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H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

The parity problem of polymatroids
without double circuits

Márton Makai and Jácint Szabó
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The parity problem of polymatroids without double
circuits?

Márton Makai and Jácint Szabó

Abstract

According to the present state of the theory of the matroid parity problem,
the existence of a good characterization to the size of a maximum matching
depends on the behavior of certain substructures, called double circuits. In this
paper we prove that if a polymatroid has no double circuits then a partition type
min-max formula characterizes the size of a maximum matching. Applications
to parity constrained orientations and to a rigidity problem are given.

1 Introduction

Polymatroid parity (a.k.a. matroid parity or matroid matching) is an involved notion
of combinatorial optimization concerning parity. Early known special cases of it are
the matching problem of graphs and the matroid intersection problem, which in fact
motivated Lawler to introduce this notion. Jensen and Korte [6], and Lovász [11] have
shown that in general the matroid parity problem is of exponential complexity under
the independence oracle framework. However, Lovász gave a good characterization
to the size of a maximum matching and also a polynomial algorithm for linearly
represented matroids [10, 11]. Lovász [9], and Dress and Lovász [1] manifest that the
solvability of the linear case is due to the fact that these matroids can be embedded
into a matroid sharing the so-called double circuit property, or DCP for short. It was
also shown that full linear, full algebraic, full graphic, and full transversal matroids
are DCP matroids [1]. The subsequent results in the literature are so as to guarantee
the DCP in particular matroid classes. The disadvantage of this approach is that,
due to the embedding into a bigger matroid, in many cases the obtained min-max
formula cannot be translated into a combinatorial form. However, the diversity and
the importance of solvable special cases of the matroid parity problem force to search
for techniques which yield combinatorial characterizations.

In this work we investigate the class of those polymatroids which have no non-trivial
double circuits. We prove that in these polymatroids a partition type combinatorial
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Section 2. Preliminaries and proof of the main theorem 2

formula characterizes the size of a maximum matching. Thereafter, two applications
are presented. First we show that the parity constrained orientation problem of Király
and Szabó [7] can be formulated as a polymatroid parity problem in such a way that
the polymatroid in question has no non-trivial double circuits, yielding the partition
type formula of [7]. Second, we deduce a result of Fekete [2] about adding a clique of
minimum size to a graph resulting in a generic rigid graph in the plane.

To formulate our main result, some definitions are in order. We denote by R+ and
Z+ the set of non-negative reals and non-negative integers resp. Let S be a finite
ground set. A set-function f : 2S → Z is said to be submodular if

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (1)

holds whenever X, Y ⊆ S. The set-function f is said to be non-decreasing if
f(X) ≤ f(Y ) for every ∅ 6= X ⊆ Y ⊆ S, and we say that f is non-increasing if
−f is non-decreasing. A non-decreasing submodular set-function f : 2S → Z+ with
f(∅) = 0 is called a polymatroid function. A vector x ∈ ZS is said to be even if xi

is even for every i ∈ S. The even vectors m ∈ ZS
+ with m(U) ≤ f(U) for every U ⊆ S

are said to be the matchings of f . A matching m with maximum m(S) is said to be
a maximum matching of f , and we denote

ν(f) = max{m(S)/2 : m is a matching of f}.

The polymatroid parity problem is to determine the value of ν(f) for a polyma-
troid function f . Our main result is as follows. The notion of a non-trivial compatible
double circuit will be defined in Section 2.

Theorem 1.1. Let f : 2S → Z+ be a polymatroid function having no non-trivial
compatible double circuits. Then

ν(f) = min
t∑

j=1

⌊
f(Uj)

2

⌋
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of S.

Recently, Pap [13] developed a deep combinatorial algorithm for finding a maximum
matching in a polymatroid without non-trivial compatible double circuits. His result
serves as a completion of Theorem 1.1, as we do not concern algorithmic aspects in
this paper.

