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Rooted k-connections in digraphs

András Frank ?

Abstract

The problem of computing a minimum cost subgraph D′ = (V,A′) of a
directed graph D = (V,A) so that D′ contains k edge-disjoint paths from a
specified root r ∈ V to every other node in V is known to be nicely solvable
since it can be formulated as a matroid intersection problem. A corresponding
problem when openly disjoint paths are requested rather than edge-disjoint was
solved in [12] with the help of submodular flows. Here we show that the use
of submodular flows is actually avoidable and even a common generalization of
the two rooted k-connection problems is a matroid intersection problem. We
also provide a polyhedral description using supermodular functions on bi-sets
and this approach enables us to handle more general rooted k-connection prob-
lems. For example, with the help of a submodular flow algorithm the following
restricted version of the generalized Steiner-network problem is solvable in poly-
nomial time: given a digraph D = (V,A) with a root-node r, a terminal set T ,
and a cost function c : A → R+ so that each edge of positive cost has its head
in T , find a subgraph D′ = (V,A′) of D of minimum cost so that there are k
openly disjoint paths in D′ from r to every node in T .

1 Introduction

Let D = (V, A) be a directed graph. For two specified nodes s and t of D, a (directed)
path from s to t is called an st-path. Let λ(s, t; D) and κ(s, t; D) denote the maximum
number of edge-disjoint, respectively, openly disjoint, st paths. Two paths from s to t
are called openly disjoint if their nodes in common are exactly s and t. In particular,
k parallel edges from s to t form k openly disjoint paths.

It is well-known that λ(s, t) can be computed via a max-flow min-cut algorithm and
even more, given a nonnegative cost function on A, the cheapest set of k edge-disjoint
paths from s to t can also be computed in strongly polynomial time with the help of
a min-cost flow algorithm. There is a well-known and easy node-splitting technique
(described, for example, in [8]) to reduce the computation of k openly disjoint st-paths
to that of k edge-disjoint st-paths.
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Section 1. Introduction 2

Let r be a specified node of D called a root. We will throughout assume that
no edge of D enters r. The digraph is called rooted k-edge-connected (resp.,
rooted k-node-connected or in short, rooted k-connected) if λ(r, v; D) ≥ k
(resp., κ(r, v; D) ≥ k) holds for every v ∈ V − r. Suppose that D is endowed with a
non-negative cost-function c : A → R+.

We are interested in the rooted k-edge-connection and the rooted k-node-
connection problems which consist of finding a cheapest subgraph D′ = (V, A′) of D
so that

D′ is rooted k-edge-connected from r (1)

and, respectively,

D′ is rooted k-node-connected from r. (2)

When k = 1 the two problems coincide and it amounts to finding a minimum cost
spanning arborescence. This was solved by Yong-Jin Chu and Tseng-Hong Liu [1]
and by D.R. Fulkerson [9]. For higher k, two approaches have been known for solving
(1). The first one consists of showing that there are two matroids on the edge set
of D so that their common bases are exactly the minimal rooted k-edge-connected
subgraphs of D. Namely, a subset F of edges is a basis of M1 if it is the union of k
edge-disjoint spanning trees, that is, M1 is the sum of k copies of the circuit matroid
of the underlying undirected graph of D, while M2 is a partition matroid in which a
set is a basis if it contains no edge entering r and contains exactly k edges entering
each node distinct from r.

Having this observation, one may apply any algorithm for finding a minimum cost
common base of two matroids. (The first one was developed by J. Edmonds [6]. For an
efficient realization of this approach, see Gabow’s work [17]). For later generalizations,
we remark that this is not the only way to formulate the rooted k-edge-connection
problem as matroid intersection. For example, one may replace M1 by a matroid
M ′

1 that arises from M1 by declaring each edge of tail r to be a cut-element of the
matroid. By a theorem of Nash-Williams [21], this is equivalent to requiring that a
subset F of edges is independent in M ′

1 if every non-empty subset Z of V − r induces
at most k(|Z| − 1) elements of F . Although this matroid is more free than M1, it
is still true (and will be proved in a more general context) that the minimal rooted
k-edge-connected subgraphs of D are exactly the common indepent sets of k(|V | − 1)
elements of M ′

1 and M2.

The second approach uses a more general framework. In handling edge-connectivity
optimization problems, it is rather typical that a general result on covering super-
modular functions by directed graphs is in the background. For the rooted k-edge-
connection problem such a framework can be formulated as follows. A set-function
p : 2V → Z is said to satisfy the supermodular inequality on subsets X, Y ⊆ V if

p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ). (3)

If this holds whenever X ∩ Y = ∅, then p is called intersecting supermodular. If
(3) is required only for subsets with p(X) > 0, p(Y ) > 0, and X ∩ Y = ∅, then p is
positively intersecting supermodular.
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Section 1. Introduction 3

A typical way to create a positively intersecting supermodular function is to take
the ‘nonnegative part’ of an intersecting supermodular one with possible negative
values which means replacing each negative value by zero. Example shows, however,
that not every non-negative, positively intersecting supermodular function arises this
way.

A digraph D = (V, A) (or a function x : A → Z+ ∪ {∞} on its edge set) is said
to cover p if %D(X) ≥ p(X) (resp., %x(X) ≥ p(X) ) for every subset X ⊆ V where
%D(X) denotes the number of edges of D entering X while %x(X) :=

∑
[x(e) : e ∈ A, e

enters X]. The general problem consists of finding a cheapest subgraph of D covering
a positively intersecting supermodular function. When p is defined to be identically k
on the nonempty subsets of V −r and zero elsewhere, we are back at the rooted k-edge-
connection problem. To formulate the result on covering intersecting supermodular
functions, let g : A → Z+ ∪ {∞} be a non-negative upper bound on the edges of D
that covers p.

Theorem 1.1 ([10, 14]). If p is a positively intersecting supermodular set-function,
the linear system

%x(Z) ≥ p(Z) for every Z ⊂ V , 0 ≤ x ≤ g (4)

described for x ∈ RA is totally dual integral (TDI). In particular, the linear program-
ming problem

min{cx : x satisfies (4)} (5)

has an integer-valued optimum solution and so has its linear programming dual pro-
vided c is integer-valued.

Theorem 1.2 (A. Schrijver [22]). If p is an intersecting supermodular set-function,
the polyhedron R defined by (4) is a submodular flow polyhedron.

Note that the statement in Schrijver’s theorem is not known to be true for the larger
class of positively intersecting supermodular functions. Fortunately, each known ap-
plication of the framework described in Theorem 1.1 requires intersecting supermodu-
lar functions. Beyond the fact that positively intersecting supemodular functions are
formally more general than the intersecting supermodular ones, the main reason of
their usage is that the proofs become technically simpler.

