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Pin-collinear Body-and-Pin Frameworks and the
Molecular Conjecture

Bill Jackson? and Tibor Jordán??

Abstract

T-S. Tay and W. Whiteley independently characterized the multigraphs
which can be realized as an infinitesimally rigid d-dimensional body-and-hinge
framework. In 1984 they jointly conjectured that each graph in this family can
be realized as an infinitesimally rigid framework with the additional property
that the hinges incident to each body lie in a common hyperplane. This conjec-
ture has become known as the Molecular Conjecture because of its implication
for the rigidity of molecules in 3-dimensional space. Whiteley gave a partial
solution for the 2-dimensional form of the conjecture in 1989 by showing that
it holds for multigraphs G = (V,E) in the family which have the minimum
number of edges, i.e. satisfy 2|E| = 3|V | − 3. In this paper, we give a complete
solution for the 2-dimensional version of the Molecular Conjecture. Our proof
relies on a new formula for the maximum rank of a pin-collinear body-and-pin
realization of a multigraph as a 2-dimensional bar-and-joint framework.

1 Introduction

All graphs considered are finite and without loops. We will reserve the term graph for
graphs without multiple edges and refer to graphs which may contain multiple edges
as multigraphs. Given a multigraph G and a positive integer k, we use kG to denote
the multigraph obtained by replacing each edge of G by k parallel edges.

Informally, a body-and-hinge framework in Rd consists of large rigid bodies articu-
lated along affine subspaces of dimension d− 2 which act as hinges i.e. bodies joined
by pin-joints in 2-space, line-hinges in 3-space, plane-hinges in 4-space, etc. This
notion may be formalized by using the facts that the infinitesimal motions of a rigid
body in d-space can be coordinatized using screw centers (real vectors of length

(
d+1
2

)
which represent (d− 1)-tensors in projective d-space), and that rotations correspond
to particular kinds of screw centers called (d− 1)-extensors, see [1]. A d-dimensional
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Section 1. Introduction 2

body-and-hinge framework (G, q) is a multigraph G = (V, E) together with a map
q which associates a (d − 2)-dimensional affine subspace q(e) of Rd with each edge
e ∈ E. An infinitesimal motion of (G, q) is a map S from V to

(
d+1
2

)
-space such that,

for every edge e = uv, S(u) − S(v) is a scalar multiple of P (e, q), where P (e, q) is a
(d− 1)-extensor which corresponds to a rotation about q(e). An infinitesimal motion
S is trivial if S(u) = S(v) for all u, v ∈ V and (G, q) is said to be infinitesimally rigid
if all its infinitesimal motions are trivial.1 We refer the reader to [18, 20] for a more
detailed account of body-and-hinge frameworks in Rd. We will only be concerned with
the case d = 2 and specific details for this case will be given in Sections 2 and 5 of
this paper.

Multigraphs which can be realized as infinitesimally rigid body-and-hinge frame-
works are characterized by the following theorem, proved independently by Tay [14]
and Whiteley [18].

Theorem 1.1. A multigraph G can be realized as an infinitesimally rigid body-and-
hinge framework in Rd if and only if (

(
d+1
2

)
− 1)G has

(
d+1
2

)
edge-disjoint spanning

trees.

Tay and Whiteley jointly conjecture that the same condition characterizes when a
multigraph can be realized as an infinitesimally rigid body-and-hinge framework in Rd

with the additional property that all the hinges incident to each body are contained
in a common hyperplane.

Conjecture 1.2. [16] Let G be a multigraph. Then G can be realized as an infinites-
imally rigid body-and-hinge framework in Rd if and only if G can be realized as an
infinitesimally rigid body-and-hinge framework (G, q) in Rd with the property that, for
each v ∈ V , all of the subspaces q(e), e incident to v, are contained in a common
hyperplane.

Conjecture 1.2 is known as the Molecular Conjecture because of its implications
for the rigidity of molecules when d = 3.2 It has been verified by Whiteley [19] when
d = 2 for the special case when 2G is the union of three edge-disjoint spanning trees.

1These definitions can be motivated by considering each vertex v ∈ V as being represented by
a large rigid body Bv in d-space and each edge e = uv ∈ E as being represented by the ‘hinge’
q(e) attached to Bu and Bv. Each body Bv can move continuously subject to the constraints that,
for each edge e = uv ∈ E, the relative motion of Bu with respect to Bv is a rotation about the
hinge q(e). At any given instant, the motion of Bv is represented by the screw center S(v). The
constraint concerning the relative motion of Bu with respect to Bv is represented by the condition
that S(u)− S(v) is a scalar multiple of P (e, q).