2 Preliminaries and proof of the main theorem

We recollect some important notions and results from the theory of matroids, poly-
matroids and matroid parity. We omit the proofs of some well-known facts, as the
details can be found e.g. in [14]. If x ∈ RS and U ⊆ S then we use the notations
x(U) =

∑
u∈U x(u) and

x|U =

{
xi if i ∈ U,
0 if i /∈ U.
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If f : 2S → Z+ is a function then we define the polyhedra

P (f) = {x ∈ RS
+ : x(U) ≤ f(U) for every U ⊆ S}, and

B(f) = {x ∈ RS
+ : x(U) ≤ f(U) for every U ⊆ S, x(S) = f(S)}.

In the theory of submodular functions it is proved that if f is a polymatroid function
then P (f) and B(f) are nonempty integer polyhedra. Recall that an even vector
m ∈ ZS

+ is a matching of f if and only if m ∈ P (f).
There is a close relation between polymatroid functions and matroids. First, if M =

(T, r) is a matroid and ϕ : T → S is a function then f : 2S → Z+, X 7→ r(ϕ−1(X))
is a polymatroid function, the homomorphic image of M under ϕ. Second, for
any polymatroid function f it is possible to define a matroid M , the homomorphic
image of which is f , in such a way that M is “most independent” in some sense. The
ground set T of M is the disjoint union of sets Ti for i ∈ S of size |Ti| ≥ f({i}). If
X ⊆ T then we define the vector χX ∈ ZS

+ with χX
i = |X ∩ Ti| for i ∈ S. With this

notation, a set X ⊆ T is defined to be independent in M if χX ∈ P (f). It is routine
to prove that M is indeed a matroid with rank function

r(X) = min
Y⊆X

(|Y |+ f(ϕ(X − Y ))),

where ϕ : T → S maps t to i if t ∈ Ti. This M is called a prematroid of f . Note
that a prematroid M is uniquely determined by f and by the sizes |Ti|, i ∈ S. If M is
a matroid with rank function r then the prematroids of r are the parallel extensions
of M . If we consider a prematroid M then we tacitly assume that M = (T, r) and
that the function ϕ : T → S is given with t 7→ i if t ∈ Ti.

If f is a polymatroid function and x ∈ ZS
+ then we define the rank of x as

rf (x) = min
U⊆S

(x(U) + f(S − U)). (2)

rf (x) = x(S) if and only if x ∈ P (f). Besides, if M = (T, r) is a prematroid of f and
X ⊆ T then

rf (χ
X) = r(X). (3)

The span of x ∈ ZS
+ is defined by spf (x) = {i ∈ S : rf (x + χi) = rf (x)}. If M is a

prematroid of f and X ⊆ T then spf (χ
X) = {i ∈ S : Ti ⊆ spM(X)}.

Let M = (T, r) be a matroid. A set C ⊆ T is said to be a circuit if r(C − x) =
r(C) = |C| − 1 for every x ∈ C. A set D ⊆ T is a double circuit if r(D − x) =
r(D) = |D| − 2 for every x ∈ D. If D is a double circuit then the dual of M |D is a
matroid of rank 2 without loops, that is a line, showing that there exists a principal
partition D = D1∪̇D2∪̇ . . . ∪̇Dd, d ≥ 2, such that the circuits of D are exactly the
sets of the form D − Di, 1 ≤ i ≤ d. We say that D is non-trivial if d ≥ 3, and
trivial otherwise. A trivial double circuit is simply the direct sum of two circuits.

Analogously, we define circuits and double circuits of the polymatroid function
f : 2S → Z+. For a vector x ∈ RS

+ let supp(x) = {i ∈ S : xi > 0}. A vector c ∈ ZS
+ is

a circuit of f if rf (c−χi) = rf (c) = c(S)− 1 for every i ∈ supp(c). A vector w ∈ ZS
+

is a double circuit of f if rf (w − χi) = rf (w) = w(S)− 2 for every i ∈ supp(w).
The exact relation between matroidal and polymatroidal double circuits is as fol-

lows, which can be seen easily from (3).
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Lemma 2.1. Let M be a prematroid of f , D ⊆ T and χD = w. Then D is a double
circuit of M if and only if w is a double circuit of f .