Schrijver’s proof is a clever (though not difficult) method to formulate (4) as a
submodular flow problem. Since this reduction can be carried out in polynomial
time and since there are good (combinatorial) algorithms for submodular flows (for a
comprehensive overview, see S. Fujishige’s book [16]), the optimization problem (5)
is also solvable in polynomial time.

To see how the framework in Theorem 1.1 includes Problem (1), consider the special
case when g ≡ 1 and p is defined by p(Z) = k for every subset ∅ ⊂ Z ⊆ V − r
and p(Z) = 0 otherwise. In this case there is a one-to-one correspondence between
the 0 − 1-valued solutions of (4) and the rooted k-edge-connected subgraphs of D.
Therefore a submodular flow algorithm may be used to solve (1).

Naturally, this second approach is more complex than the first one relying on ma-
troid intersection but it has the advantage that more general rooted k-edge-connection
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Section 1. Introduction 4

problems can also be handled with its help. For example, one may be interested in
rooted k-edge-connected subgraphs for which, in addition, the indegree of every node
(distinct from r) meets a prescribed lower bound. Let me mention two further exten-
sions.

(A) We are given a digraph D = (V, A0 ∪ A) with a root-node r and a terminal
set T ⊆ V − r so that T contains the head of every edge in A and so that there
are k edge-disjoint paths from r to every node t ∈ T . There is also a cost function
c : A → R. The problem is to find a minimum cost subset F of A so that there are k
edge-disjoint paths from r to every node t ∈ T . Note that this problem specializes to
the rooted k-edge-connection problem when T = V − r and A0 = ∅, while it becomes
NP-complete even for k = 1 if A0 = ∅ and the assumption on the head of edges in
A (to be in T ) is dropped. (This is the directed Steiner tree problem). The problem
is indeed a special case of (5) when the groundset chosen to be T and function p is
defined by p(X) := max{k− %0(X ∪Y ) : Y ⊆ V − (T + r)} when X ⊆ T is nonempty
and p(∅) = 0 since this p is easily proved to be intersecting supermodular. (This
application was explicitely mentioned in [10] only for the special case T = V − r.)

(B) Suppose that F1, . . . , Fk are edge-disjoint arborescences of root r. An equivalent
version of Edmonds’ disjoint branchig theorem [5] asserts that these arborescences can
be extended into k edge-disjoint spanning arborescences by using edges from a given
edge set A if and only %A(X) ≥ p(X) holds for every nonempty subset X ⊆ V where
p(X) denotes the number of arborescences Fi for which their node set V (Fi) is disjoint
from X. Since this function p is intersecting supermodular, the problem of finding a
requested arborescence-extensions with minimum total cost is a special case of (5).

The minimum cost rooted k-connected subgraph problem is not covered by the
above model (4). Frank and Tardos [12] described a rather complicated way to reduce
it to submodular flows and in this sense a polynomial algorithm is available. Since
the the k openly disjoint rt-paths problem can so easily be reduced, via the node-
splitting technique, to that of k edge-disjoint rt-paths, it has been tempting to avoid
the difficult reduction of [12] by invoking node-splitting. The natural direct approach,
however, fails since node-splitting gives rise to new nodes of in-degree 1 and therefore
the resulting digraph certainly will not contain k edge-disjoint paths from r to every
other node (when k ≥ 2).

The goal of this paper is double. On one hand, it will be shown that the rooted k-
node-connection problem, like its k-edge-connection counter-part, can also be reduced
to matroid intersection, and in fact we prove this for a common generalization of the
two versions. In other words, the use of submodular flows is avoidable. On the
other hand, by introducing a simpler and more natural approach than the one in
[12], a TDI description of the rooted k-connected subgraphs will be provided. By
extending Schrijver’s theorem 1.2, we show that the polyhedron in question is also a
submodular flow polyhedron. Again, this second framework, though more complicated
than matroid intersections, will have the advantage of being suitable for handling more
general problems. For example, this way one is able to find a cheapest subgraph of
a digraph in which there are k edge-disjoint (resp., openly disjoint) paths from r to
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Section 2. Preliminaries on node-connectivity and bi-set functions 5

every node in a specified terminal set T ⊆ V − r provided that the head of every edge
with positive cost is in T , a requirement satisfied automatically when T = V − r. In
fact, these solutions will be formulated in a general framework that includes both the
rooted k-edge-connection and the rooted k-node-connection problems.

2 Preliminaries on node-connectivity and bi-set

functions

A key to handling node-connectivity type optimization problems in digraphs is to
consider supermodular functions defined on ordered pairs of subsets rather than using
supermodular set-functions. In [15] disjoint pairs of subsets (XT , XH) were used to
solve the directed node-conectivity augmentation problem where XT and XH were
called the tail and the head of the pair. In the present work it is more convenient to
work with pairs of subsets where one member of the pair includes the other. Given
a ground-set V , by a bi-set X = (XO, XI) we mean a pair of subsets XO, XI of V
for which ∅ ⊆ XI ⊆ XO ⊆ V . XO is the outer member of X while XI is the inner
member. Note that there is a simple one-to-one correspondence between ordered pairs
(XT , XH) of disjoint sets and bi-sets (XO, XI), namely, XO = V − XT , XI = XH ,
and hence every theorem concerning bi-sets may be formulated in terms of pairs of
disjoint sets and vice versa.

Let P2 = P2(V ) denote the set of all bi-sets of V . A bi-set X with XI = ∅ or with
XO = V is called trivial. When XI = ∅ the bi-set is void. A set of bi-sets is called
inner-disjoint if the inner sets are pairwise disjoint. A function on P2(V ) will be
called a bi-set function on V . We will assume throughout that the bi-set functions in
question are integer-valuded and that their value on non-void bi-sets is always zero. A
family of bi-sets is called laminar if it has no two properly intersecting members. A
family F of bi-sets is intersecting if both the union and the intersection of any two
intersecting members of F belong to F . A laminar family is obviously intersecting.

The intersection ∩ and the union ∪ of bi-sets is defined in a staightforward manner:
for X, Y ∈ P2 let X∩Y := (XO∩YO, XI∩YI), X∪Y := (XO∪YO, XI∪YI). We write
X ⊆ Y if XO ⊆ YO, XI ⊆ YI . This determines a partial order on P2. Accordingly,
when X ⊆ Y or Y ⊆ X, we call X and Y comparable. A family of pairwise
comparable bi-sets is called a chain. Two bi-sets are intersecting if XI ∩YI 6= ∅ and
properly intersecting if, in addition, they are not comparable.

