction is almost the same as in the proof of Theorem 4.2 for k = 2
in [6]. Consider the following NP -complete problem (see [6] for a justification): given
a hypergraph H ′ = (V ′, E ′), decide whether the hyperedges can be coloured with two

EGRES Technical Report No. 2006-12

References 14

colours, say blue and red, such that both the blue hyperedges and the red hyperedges
cover V ′. Let V = V + s with a new node s /∈ V ′ and create H = (V,A) as follows:
for every hyperedge e ∈ E ′ put a hyperarc ae = e ∪ {s} with head s in A. It is easy
to check that the hyperedges of H ′ can be coloured the desired way if and only if H
contains two arc-disjoint in-branchings with root s. �

Acknowledgements
I am indebted to the ADONET framework which made it possible for me to work
under very good conditions at Laboratoire Leibniz, Grenoble, where many of these
results were born. I would like to thank Henning Bruhn, Tamás Király and Júlia Pap
who were always willing to listen to my ideas and to Mihály Bárász and Johanna
Becker for checking a preliminary version of this paper.

References
[1] Kouji Arata, Satoru Iwata, Kazuhisa Makino, and Satoru Fujishige, Locating

sources to meet flow demands in undirected networks, Algorithm theory—SWAT
2000 (Bergen), Lecture Notes in Comput. Sci., vol. 1851, Springer, Berlin, 2000,
pp. 300–313.

[2] Jørgen Bang-Jensen and Stéphan Thomassé, Highly connected hypergraphs con-
taining no two edge-disjoint spanning connected subhypergraphs, Discrete Appl.
Math. 131 (2003), no. 2, 555–559.

[3] Mihály Bárász, Johanna Becker, and András Frank, An algorithm for source
location in directed graphs, Oper. Res. Lett. 33 (2005), no. 3, 221–230.

[4] Zsolt Fekete, Source location with rigidity and tree packing requirements, Oper.
Res. Lett. 34 (2006), no. 6, 607–612.

[5] András Frank, Tamás Király, and Zoltán Király, On the orientation of graphs
and hypergraphs, Discrete Appl. Math. 131 (2003), no. 2, 385–400.

[6] András Frank, Tamás Király, and Matthias Kriesell, On decomposing a hyper-
graph into k connected sub-hypergraphs, Discrete Appl. Math. 131 (2003), no. 2,
373–383.

[7] Michael R. Garey and David S. Johnson, Computers and intractability: A guide
to the theory of NP-completeness, W. H. Freeman & Co., New York, NY, USA,
1979.

[8] Hiro Ito, Kazuhisa Makino, Kouji Arata, Shoji Honami, Yuichiro Itatsu, and
Satoru Fujishige, Source location problem with flow requirements in directed net-
works, Optim. Methods Softw. 18 (2003), no. 4, 427–435, The Second Japanese-
Sino Optimization Meeting, Part II (Kyoto, 2002).

EGRES Technical Report No. 2006-12

References 15

[9] Regina Klimmek and Frank Wagner, A simple hypergraph min cut algorithm, In-
ternal Report B 96-02 Bericht FU Berlin Fachbereich Mathematik und Informatik
(1995).

[10] Hiroshi Nagamochi and Toshihide Ibaraki, Computing edge-connectivity in multi-
graphs and capacitated graphs, SIAM J. Discrete Math. 5 (1992), no. 1, 54–66.

[11] H. Narayanan, A note on the minimization of symmetric and general submodular
functions, Discrete Appl. Math. 131 (2003), no. 2, 513–522.

[12] Maurice Queyranne, Minimizing symmetric submodular functions, Math. Pro-
gramming 82 (1998), no. 1-2, Ser. B, 3–12.

[13] Mariko Sakashita, Kazuhisa Makino, Hiroshi Nagamochi, and Satoru Fujishige,
Minimum transversals in posi-modular systems, 2006, RIMS preprint, RIMS-
1547.

[14] Alexander Schrijver, Combinatorial optimization. Polyhedra and efficiency., Al-
gorithms and Combinatorics, vol. 24, Springer-Verlag, Berlin, 2003.

EGRES Technical Report No. 2006-12

	Introduction and preliminaries
	Preliminaries on hypergraphs
	Preliminaries on directed hypergraphs

	Source location in undirected hypergraphs
	Compatible demand- and weight function
	Implementation of Step (*)
	Improving the running time for uniform demands

	Source location in directed hypergraphs
	Solution in the case l1
	NP-completeness of the case when l is not fixed

	Tree- and in-branching packing requirements