Let M be a prematroid of f and w be a double circuit of f such that there is a set
D ⊆ T with χD = w. By Lemma 2.1, D is a double circuit of M , thus it has a principal
partition D = D1∪̇D2∪̇ . . . ∪̇Dd′ . We define the principal partition of w as follows.
Due to the structure of prematroids it is easy to check that supp(w) has a partition
W0∪̇W1∪̇ . . . ∪̇Wd with the property that each set Dj is either a singleton belonging
to some Ti with wi ≥ 2 and i ∈ W0, or is equal to D ∩

⋃
i∈Wh

Ti for some 1 ≤ h ≤ d.
Note that a partition W0∪̇W1∪̇ . . . ∪̇Wd of supp(w) is the principal partition of w if
and only if w − χi is a circuit of f and wi ≥ 2 whenever i ∈ W0, moreover, w|W−Wi

is a circuit of f for each 1 ≤ i ≤ d. A double circuit w is said to be compatible if
W0 = ∅, and it is non-trivial if D is non-trivial.

We shortly mention what is the double circuit property (DCP). If M = (T, r)
is a prematroid of the polymatroid function f and Z ⊆ T then ϕ(M/Z) is called a
contraction of f . A polymatroid function f is said to have the DCP if whenever w is a
non-trivial compatible double circuit in a contraction f ′ of f with principal partition
W1∪̇ . . . ∪̇Wd then f ′(

⋂
1≤i≤d sp(w|W−Wi

)) > 0, (Dress, Lovász [1]). A polymatroid
function without non-trivial compatible double circuits has not necessarily the DCP,
as its contractions may have many non-trivial compatible double circuits.

Note that every polymatroid function has double circuits, say (f({i}) + 2)χi for
some i ∈ S. However, these are not compatible, because W0 = {i}.

Lemma 2.2. If w ∈ ZS
+ is a double circuit of the polymatroid function f : 2S →

Z+ with principal partition W = W0∪̇W1∪̇ . . . ∪̇Wd then f(W ) = w(W ) − 2 and
f(W −Wi) = w(W −Wi)− 1 for 1 ≤ i ≤ d.

Proof. We prove that if x ∈ ZS
+ is a vector with the property that rf (x) = rf (x− χi)

for all i ∈ supp(x) then f(supp(x)) = rf (x). By definition, rf (x) = x(U) + f(S − U)
for some U ⊆ S. Note that rf (x − χi) ≤ (x − χi)(U) + f(S − U) = rf (x) − 1 for
all i ∈ supp(x) ∩ U . Thus supp(x) ∩ U = ∅. Concluding, f(S − U) = rf (x) ≤
f(supp(x)) ≤ f(S − U), because f is non-decreasing. If x is a circuit or a double
circuit then rf (x) = rf (x− χi) for all i ∈ supp(x), so we are done.

Next we explore how two polymatroid operations alter double circuits.

Translation

If f : 2S → Z+ is a function and n ∈ ZS then define f + n : 2S → Z+ by X 7→
f(X) + n(X). If f is a polymatroid function and n ∈ ZS

+ then f + n is clearly a
polymatroid function, too.

Claim 2.3. If n ∈ ZS and f and f + n are polymatroid functions then a vector w is
a double circuit of f with W = supp(w) if and only if w + n|W is a double circuit of
f + n. In this case their principal partition coincide.
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Proof. Let y ∈ ZS
+ and assume that y′ := y + n|supp(y) ∈ ZS

+. Note that in (2) we can
always choose U with U ∪ supp(y) = S, thus rf+n(y′)− y′(S) = rf (y)− y(S). Hence
by symmetry, it is enough to prove that if w is a double circuit of f with support W
then supp(w + n|W ) = W . Otherwise wi + ni ≤ 0 for some i ∈ W , thus by Lemma
2.2 we would have

w(W − i) ≥ w(W ) + ni = f(W ) + ni + 2 ≥ f(W − i) + 2,

which is impossible.