A directed edge a = uv enters or covers a bi-set X = (XO, XI) if a enters
both XO and XI . Edge a leaves X if it leaves both XO and XI . For a directed
graph D = (V, A), %(X) := %D(X) := %A(X) denotes the number of edges entering
(covering) X while δ(X) := δD(X) := δA(X) denotes the number of edges leaving
X. For a vector z : A → R, let %z(X) :=

∑
[z(a) : a ∈ A, a covers X]. δz(X) is

defined analogously. For a bi-set function p, a digraph D = (V, A) is said to cover
p if %D(X) ≥ p(X) for every X ∈ P2(V ). A function z : A → R covers p if
%z(X) ≥ p(X) for every X ∈ P2(V ). We say that an edge e = uv is induced by a
bi-set X = (XO, XI), if the head v of e is in XI while its tail u is in XO. Let ID(X)
denote the set of edges induced by X and iD(X) := |ID(X)|.
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Section 2. Preliminaries on node-connectivity and bi-set functions 6

A nonnegative integer-valued function p : P2 → Z+ is said to satisfy the super-
modular inequality on X, Y ∈ P2 if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (6)

If the reverse inequality holds, we speak of the submodular inequality. p is said to
be fully supermodular or supermodular if it satisfies the supermodular inequality
for every pair of bi-sets X,Y . If (6) holds for intersecting (crossing) pairs, we speak
of interecting (crossing) supermodular functions. Analogous notions can be in-
troduced for submodular functions. Sometimes (6) is required for those intersecting
(crossing) pairs for which p(X) > 0 and p(Y ) > 0. In this case p is called positively
intersecting (resp., positively crossing) supermodular.

Proposition 2.1. The indegree function %D on P2 is submodular while iD is super-
modular.

Note that a bi-set X = (XO, XI) with XO = XI may (and will often) be identified
with the subset XO and hence results on bi-sets and bi-set functions may be specialized
to those on sets and set-functions, respectively. Also, any set function h can be
extended to bi-sets X = (XO, XI) by taking h(X) = h(XO) if XO = XI and h(X) = 0
otherwise. The set-function h is positively intersecting supermodular if and only if
the bi-set function is positively intersecting supermodular. The notation for bi-set
functions % and i is in harmony with that of set-functions % and i since %(XO, XO) =
%(XO) and i(XO, XO) = i(XO).

Let D = (V, F ) be a digraph and g : V − r → Z+ a function. A set of edge-disjoint
rt-paths is said to be g-bounded if each node v ∈ V − {r, t} is used by at most
g(v) of these paths. We stress that g-boundedness automatically means that the
paths are edge-disjoint. Let λg(r, t; D) denote the maximum number of g-bounded
rt-paths. Note that for large g (say, g ≡ |F |) λg(r, t; D) is the maximum number of
edge-disjoint rt-paths, while for g ≡ 1, λg(r, t; D) is the maximum number of openly
disjoint rt-paths.

We will need the bi-set function µg defined by

µg(X) :=
∑

[g(v) : v ∈ XO −XI ] (= µg(XO)− µg(XI)). (7)

It is easily seen that for bi-sets X and Y

µg(X) + µg(Y ) = µg(X ∩ Y ) + µg(X ∪ Y ). (8)

Proposition 2.2 (Variation of Menger’s theorem). In a digraph D = (V, F )
there are k g-bounded rt-paths if and only if

%F (X) ≥ k−µg(X) holds for every bi-set X = (XO, XI) with t ∈ XI and XO ⊆ V − r.
(9)

Proof. Suppose that there are k g-bounded rt-paths. Among these paths at most
µg(X) use a node from XO −XI , hence at least k− µg(X) of them must use an edge
entering bi-set X and the necessity of (9) follows.
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Conversely, suppose that (9) holds. We may assume that there is no edge entering
r and no edge leaving t. Define a new digraph D′ := (V ′∪V ′′, F ′∪E ′∪E ′′), as follows.
V ′ and V ′′ are disjoint copies of V . For each edge uv ∈ F let u′v′′ be a member of F ′.
For each node v ∈ V −{r, t} put g(v) parallel edges from v′′ to v′ and k parallel edges
from v′ to v′′. The edges form v′′ to v′ form E ′, the edges from v′ to v′′ form E ′′.

By this construction, if D′ includes k edge-disjoint r′t′′-paths, then these paths
correspond to k g-bounded rt-paths in D. If no such paths exist in D′, then, by the
directed edge-version of Menger’s theorem, there is a subset X ′ of nodes of D′ so that
%D′(X) < k and t′′ ∈ X ′ ⊆ V ′ ∪ V ′′ − r′. Let XI := {v ∈ V : v′′ ∈ X ′} and let
XO := {v ∈ V : v′ ∈ X ′}. Due to the edges in E ′′, v′′ ∈ X ′ implies v′ ∈ X ′ and hence
t ∈ XI ⊆ XO ⊆ V − r. By the construction, we get k > %D′(X ′) = %D(X) + µg(X)
contradicting (9). •

Note that for g ≡ k, (9) is automatically satisfied for bi-sets X with t ∈ XI ⊂
XO ⊆ V − s) and hence (9) is equivalent to requiring that %(X) ≥ k holds for every
subset X with t ∈ X ⊆ V − r.

The proposition immediately implies the following slight extension. Let D = (V, F )
be a digraph with a specified root-node r and terminal set T ⊆ V −r. Let g : V −r →
{1, 2, . . . , k} be a function. We say that D is (k, g)-connected from r to T if

λg(r, t; D) ≥ k holds for every t ∈ T . (10)

In the special case when T = V − r, we call D rooted (k, g)-connected.

Proposition 2.3. A digraph D = (V, F ) is (k, g)-connected from r to T if and only
if

%F (X) ≥ k − µg(X) holds for every bi-set X = (XO, XI)

with XI ∩ T 6= ∅ and XO ⊆ V − r. (11)

A digraph is called a (k, g)-foliage (of root r) if it is rooted (k, g)-connected but
deleting any edge destroys this property.

Proposition 2.4. Suppose that D = (V, F ) is (k, g)-connected from r to T but re-
moving any edge of D destroys this property. Then the indegree of every node in T is
exactly k. In particular, in a (k, g)-foliage the indegree of every node distinct from r
is k.

Proof. Suppose indirectly that %(z) > k for some z ∈ T . Choose k g-bounded
rz-paths P1, . . . , Pk. Then there is an edge e = uz not used by these paths. We
claim that there are k g-bounded rt-paths in D′ := D − e for every t ∈ T and this
will contradict the minimality assumption on D. If these paths do not exist for some
t ∈ T , then, by Proposition 2.3 there is a bi-set X violating (11) in D′. Since X
does not violate (11) in D, it follows that e must enter X and hence t ∈ XI . But
then the existence of paths P1, . . . , Pk show that X cannot violate (11) in D′ either,
a contradiction. •
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Section 3. Rooted k-connections via matroid intersection 8

3 Rooted k-connections via matroid intersection

Let D = (V, A) be a digraph with a root-node r, a non-negative cost-function c :
A → R+, and a bounding function g : V − r → {1, 2, . . . , k} (but in this section
no terminal set T is considered). For later purposes we denote by D∗ = (U,A∗) the
digraph obtained from D by deleting r, that is, U := V − r and A∗ is the set of edges
induced by U .

Our goal is to reduce the problem of finding a cheapest rooted (k, g)-connected
subgraph of D to matroid intersection. Since c is non-negative, it suffices to find
a cheapest (k, g)-foliage (of root r). As a main result, we will prove that there are
two matroids M1 and M2 on A so that their common independent sets of cardinality
k(|V | − 1) are exactly the (k, g)-foliages of D.

3.1 Matroids on the edge set of digraphs

Let us invoke a fundamental construction of matroids due to J. Edmonds [3]. Let
b be an integer-valued, monoton increasing, intersecting submodular function on a
groundset S.

Theorem 3.1 (Edmonds). The set {F ⊆ S : |F ∩ X| ≤ b(X) for every subset
X ⊆ F} forms the independent sets of a matroid Mb whose rank function is given by

rb(Z) = min{b(X) + |Z −X| : X ⊆ Z}. (12)

Mb is called the matroid of b. (A geometric interpretation of this matroid is as
follows: the convex hull of independent sets of Mb is the intersection of the polymatroid
{x ∈ RS

+ : x(Z) ≤ b(Z) for every Z ⊆ S} defined by b with the unit 0 − 1 cube
{x ∈ RS : 0 ≤ x ≤ 1}.)

For a subset J ⊆ A∗ of edges of digraph D∗, let H(J) := {v : v is the head of some
edge in J} and let V (J) := {u : u is the head or the tail of some edges in J}. Note
that V (J) is a set-function on the underlying undirected edge-set and independent of
the orientation of the edges.

For a function m : V → R let Vm(J) :=
∑

[m(v) : v ∈ V (J)] and Hm(J) :=∑
[m(v) : v ∈ H(J)]. The proof of the following proposition is an easy exercise and

is left to the reader.

Proposition 3.2. If m is non-negative, then both Vm and Hm are monotone increas-
ing submodular functions on groundset A∗.

We need the following set-function b∗ defined to be 0 on the empty set and

b∗(J) :=
∑

[k − g(v) : v ∈ H(J)] +
∑

[g(v) : v ∈ V (J)]− k for ∅ ⊂ J ⊆ A∗. (13)

By the proposition b∗ is intersecting submodular. Furthermore b∗ is non-negative
since, for a non-empty set J , b∗(J) = k(|H(J)|−1)+

∑
[g(v) : v ∈ V (J)−H(J)] ≥ 0 =

b∗(∅). This and the assumption 1 ≤ g(v) ≤ k imply that b∗ is monotone increasing.
We abbreviate Mb∗ by M∗ and call it the master matroid of D∗ (determined by k
and g).
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3.2 Foliages as matroid intersections 9

Proposition 3.3. A subset F ⊆ A∗ is independent in M∗ if and only if

iF (X) ≤ k(|XI | − 1) + µg(X). (14)

for every bi-set X = (XO, XI) with ∅ ⊂ XI ⊆ XO ⊆ U .

Proof. Let F be independent in M∗ and X a bi-set whose inner set is non-empty.
Consider the subset J := IF (X) of F induced by X. If this is empty, then iF (X) =
0 ≤ k(|XI | − 1) + µg(X). If J is non-empty, then |J | ≤ b∗(J) =

∑
[k − g(v) : v ∈

H(J)] +
∑

[g(v) : v ∈ V (J)] − k ≤
∑

[k − g(v) : v ∈ XI ] +
∑

[g(v) : v ∈ XO] − k =
k(|XI | − 1) + µg(X), that is (14) holds true.

Conversely, if F is not independent in M∗, then it has a subset J for which |J | >
b∗(J). Let XI := H(J) and XO := V (J). Then every element of J is induced by bi-set
X = (XO, XI) and hence iF (X) ≥ |J | > b∗(J) =

∑
[k − g(v) : v ∈ H(J)] +

∑
[g(v) :

v ∈ V (J)]− k = k(|XI | − 1) + µg(X), that is, azaz (14) is violated. •
Note that in case g ≡ k (14) turns to iF (X) ≤ k(|XI |−1)+k|XO−XI | = k(|XO|−1).

If a bi-set (XO, XI) violates this, then so does the bi-set (XO, XO), which corresponds
to a subset XO of V . Therefore in this case a subset F of edges of D∗ is independent
in the master matroid M∗ if and only if every non-empty subset X of nodes induces at
most k(|X|− 1) elements of F . Hence M∗ depends only on the underlying undirected
graph and no on the orientation of the edges. Moreover, by a theorem of Nash-
Williams [21], M∗ is the sum of k copies of the circuit matroid of the underlying
undirected graph in which a subset of edges is independent, by definition, if it can be
partitioned into k forests.

3.2 Foliages as matroid intersections

Let Ar := A−A∗, that is, Ar is the set of edges of D whose tail is r. Define a matroid
M1 on A to be the direct sum of the free matroid on Ar (in which, by definition, every
subset is independent) and the master matroid M∗ defined above on A∗.

Let M2 denote the partition matroid on groundset A in which a subset I ⊆ A is
independent if %I(v) ≤ k for every node v ∈ V − r (and %I(r) = 0).

Theorem 3.4. A subgraph DB = (V, B) of digraph D = (V, A) is a (k, g)-foliage if
and only if B is a common independent set of matroids M1 and M2 and |B| = k(n−1)
where n = |V |.