Deletion or upper bound

Let u ∈ ZS
+ be a bound vector and define f\u = ϕ(rM |Z) where M is a prematroid

of f and Z ⊆ T with χZ = u. The matroid union theorem asserts that (f\u)(X) =
minY⊆X(u(Y ) + f(X − Y )) for X ⊆ S. If M is a matroid with rank function r then
r\u is the rank function of M |supp(u).

Claim 2.4. Let u ∈ ZS
+. If w ∈ ZS

+ is a double circuit of f ′ := f\u then w is either
a double circuit of f with the same principal partition, or trivial, or non-compatible.

Proof. Let M = (T, r) be a prematroid of f and let Z ⊆ T with χZ = u. If w ≤ χZ

then w is a double circuit of f with the same principal partition by Lemma 2.1.
Observe that wi ≤ f ′({i}) + 2 and f ′({i}) ≤ ui for every i ∈ S. Thus if w 6≤ χZ

then there exists an i ∈ S such that wi − f ′({i}) ∈ {1, 2}. If wi = f ′({i}) + 2 then
rf ′(wiχi) = wi − 2, thus W0 = supp(w) = {i}, implying that w is non-compatible. If
wi = f ′({i}) + 1 then wiχi is a circuit of f ′ thus if W0 6= ∅ then w is non-compatible,
and if W0 = ∅ then w is trivial.

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. It is easy to see that ν(f) ≤
∑t

j=1

⌊
f(Uj)

2

⌋
holds for every

partition U1, U2, . . . , Ut of S. For the other direction we use a deep and important
result of Lovász on 2-polymatroids, which can be translated to polymatroids as follows.

Theorem 2.5 (Lovász [9]). If f : 2S → Z+ is a polymatroid function then at least
one of the following cases holds.

1. f(S) = 2ν(f) + 1.

2. S = S1∪̇S2 where Si 6= ∅ and ν(f) = ν(f |2S1 ) + ν(f |2S2 ).

3. There exists an i ∈ S such that for all maximum matchings m we have i ∈
spf (m).

4. There exists a certain substructure, called ν-double flower in f , which we do not
define here, but which always contains a non-trivial compatible double circuit.
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We argue by induction on the pair (|S|, |K(f)|), where

K(f) = {s ∈ S : s ∈ spf (m) for all maximum matchings m of f}.

If S = ∅ then the statement is trivial. If K(f) = ∅ then either 1. or 2. holds in
Theorem 2.5. If 1. holds then the trivial partition will do, while if 2. holds then we
can use our induction hypothesis applied to f |2S1 and f |2S2 .

Next, let K(f) 6= ∅. We prove that if m is a maximum matching of f + 2χs then
m(s) ≥ 2. Indeed, assume that m(s) = 0. As m is a maximum matching, there
exists a set s ∈ U ⊆ S with m(U) ≥ (f + 2χs)(U) − 1. Thus m(U − s) = m(U) ≥
(f +2χs)(U)−1 ≥ f(U−s)+1, which is a contradiction. It is also clear that m+2χs is
a matching of f +2χs for all matchings m of f . Therefore, m is a maximum matching
of f if and only if m + 2χs is a maximum matching of f + 2χs.

Let s ∈ K(f). Clearly, ν(f) ≤ ν(f + χs) ≤ ν(f + 2χs) = ν(f) + 1 and we claim
that in fact, ν(f + χs) = ν(f) holds. Indeed, if ν(f + χs) = ν(f) + 1 and m is a
maximum matching of f + χs then m is also a maximum matching of f + 2χs, thus
m(s) ≥ 2. Then m−2χs is a maximum matching of f and, as s ∈ spf (m−2χs), there
exists a set s ∈ U ⊆ S with (m − 2χs)(U) = f(U). This implies m(U) = f(U) + 2,
contradicting to that m is a matching of f + χs.