Proof. If DB is a (k, g)-foliage, then Proposition 2.4 implies that %B(v) = k and
%B(r) = 0. Hence DB has exactly k(n− 1) edges and B is a basis in M2. For a bi-set
X = (XO, XI) with ∅ ⊂ XI ⊆ XO ⊆ U , one has %B(X) + µg(X) ≥ k and hence
iB(X) =

∑
[%B(v) : v ∈ XI ]− %B(X) ≤ k|XI |+ µg(X)− k. This and Proposition 3.3

implies that B is independent in M1.
Conversely, suppose that a k(n−1)-element subset B ⊆ A of edges is independent in

both M1 and M2. Then %B(v) = k for every v ∈ V −r and %B(r) = 0. Furthermore, for
a bi-set X = (XO, XI) with ∅ ⊂ XI ⊆ XO ⊆ U , one has iB(X) ≤ k(|XI |−1)+µg(X).
Therefore %B(X) + µgX) =

∑
[%B(v) : v ∈ XI ] − iB(X) + µg(X) = k|XI | − iB(X) +
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3.3 Independence oracles for M1 and M2 10

µg(X) ≥ k|XI |− k(|XI |− 1) = k and hence Proposition 2.3 implies that DB = (V, B)
is a (k, g)-foliage. •

This matroid approach enables us to handle a variation of the rooted (k, g)-
connection problem in which one wants to find a cheapest rooted (k, g)-connected
subgraph obeying a specified upper bound β imposed on the out-degree of root r. In
this case it again suffices to restrict ourselves to consider (k, g)-foliages and the only
change in Theorem 3.4 is that matroid M1 should be changed with the direct sum
of the master matroid M∗ and the uniform matroid on Ar in which the subsets of
cardinality at most β are the independent sets.

More generally, we can deploy a matroid Mr on the edge-set Ar and a matroid Mv

on the set of edges entering v for each node v ∈ U . Call a (k, g)-foliage matroid-
restricted if its subset of edges leaving r is independent in Mr and its subset of edges
entering v is independent in Mv for each v ∈ U .

Let M ′
1 be the direct sum of M∗ and Mr and let M ′

2 be the direct sum of the n− 1
matroids Mv (v ∈ U).

Theorem 3.5. A subgraph DB = (V, B) of digraph D = (V, A) is a matroid-restricted
(k, g)-foliage if and only if B is a common independent set of matroids M ′

1 and M ′
2

and |B| = k(n− 1) where n = |V |.

Proof. Suppose first that DB = (V, B) is a matroid-restricted (k, g)-foliage. Since
by Theorem 3.4 the edge set of any (k, g)-foliage is independent in M∗ it follows from
the definitions that B is independent in both M ′

1 and M ′
2. The reverse implication

follows similarly from Theorem 3.4. •
Edmonds’ matroid intersection theorem provides a necessary and sufficient condi-

tion for the existence of a matroid-restricted (k, g)-foliage. We formulate this for our
very special initial case when the only restriction was imposed on the out-degree of r.

Theorem 3.6. In a digraph D = (V, A), there exists a rooted (k, g)-foliage in which
the out-degree of root r is at most β if and only if

∑
i[k − (%D∗(Xi) + µg(Xi))] ≤ β

for every set of bi-sets X1, . . . , Xq whose outer members are subsets of U and inner
members are pairwise disjoint, where D∗ = D − r. In particular, in a digraph there
is a rooted k-edge-connected subgraph in which the out-degree of the root is at most β
if and only if

∑
i[k − %D∗(Xi)] ≤ β holds for every set of pairwise disjoint subsets Xi

of U . •

Note that if upper bound restrictions are given on the out-degree of nodes v ∈ U
rather than on the in-degrees, then the problem becomes NP-complete even in the
special case k = 1, g ≡ 1 and each upper bound is 1 since in this case the restricted
(k, g)-foliages are exactly the Hamiltonian paths of initial node r.

3.3 Independence oracles for M1 and M2

By Theorem 3.4, a cheapest rooted (k, g)-connected subgraph of D can be computed
with the help of a matroid intersection algorithm provided the independences oracles
for the two matroids are available. By an independence oracle, we mean an algorithm

EGRES Technical Report No. 2006-07



3.3 Independence oracles for M1 and M2 11

which tells us for any input subset X whether X is independent or not. Constructing
such an orale for the partition matroid M2 is straightforward, so we consider only M1.

We need the following orientation result of Hakimi [20].

Lemma 3.7. For a given undirected graph G = (UG, E) and upper-bound function
g′ : UG → Z, the graph has an orientation in which %(v) ≤ g′(v) for every node v if
and only if g′(X) ≥ iG(X) holds for every subset X of nodes where g′(X) :=

∑
[g′(v) :

v ∈ X].

Proof. (Sufficiency) Starting with an arbitrary orientation of G, we gradually reduce
the ‘error-sum’

∑
[(%(v)− g′(v))+ : v ∈ UG] by successively reorienting certain paths.

Namely, as long as there are nodes z with %(z) > g′(z), select anyone of them. Let Z
denote the set of nodes from which z is reachable along a directed path in the given
orientation. If there is an undersaturated node u ∈ Z (that is, %(u) < g′(u)), then by
reorienting any path from u to z the error-sum becomes smaller. If no such node u
exists, then Z violates the condition since %(Z) = 0 implies i(Z) =

∑
[%(v) : v ∈ Z] >∑

[g′(v) : v ∈ Z] = g′(Z). •

Note that the proof of the lemma gives rise to an algorithm of complexity
O(|UG||E|2) and since it can be considered as is a variation of the alternating path
algorithm for flows, the bound can actually be reduced to O(|UG|3).

Since M1 is the direct sum of a free matroid and the master matroid M∗ on A∗, it
suffices to construct an independence oracle for M∗. What we actually construct is
a subroutine which decides for an input independent set F ′ ⊆ A∗ of M∗ and for an
input element f = sz ∈ A∗ − F ′ whether F := F ′ + f is independent. By repeated
applications of this, one can easily decide if an arbitrary subset is independent or not
in M∗.

For the digraph DF = (U, F ), construct a bipartite undirected graph G =
(U ′, U ′′; E) as follows. To every node v ∈ U , assign a node v′ ∈ U ′ and a node
v′′ ∈ U ′′ which are connected by g(v) parallel edges. The set of these type of edges
of G is denoted by EU . Furthermore, with every directed edge e = uv ∈ F we asso-
ciate an edge eG = u′v′′ of G. The set of edges of this type is denoted by EF . Let
E := EU ∪ EF and UG := U ′ ∪ U ′′. We use the convention that the subsets of U ′

and U ′′ corresponding to a subset X ⊆ U will be denoted by X ′ and X ′′, respectively.
Furthermore a subset of EF corresponding to a subset J ⊆ F will be denoted by EJ .

Define a function g′ : UG → Z+ as follows. Let g(v′) := g(v) for every node v ∈ U ,
let g′(v′′) := k for every node v ∈ U − z, and let g′(z′′) := 0.

Lemma 3.8. For an independent set F ′ ⊆ A∗ of M∗ and for an edge f = sz ∈ A∗−F ′,
the set F := F ′+sz is independent in M∗ if and only if G has an orientation in which
the indegree of each node x is at most g′(x).