So if m is a maximum matching of f then m is a maximum matching of f + χs,
too, and clearly, spf (m) = spf+χs

(m)− s. Thus we have K(f + χs) ⊆ K(f)− s. By
Lemma 2.3, f + χs has no non-trivial compatible double circuits, so we can apply
induction to f + χs. This gives a partition U1, U2, . . . , Ut of S such that

ν(f + χs) =
t∑

j=1

⌊
(f + χs)(Uj)

2

⌋
.

But then,

ν(f) = ν(f + χs) =
t∑

j=1

⌊
(f + χs)(Uj)

2

⌋
≥

t∑
j=1

⌊
f(Uj)

2

⌋
.

3 A parity constrained orientation theorem

Frank, Jordán and Szigeti [4] proved that the existence of a k-rooted-connected ori-
entation with prescribed parity of in-degrees can be characterized by a partition type
condition. Recently, Király and Szabó [7] proved that the connectivity requirement
in this parity constrained orientation problem can be given by a more general non-
negative intersecting supermodular function. It is well-known that all these problems
can be formalized as polymatroid parity problems. In this section we show that it is
possible to formalize the problem of Király and Szabó in such a way that the aris-
ing polymatroid function has no non-trivial double circuits. So Theorem 1.1 can be
applied to yield the result in [7].

H = (V, E) is called a hypergraph if V is a finite set and ∅ /∈ E is a collection
of multisets of V , the set of hyperedges of H. If in every hyperedge h ∈ E we
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designate a vertex v ∈ h as the head vertex then we get a directed hypergraph
D = (V,A), called an orientation of H. For a set X ⊆ V , let δD(X) denote the
number of directed hyperedges entering X, that is the set of hyperedges with head
in X and at least one vertex in V −X.

Let p : 2V → Z+ be a function with p(∅) = p(V ) = 0. An orientation D of a
hypergraph H = (V, E) covers p if δD(X) ≥ p(X) for every X ⊆ V . In a connectivity
orientation problem the question is the existence of an orientation covering p. When
we are talking about parity constrained orientations, we are looking for connectivity
orientations such that the out-degree at each vertex is of prescribed parity. Now define
b : 2V → Z by

b(X) =
∑
h∈E

h(X)− |E [X]| − p(X) for X ⊆ V, (4)

where E [X] denotes the set of hyperedges h ∈ E with h ∩ (V − X) = ∅, and h
equivalently stands for the hyperedge and its multiplicity function. It is clear that if
x : V → Z+ is the out-degree vector of an orientation covering p then x ∈ B(b). The
contrary is also easy to prove (see e.g. [5]).

Lemma 3.1. Let H = (V, E) be a hypergraph, p : 2V → Z+ be a function with
p(∅) = p(V ) = 0, and x : V → Z+. Then H has an orientation covering p such that
the out-degree of each vertex v ∈ V is x(v) if and only if x ∈ B(b).

The function b : 2V → Z is said to be intersecting submodular if (1) holds
whenever X ∩ Y 6= ∅. Similarly, p : 2V → Z is intersecting supermodular if −p is
intersecting submodular. If b : 2V → Z+ is a non-negative, non-decreasing intersecting
submodular function then we can define a polymatroid function b̂ : 2V → Z+ by

b̂(X) = min

{
t∑

i=1

b(Xi) : X1∪̇X2∪̇ . . . ∪̇Xt = X

}
for X ⊆ V,

which is called the Dilworth truncation of b.

Lemma 3.2. If p : 2V → Z+ is intersecting supermodular with p(V ) = 0 then p is
non-increasing.

Proof. If ∅ 6= X ⊆ Y ⊆ V then p(Y ) ≤ p(Y ) + p((V − Y ) ∪ X) ≤ p(X) + p(V ) =
p(X).

The following theorem can be proved using basic properties of polymatroids (Frank
[3]).

Theorem 3.3. Let H = (V, E) be a hypergraph and p : 2V → Z+ be an intersecting
supermodular function with p(∅) = p(V ) = 0. Define b as in (4). Then H has an
orientation covering p if and only if

b(V ) ≤
t∑

j=1

b(Uj) (5)

holds for every partition U1, U2, . . . , Ut of V .
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Remark 3.4. It follows that if H has an orientation covering p then b is non-negative.
Indeed, if ∅ ⊆ U ⊆ V then b(U) + b(V − U) ≥ b(V ) by Theorem 3.3, implying that
b(U) ≥ b(V )− b(V − U) ≥ 0. In the last inequality we used that b is non-decreasing

by Lemma 3.2. So we can define the Dilworth-truncation b̂. Thus (5) is equivalent to

that b̂(V ) = b(V ) and hence that B(̂b) = B(b).

Let H = (V, E) be a hypergraph and T ⊆ V . Our goal is to find an orientation of
H covering p, where the set of odd out-degree vertices is as close as possible to T .

Theorem 3.5 (Király and Szabó [7]). Let H = (V, E) be a hypergraph, T ⊆ V ,
p : 2V → Z+ be an intersecting supermodular function with p(∅) = p(V ) = 0, and
assume that H has an orientation covering p. Define b as in (4). For an orientation
D of H let YD ⊆ V denote the set of odd out-degree vertices in D. Then

min {|T4YD| : D is an orientation of H covering p} =

max

{
b(V )−

t∑
j=1

b(Uj) + |{j : b(Uj) 6≡ |T ∩ Uj| mod 2}|

}
, (6)

where the maximum is taken over partitions U1, U2, . . . , Ut of V .

Proof. For every v ∈ T add a loop 2χv to E , resulting in the hypergraph H ′ = (V, E ′).
Define b′ as in (4), w.r.t. H ′. As there is a straightforward bijection between the
orientations of H and H ′, we have

min{|T4YD| : D is an ori. of H cov. p} = min{|YD′| : D′ is an ori. of H ′ cov. p}.

Furthermore,

b(V )−
t∑

j=1

b(Uj)+|{j : b(Uj) 6≡ |T ∩ Uj| mod 2}| = b′(V )−
t∑

j=1

b′(Uj)+|{j : b′(Uj) odd}| .

Thus we can assume that T = ∅.
By Lemma 3.1, the integer vectors of B(b) are exactly the out-degree vectors of the

orientations of H covering p. Thus the ≥ direction is easy to check. Now we prove
the other direction. As H has an orientation covering p, Remark 3.4 implies that we
can define the polymatroid function f = b̂. We state that it is enough to prove that

ν(f) = min
s∑

i=1

⌊
f(Vi)

2

⌋
, (7)

where the minimum is taken over all partitions V1, V2, . . . , Vs of V . Indeed, using the
definition of the Dilworth-truncation and that b(V ) = f(V ) by Theorem 3.3, we get

min{|YD| : D is an ori. of H covering p} = f(V )− 2ν(f) =

= b(V )−min

{
s∑

i=1

f(Vi)− |{i : f(Vi) is odd}| : V1, . . . , Vs partitions V

}
≤
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Section 3. A parity constrained orientation theorem 9

≤ b(V )−min

{
t∑

j=1

b(Uj)− |{j : b(Uj) is odd}| : U1, . . . , Ut partitions V

}
.

Thus by Theorem 1.1 it is enough to prove that f has no non-trivial compatible
double circuits. The next lemma, with the choice α(v) =

∑
h∈E h(v) for v ∈ V , does

the job.