Proof. Assume first that the required orientation does not exists. By Lemma 3.7
there is a subset X ′ ∪ Y ′′ ⊆ UG of nodes for which iG(X ′ ∪ Y ′′) > g′(X ′ ∪ Y ′′). Then
iG(X ′ ∪ Y ′′) > 0 and hence X ′ 6= ∅ and Y ′′ 6= ∅. Let J ⊆ F denote the set of those
edges e = uv for whhich u′ ∈ X ′ and v′′ ∈ Y ′′. Since X ′ ∪Y ′′ induces g(X ∩Y ) edges
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Section 4. Covering supemodular bi-set functions by digraphs 12

of type EU we have |J |+ g(X ∩Y ) = iG(X ′ ∪Y ′′) > g′(X ′ ∪Y ′′) ≥ g(X)+ k(|Y | − 1),
from which

|J | > k|Y | − k + g(X)− g(X ∩ Y ). (15)

If, indirectly, F were independent in M∗, then we had |J | ≤ b∗(J) =
∑

[k− g(v) : v ∈
H(J)] +

∑
[g(v) : v ∈ V (J)]− k ≤

∑
[k − g(v) : v ∈ Y ] +

∑
[g(v) : v ∈ X ∪ Y ]− k =

k|Y | − g(Y ) + g(X ∪ Y )− k = k|Y | − k + g(X)− g(X ∩ Y ) contradicting (15).
To see the converse, assume that F is dependent in M∗, that is, there is a bi-set

X = (XO, XI) by Proposition 3.3 for which

|J | = iF (X) > k(|XI | − 1) + µg(X), (16)

where J denotes the subset of F induced by X.
As F ′ is independent in M∗, X must induce f = sz, that is, s ∈ XO and z ∈ XI .

Hence g′(X ′′
I ) = k(|XI | − 1). The set X ′

O ∪ X ′′
I ⊆ UG induces in G g(XI) edges

of type EU . If, indirectly, the requested orientation does exist, then |J | + g(XI) =
iG(X ′

O∪X ′′
I ) ≤ g′(X ′

O)+g′(X ′′
I ) = g(XO)+k(|XI |−1), that is, |J | ≤ g(XO)−g(XI)+

k(|XI | − 1) = µg(X) + k(|XI | − 1), contradicting (16). •
We can conclude that with the help of the orientation lemma the necessary inde-

pendence oracle for M∗ and hence for M1, too, is available.

4 Covering supemodular bi-set functions by di-

graphs

In this section we show how Theorems 1.1 and 1.2 concerning supermodular set func-
tions can be extended to those on supermodular bi-set functions.

4.1 Total dual integrality

Proposition 4.1. Let F be a laminar family of bi-sets and D = (V, A) a digraph.
Let M be a 0 − 1 matrix the rows and columns of which correspond to the members
of F and to the edges of D, respectively. An entry of M corresponding to X ∈ F and
e ∈ A is 1 if e enters X and zero otherwise. Then M is totally unimodular.

Proof. Since a subfamily of a laminar family is also laminar, by the characterization
of Ghouila-Houri [19], it suffices to prove that there is a uniform 2-colouration of the
rows of M , that is, a function c : F → {−1, +1} so that |

∑
[c(X) : e enters X]| ≤ 1

for each edge e of D. (In words, each edge e enters near the same number of 1-coloured
and of (−1)-coloured members of F where near the same means that the two numbers
may differ by at most one.)

We may assume that the members of F are distinct. Indeed, if a bi-set X occurs
in at least two copies then, in order to get a uniform 2-colouration of F , remove first
two copies of X, get then inductively a uniform 2-colouration of the rest and finally
colour the two removed copies of X differently.
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4.1 Total dual integrality 13

Turning to the case when the members of F are distinct, define first c(X) to be
1 for each maximal member X of F . In a general step take a maximal uncoloured
member X of F . By the laminarity, there is a unique smallest coloured member Y
for which X ⊂ Y . Define c(X) := −c(Y ). By the laminarity, the members of F
entered by an edge e form a chain in which two consecutive members X ⊂ Y have
the property that Y is the unique smallest member of F that is larger than X. Hence
c(X) = −c(Y ) and therefore the 2-colouration c is indeed uniform. •
Remark The matrix M in the theorem can be rather easily shown to be a network
matrix. To see this, consider the laminar family of sets consisting of the inner sets of bi-
sets in F . It is well-known that a laminar family L of subsets of V can be represented
by an arborescence T = (U, F ) in the sense that there is a mapping ϕ : V → U in
such a way that there is a one-to-one correspondence between L and F , namely, each
member X of F is ϕ−1(U(fX)) where fX denotes the edge of T corrsponding to X and
U(fX) denotes the subset of nodes of T reachable in T from the head of fX . Using
this representation, one can show that the edges of the arborescence corresponding to
the inner sets of those members of F that are entered by e form a directed paths in
T and hence M is indeed a network matrix.

The following result is a direct extension of Theorem 1.1 to bi-set functions. Its
proof is a rather standard application of the well-known uncrossing technique.

Theorem 4.2. Let D = (V, A) be a digraph. Let p : P2 → Z be a positively intersect-
ing supermodular bi-set function and gA : A → Z+∪{∞} a non-negative upper bound
on the edges of digraph D = (V, A) that covers p. The linear system

%x(Z) ≥ p(Z) for every bi-set Z ∈ P2, 0 ≤ x ≤ gA (17)

is totally dual integral. In particular, the linear programming problem

min{cx : x satisfies (17)} (18)

has an integer-valued optimum solution and so has its linear programming dual pro-
vided c is integer-valued.

Proof. Let c : A → Z be integer-valued so that the primal optimum is bounded
(which is, in the present case, is equivalent to requiring that gA(e) is finite whenever
c(e) < 0. Let Q denote a 0− 1 matrix in which the rows and the columns correspond
to the nontrivial members of P2 and to the edges of D, respectively. An entry of
Q corresponding to a bi-set X and edge e is 1 if e covers X and zero otherwise.
In what follows, we also denote by p the |P2|-dimensional vector whose component
corresponding the member X ∈ P2 has value p(X).

Then the primal linear programming problem is min{cx : 0 ≤ x ≤ gA, Qx ≥ p},
while its dual is:

max{yp− zgA : yQ− z ≤ c, y ≥ 0, z ≥ 0}, (19)

where z(e) denotes the dual variable corresponding to the primal inequality x(e) ≤
gA(e) (gA(e) is finite).
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4.1 Total dual integrality 14

For a given y the optimal z is uniquely given: z(e) = (yqe − c(e))+, where qe a
denotes the column of Q corresponding to edge e. Therefore we can say that a certain
y is an optimal solution to (19).

What we have to prove is that the optimun to (19) is attained at an integer vector.
Let y0 be an optimal rational solution. As long as there exist two properly intersecting
bi-sets X = (XK , XB) and Y = (YK , YB) with positive y0(X) and y0(Y ), revise y0 as
follows. Define α := min{y0(X), y0(Y )}, decrease by α both y0(X) and y0(Y ), and
increase by α both y0(X ∩ Y ) and y0(X ∪ Y ).

Due to the submodularity of bi-set function % on P2, the resulting dual vector
continues to be feasible. Moreover it is also dual optimal since p is assumed to be
positively intersecting supermodular. Let us call such a change in the dual solution
an uncrossing step.

Define the linear ordering of the partially ordered set (P2,⊆) obtained in such a
way that if the first some elements of the ordering have already been determined then
the subsequent element is selected to be minimal among the not yet selected elements
of P2. In this ordering for arbitrary X, Y ∈ P X ∩ Y precedes both X and Y while
X ∪ Y follows both of them.

Therefore the following lemma implies that the number of uncrossing steps cannot
be infinite.

Lemma 4.3. Let r1, . . . , rn be a sequence of nonnegative rational numbers. As long as
possibly, apply the following 4-change step. Select four distinct members for which the
two middle ones are positive. Let α denote the minimum of the two middle elements.
Decrease by α the value of the two middle elements and increase by α the value of
the first and fourth ones. Then after a finite number of 4-change steps the procedure
terminates.

Proof. By multiplying through with the least common denominator, if necessary,
we may assume that the sequence consists of integers. Since the first member never
decreases, each member remains nonnegative and the total sum stays constant, after
a finite number of 4-change steps the first member gets fixed and the lemma follows
by induction on n. •

We may therefore assume that the setH of bi-sets for which the y0-value is positive is
laminar. By Proposition 4.1 the submatrix of Q determined by the rows corresponding
to the members of H is totally unimodular. Therefore the optimal dual solution y0

may be chosen integer-valued, as required. • •

Theorem 4.2 has a certain self-refining nature. Given a subset T ⊆ V , we say that a
bi-set function p is (positively) T -intersecting supermodular if the supermodular
inequality holds for bi-sets X and Y whenever (p(X) > 0 and p(Y ) > 0) XI∩YI∩T 6=
∅.

Proposition 4.4. For bi-set function p1, define a bi-set function p on ground-set T ,
as follows. For bi-set Z = (ZO, ZI) with ZI ⊆ T , let

p(Z) := max{p1(ZO, ZI ∪K) : K ⊆ ZO − T} (20)

EGRES Technical Report No. 2006-07



4.2 Relation to submodular flows 15

and for every other bi-set Z let p(Z) = 0. If p1 is (positively) T -intersecting super-
modular, then so is p.

Proof. Let X and Y be two intersecting bi-sets (for which p(X) > 0, p(Y ) > 0 in case
p1 is positively T -intersecting supermodular). There are subsets K ⊆ XO − T, L ⊆
YO − T for which p(X) = p1(X

′) and p(Y ) = p1(Y
′) where X ′ = (XO, XI ∪K) and

(Y ′) = (YO, YI ∪ L). Since (XI ∪ K) ∩ (YI ∪ L) 6= ∅, K ∩ L ⊆ (XO ∩ YO) − T and
K∪L ⊆ (XO∪YO)−T , therefore p1(X

′∩Y ′) ≤ p(X∩Y ) and p1(X
′∪Y ′) ≤ p(X∪Y ).

Hence p(X)+p(Y ) = p1(X
′)+p1(Y

′) ≤ p1(X
′∩Y ′)+p1(X

′∪Y ′) ≤ p(X∩Y )+p(X∪Y ),
as required.

4.2 Relation to submodular flows

In order to have an algorithm for the optimization problem given in Theorem 4.2 we
are going to prove that the linear system (17) actually describes a submodular flow
polyhedron. Since there are efficient combinatorial solving algorithms for submodular
flows (for rich overviews, see [16, 23]) this way we will have for optimal coverings of
intersecting supermodular bi-set functions. We remark that for the special case when
p is identically 1 on a given intersecting family of bi-sets and zero otherwise Theorem
4.2 was algorithmically proved in [13] with the help of a two-phase greedy algorithm.

Let D̂ = (V̂ , Â) be a digraph, F a crossing family of subsets of V̂ , b : F → Z a
crossing submodular function. Let f̂ : Â → Z + {−∞} and ĝ : Â → Z + {∞} two
functions with f̂ ≤ ĝ. A function x̂ : Â → R is called a submodular flow or in short
a subflow if

%x̂(Z)− δx̂(Z) ≤ b(Z) for every Z ∈ F (21)

and f̂ ≤ x̂ ≤ ĝ. The set of subflows is called a submodular flow (subflow) polyhedron.
It is known and easy to show that for a crossing supermodular function p on F the
polyhedron defined by

%x̂(Z)− δx̂(Z) ≥ p(Z) for every Z ∈ F (22)

and f̂ ≤ x̂ ≤ ĝ is also a subflow polyhedron. In this sense one could speak of
supermodular flows as well but we stay at the conventional term of submodular flow
even if the polyhedron is defined by a supermodular function. The subflow polyhedron
is called one-way if the in-degree ore the out-degree of every member of F is zero.

Theorem 4.5. Let D = (V, A) be a digraph. Let p : P2 → Z be an intersecting
supermodular bi-set function and gA : A → Z+ ∪ {∞} a non-negative upper bound on
the edges of D that covers p. The polyhedron P defined by the linear system

%x(Z) ≥ p(Z) for every bi-set Z ∈ P2, 0 ≤ x ≤ gA (23)

is a one-way submodular flow polyhedron.

Proof. It follows from the definition that the intersection of a submodular flow
polyhedron with a box is also a submodular flow polyhedron so it suffices to prove
the theorem for the special case when gA = ∞.
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Construct a digraph D̂ = (U, Â) from D as follows. For each edge e = uv of D,
subdivide e by a new node ue and delete uue, one of the two newly arising edges. The
remaining edge uev will be denoted by ê. Here U = V ∪ V̂A where V̂A denotes the set
of subdividing nodes. For any subset F ⊆ A, the corresponding subset of edges and
subset of nodes of D̂ will be denoted by F̂ and V̂F , respectively.

Define a family F of subsets of U and a function p̂ on F as follows. For each non-
void bi-set X ∈ P2(V ) with finite p(X) and for each subset F ⊆ ID(X), let XI ∪ V̂F

be a member of F and let p̂(XI ∪ V̂F ) := p(X).

Claim 4.6. F is an intersecting family of sets and p̂ is intersecting supermodular.