Lemma 3.6. Let H = (V, E) be a hypergraph, α : V → Z+ and p : 2V → Z+ an
intersecting supermodular function with p(∅) = 0. Suppose moreover that b : 2V → Z
defined by (4) is non-negative and non-decreasing. Then the polymatroid function

f := b̂ has no non-trivial compatible double circuits.

Proof. Assume that w : V → Z+ is a non-trivial compatible double circuit of f with
principal partition W = W1∪̇W2∪̇ . . . ∪̇Wd. Clearly,

b(W ) ≥ w(W )− 2.

Let 1 ≤ i < j ≤ d and Z = W − Wi. As w|Z is a circuit of f , Lemma 2.2 yields
that w(Z)−1 = f(Z) = min

∑
{b(Xi) : X1, . . . , Xk partitions Z}. However, if a non-

trivial partition with k ≥ 2 gave equality here, then we would have f(Z) =
∑

b(Xi) ≥∑
f(Xi) ≥

∑
w(Xi) = w(Z) = f(Z) + 1, using that w|Xi

∈ P (f). Thus

w(W −Wi)− 1 = b(W −Wi) and similarly, w(W −Wj)− 1 = b(W −Wj).

By applying intersecting submodularity to W − Wi and W − Wj, and using that
w|W−Wi−Wj

∈ P (f), we get

0 ≥ b(W )− b(W −Wi)− b(W −Wj) + b(W −Wi −Wj) ≥

≥ (w(W )− 2)− (w(W −Wi)− 1)− (w(W −Wj)− 1) + w(W −Wi −Wj) = 0,

so equality holds throughout. As a corollary, each hyperedge e ∈ E [W ] is spanned by
one of the Wi’s, and(

d− 1

2

)
(b(W )+2) =

(
d− 1

2

)
w(W ) =

∑
1≤i<j≤d

w(W−Wi−Wj) =
∑

1≤i<j≤d

b(W−Wi−Wj).

(8)
On the other hand, (

d− 1

2

)
α(W ) =

∑
1≤i<j≤d

α(W −Wi −Wj),

as α is modular, and (
d− 1

2

)
p(W ) ≤

∑
1≤i<j≤d

p(W −Wi −Wj),

as p is non-negative and non-increasing. Finally,(
d− 1

2

)
|E [W ]| =

(
d− 1

2

) d∑
i=1

|E [Wi]| =
∑

1≤i<j≤d

|E [W −Wi −Wj]|.

By the definition of b, the last 3 equalities together contradict (8).
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The next corollary of Theorem 3.5 is formally very similar to the characterization
in Theorem 3.3.

Theorem 3.7. Let H = (V, E) be a hypergraph and p : 2V → Z+ an intersecting
supermodular function with p(∅) = p(V ) = 0. Then a set T ⊆ V arises as the set of
odd out-degree vertices in an orientation of H covering p if and only if

b(V ) ≤
t∑

j=1

b(Uj)− |{j : b(Uj) 6≡ |T ∩ Uj| mod 2}| (9)

holds for every partition U1, U2, . . . , Ut of V .

Let us give an example showing that polymatroids without non-trivial compati-
ble double circuits are not closed under contraction. Let V = {v1, v2, v3, v4}, E =
{v1vi, vivi : i ∈ {2, 3, 4}}, p({v1}) = 1 and p(U) = 0 for all other sets U ⊆ V . Then

by Remark 3.4, b is non-decreasing and non-negative, thus by Lemma 3.6, b̂ has no
non-trivial compatible double circuits. However, the polymatroid obtained from b̂
by contracting an element from the preimage of v1 in the prematroid of b̂ has the
non-trivial compatible double circuit (1, 2, 2, 2), with the trivial principal partition.

4 A planar rigidity problem

If G = (V, E) is a graph and p : V → R2 is an embedding into the Euclidean plane
then (G, p) is said to be a framework. We think of the edges of G as rigid bars with
flexible joins at the vertices. An infinitesimal motion means an assignment of a
speed x(v) ∈ R2 to each vertex v ∈ V such that the bar lengths are preserved, that is
(p(u)− p(v)) ⊥ (x(u)−x(v)). The framework (G, p) is called rigid if all infinitesimal
motions of (G, p) correspond to isometries of R2. The question of finding a vertex set
Z ⊆ V of minimum size such that (G + KZ , p) is rigid was solved by Lovász in his
seminal paper [9] about matroid parity. We say that G = (V, E) is generic rigid
if all frameworks (G, p) with algebraically independent coordinates p are rigid. The
problem of finding a vertex set Z ⊆ V of minimum size such that G + KZ is generic
rigid is left open by [9], and it was solved recently by Fekete [2]. For more on the
2-dimensional rigidity see Laman [8] and Lovász and Yemini [12].

The setup of [2] puts the problem into a bit more general setting. Let G = (V, E)
be a graph, and for l ∈ {2, 3} let M2,l be the matroid on ground set E such that
F ⊆ E is independent in M2,l if and only if |F [X]| ≤ 2|X| − l for all X ⊆ V ,
|X| ≥ 2. It can be proved that M is really a matroid. For clarity, M2,2 is two times
the cycle matroid of G, and so G has two edge-disjoint spanning trees if and only if
r2,2(E) = 2|V | − 2. As M2,3 is the rigidity matroid of G, the graph G is generic rigid
if and only if r2,3(E) = 2|V | − 3. For Z ⊆ V let KZ = (Z,EZ) be the graph with
vertex set Z having 4− l parallel edges between any two vertices of Z. Our goal is to
find a set Z ⊆ V of minimum size such that E + EZ has rank 2|V | − l in M2,l.

We assume that E is independent in M2,l, since if E is replaced by one of its bases
then the solution set does not change. Fekete [2] proved the following lemma. For
X ⊆ V let e(X) denote the number of edges having at least one end vertex in X.
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Lemma 4.1 ([2]). Let l ∈ {2, 3}. Assume that E is independent in M2,l and that
r2,l(E) < 2|V | − l. Let Z ⊆ V . Then r(E + EZ) = 2|V | − l if and only if e(Y ) ≥ 2|Y |
for every Y ⊆ V − Z.

Therefore, the goal is to find a set Z ⊆ V of minimum size such that e(Y ) ≥ 2|Y |
for every Y ⊆ V − Z. Let f : 2V → Z+ be the polymatroid function with f(X) =
minY⊆X 2|Y | + e(X − Y ) for X ⊆ V . That is, f is obtained from the polymatroid
function X 7→ e(X) by deleting with the vector (2, 2, . . . , 2). Hence for l = 2 the
value |V | − ν(f) is just the minimum size of a set Z whose contraction results in a
graph with two edge-disjoint spanning trees, and for l = 3 it is the minimum size of
a set Z such that G + KZ is generic rigid. In [9] the computation of ν(f) is reduced
to the matching problem of graphs, yielding a partition type characterization. This
characterization follows from the previous results of this paper, too. First, by Lemma
3.6 with the choice p = 0, the polymatroid function X 7→ e(X) has no non-trivial
compatible double circuits. As f is obtained from X 7→ e(X) by deletion, Claim 2.4
yields that nor f has. Thus,

ν(f) = min
t∑

j=1

⌊
f(Uj)

2

⌋
,

where the minimum is taken over all partitions U1, U2, . . . , Ut of V . By the definition
of f , we get the following.

Theorem 4.2 (Fekete, [2]). Let l ∈ {2, 3}. Assume that E is independent in M2,l

and that r2,l(E) < 2|V | − l. Then the minimum size of a set Z ⊆ V such that
r(E + EZ) = 2|V | − l is |V | − ν(f), where

ν(f) = min

∣∣∣∣∣V −
t⋃

j=1

Uj

∣∣∣∣∣ +
t∑

j=1

⌊
e(Uj)

2

⌋
,

where the minimum is taken over all subpartitions U1, U2, . . . , Ut of V .
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