Proof. Suppose for bi-sets X, X ′ and edge sets F ⊆ ID(X), F ′ ⊆ ID(X ′) that
Y := XI ∪ V̂F and Y ′ := X ′

I ∪ V̂F ′ are intersecting sets. Then X and X ′ are also
intersecting. It easily follows from the definition that ID(X) ∩ ID(X ′) ⊆ ID(X ∩X ′)
and ID(X) ∪ ID(X ′) ⊆ ID(X ∪X ′) and hence both Y and Y ′ are in F . Furthermore
we have p̂(Y ) + p̂(Y ′) = p(X) + p(X ′) ≤ p(X ∩X ′) + p(X ∪X ′) = p((XI ∩X ′

I)∪ (F ∩
F ′)) + p((XI ∪X ′

I) ∪ (F ∪ F ′)) = p̂(Y ∩ Y ′) + p̂(Y ∪ Y ′), as required. •
By the construction, no edge of D̂ leaves any member of F and hence P̂ := {x̂ ∈

RÂ : x̂ ≥ 0, x̂(Z) ≥ p̂(Z) for every Z ∈ F} is a one-way subflow polyhedron. Since
the edges of D and D̂ correspond to each other we may speak of the polyhedron P ′

in RA corresponding to P̂ .

Claim 4.7. P = P ′.

Proof. Let x ∈ P ′, that is, x̂ ∈ P̂ . For a non-void bi-set X with finite p(X) and for
F := ID(X) we have %x(X) = %x̂(XI ∪ VF ) ≥ p̂(XI ∪ VF ) = p(X) and hence x ∈ P ,
from which P ′ ⊆ P .

Conversely, let x ∈ P . For a non-void bi-set X with finite p(X) and for F ⊆ ID(X)
we have %x̂(XI ∪ VF ) ≥ %x(X) ≥ p(X) = p̂(XI ∪ VF ) and hence x̂ ∈ P̂ , from which
P ⊆ P ′. •

By the two claims, the proof of the theorem is complete. • •
Corollary 4.8. Let D = (V, A) be a digraph and gA : A → Z+ ∪ {∞} an integer-
valued function. Let T ⊂ V be a subset of nodes containing the head of every edge of
D. Let p1 be a positively T -intersecting supermodular bi-set function covered by gA.
Then the linear system

{0 ≤ x ≤ gA, %x(X) ≥ p1(X) for every bi-set X} (24)

is totally dual integral. The polyhedron defined by (24) is a submodular flow polyhe-
dron.

Proof. By proposition 4.4 the bi-set function p defined in (20) is positively intersect-
ing supermodular. Since every edge has its head in T , a vecor x : A → R covers p1

if and only if x covers p. Furthermore, a dual solution y to (23) determines a dual
solution y1 to (24) as follows. For X = (XO, XI) with XI ⊆ T let Y be the bi-set
for which YO = XO, XI ⊆ YI and p(X) = p1(Y ). Define y1(Y ) := y(X) if Y arises
this way and y1(Y ) := 0 otherwise. Then y1 is a dual feasible solution to (24) having
the same value as y does. Therefore Theorem 4.2 implies that the system (24) is also
TDI. •
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4.3 Polyhedral descriptions of rooted (k, g)-connected sub-
graphs

Let k ≥ 1 be an integer and g : V → {1, . . . , k} a function. As an application, we
exhibit how the problem of cheapest subgraphs which are (k, g)-connected from r to
a terminal set T can be handled polyhedrally and algorithmically provided each edge
of positive cost has its head in T .

Theorem 4.9. Let H = (V, A0 ∪ A) be a digraph with a specified root-node r and
terminal set T ⊆ V − r so that the head of each edge in A is in T . Suppose that H
is (k, g)-connected from r to T . The convex hull of incidence vectors of the edge-sets
F ⊆ A for which the subgraph (V, A0 ∪F ) is (k, g)-connected from r to T is described
by

{x ∈ RA, 0 ≤ x ≤ 1, %x(Z) ≥ p1(Z) for every bi-set Z} (25)

where p1 is defined by

p1(Z) = k − %A0(Z)− µg(Z) for bi-set Z = (ZO, ZI)

with ZI ∩ T 6= ∅ and ZO ⊆ V − r, (26)

and p1(Z) := −∞ otherwise. Furthermore the linear system in (25) is TDI and
determines a submodular flow polyhedron.

Proof. Observe that the function p1 defined in the theorem is intersecting super-
modular and hence Corollary 4.8 can be applied to D = (V, A), p1, and gA ≡ 1. •

Let us formulate Theorem 4.9 in the special case when g ≡ k.

Corollary 4.10. Let D = (V, A0 ∪ A) be a digraph with a specified root-node r and
terminal set T ⊆ V − r so that the head of each edge in A is in T . Suppose that D
is k-edge-connected from r to T . The convex hull of incidence vectors of the edge-sets
F ⊆ A for which the subgraph (V, A0∪F ) is k-edge-connected from r to T is described
by

{x ∈ RA, 0 ≤ x ≤ 1,

%x(X) ≥ k − %A0(X) for every subset X ⊆ V − r for which X ∩ T 6= ∅}. (27)

Furthermore the linear system in (25) is TDI and determines a submodular flow poly-
hedron.

Let us formulate Theorem 4.9 in the special case when T = V − r and A0 = ∅.
Corollary 4.11. Let D = (V, A) be a rooted (k, g)-connected digraph. The convex
hull of incidence vectors of the edge-sets F ⊆ A for which the subgraph (V, F ) is
(k, g)-connected is described by

x ∈ RA, 0 ≤ x ≤ 1,

%x(Z) ≥ k − µg(Z) for every non-void bi-set Z = (ZO, ZI) with ZO ⊆ V − r. (28)

Furthermore the linear system in (28) is TDI and describes a submodular flow poly-
hedron.
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5 Conclusion

In this paper we considered the rooted (k, g)-connection problem which is a common
generalization of those of finding a cheapest rooted k-edge-connected and k-node-
connected subgraph of a digraph. By extending a known result on rooted k-edge-
connectivity, we proved that the general version is also a matroid intersection problem
and hence a weighted matroid intersection algorithm may be applied. We also showed
that the independence oracle required for the matroids in question can be constructed
through an easy orientation result. This matroid approach supersedes the only solu-
tion known earlier to the rooted k-node-connection problem which invoked the more
complex model of submodular flows.

Moreover, we exhibited TDI descriptions for further generalizations of the rooted
(k, g)-connection problem for which the algorithmic solution did invoke submodular
flows. For example, the problem of finding a cheapest subgraph of a digraph in which
there are k g-bounded paths from a root node to each element of a terminal set T
could be handled this way provided that each edge of positive cost has its head in T .
Without this latter restriction, even the special case k = 1 involves the NP-complete
problem of directed Steiner-trees.

The key idea behind our approach was that earlier results on supermodular set
functions could be extended to those on supermodular bi-set functions.
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