2It is known that infinitesimal rigidity is a projective invariant, and it is the projective dual
of the case d = 3 of the Molecular Conjecture which has implications for the rigidity of molecules.
Under projective duality in R3, lines are mapped to lines, and planes are mapped to points. Thus the
conjecture for d = 3 is equivalent to the statement that a graph G can be realized as an infinitesimally
rigid body-and-hinge framework in R3 with all hinges incident to each vertex concurrent at a point, if
and only if 5G has six edge-disjoint spanning trees. The application to molecules represents atoms as
vertices and bonds between atoms as edges [21, 24]. The corresponding body-and-hinge framework
will centre each atom at the point of concurrence of the bonds which are incident to it. For partial
results on the 3-dimensional version of the Molecular Conjecture see [5, 6].
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Section 2. Bar-and-joint frameworks 3

The purpose of this paper is to give a complete solution of the conjecture when
d = 2. We will assume henceforth that d = 2 and refer to hinges as pins and to
body-and-hinge frameworks as body-and-pin frameworks. We say that a body-and-
pin framework is pin-collinear if the pins incident to each body lie on a common
line. Our proof that Conjecture 1.2 holds when d = 2 uses an equivalent definition
of body-and-pin structures as ‘bar-and-joint’ frameworks. These will be described
in Sections 2 and 4 along with some basic results. We need two more sections to
collect the notions and preliminary results we use in the main proof: in Section 3 we
summarize some structural properties of forest covers of multigraphs, and in Section
5 we define body-and-pin frameworks and their associated rigidity matrices. Our
main result, which solves the bar-and-joint version of the 2-dimensional Molecular
Conjecture, is given in Section 6. We give some corollaries of this result in Section
7 and deduce, in particular, that Conjecture 1.2 holds when d = 2. We close by
describing a conjectured characterization of when a general incidence structure can
be realized as an infinitesimally rigid pin-collinear body-and-pin framework in Section
8.

2 Bar-and-joint frameworks

A (2-dimensional) bar-and-joint framework (G, q) is a graph G = (V, E) together with
a map q : V → R2. We say that (G, q) is a realization of G. We consider each
vertex to be represented by a universal joint at q(e) and each edge e = uv ∈ E to be
represented by a rigid bar attached to the joints q(u) and q(v). The joints are free to
move continuously in R2, subject to the constraints that the bar-lengths ||q(u)−q(v)||
remain constant for all uv ∈ E. The framework (G, q) is said to be rigid if each such
motion preserves the distances ||q(u)− q(v)|| for all u, v ∈ V .

The rigidity matrix of the framework is the matrix R(G, q) of size |E|×2|V |, where,
for each edge vivj ∈ E, in the row corresponding to vivj, the entries in the two columns
corresponding to vertices vi and vj are given by the coordinates of (q(vi)− q(vj)) and
(q(vj) − q(vi)), respectively, and the remaining entries are zeros. See [20] for more
details. The rigidity matrix of (G, q) defines the rigidity matroid R(G, q) of (G, q) on
the ground set E by linear independence of rows of the rigidity matrix. We denote
the rank of R(G, q) by r(G, q).

The following lemma gives an upper bound on r(G, q).

Lemma 2.1. [20, Lemma 11.1.3] Let (G, q) be a bar-and-joint framework with n ≥ 2
vertices. Then r(G, q) ≤ 2n− 3.

The framework (G, q) is said to be infinitesimally rigid if r(G, q) = 2n−3. We refer
to the vectors in the null space, Z(G, q), of R(G, q) as infinitesimal motions of (G, q),
and define the number of degrees of freedom of (G, q), df(G, q), to be the dimension
of Z(G, q). Thus df(G, q) = 2n − r(G, q). (These definitions are motivated by the
fact that every continuous motion of (G, q) which preserves bar-lengths ‘induces’ an
infinitesimal motion of (G, q). In particular the rigid isometries of R2 corresponding
to translation along either axis and rotation about the origin give rise to three linearly

EGRES Technical Report No. 2006-06



Section 2. Bar-and-joint frameworks 4

independent infinitesimal motions of (G, q). If (G, q) is infinitesimally rigid, then these
three infinitesimal motions are a basis of Z(G, q).)

We say that (G, q) is a generic realization of G if the set of coordinates of all points
q(v), v ∈ V , is algebraically independent over Q. (It follows from a result of Gluck
[3] that if (G, q) is generic, then (G, q) is rigid if and only if (G, q) is infinitesimally
rigid.) All generic realizations of G have the same rank and we denote this value
by r(G). The following lemma follows from the fact that the entries in R(G, q) are
polynomial (and hence continuous) functions of the components of q(v), v ∈ V , with
rational coefficients.

Lemma 2.2. Let (G, q) be a bar-and-joint framework. Then
(a) r(G, q) ≤ r(G).
(b) There exists an ε > 0 such that for all q′ : V → R2 with ||q′(v)− q(v)|| ≤ ε for all
v ∈ V , we have r(G, q′) ≥ r(G, q).

Let G = (V, E) be a multigraph. For X ⊆ V , the degree of X, dG(X), is the number
of edges of G from X to V −X . If X = {v} for some v ∈ V then we simply write
dG(v) for the degree of v. The set of neighbours of X (i.e. the set of those vertices
v ∈ V −X for which there exists an edge uv ∈ E with u ∈ X) is denoted by NG(X).

We shall need some basic results on the rigidity of frameworks.

Lemma 2.3. [20, Lemma 2.1.3] Let G1 = (V1, E1) be a graph and v1, v2 be distinct
vertices of G1. Let G be obtained from G1 by adding a new vertex v and edges vv1, vv2.
Let (G1, q1) be a realization of G1 such that q1(v1) 6= q1(v2). Choose a point Q such
that q1(v1), q1(v2), Q are not collinear and let (G, q) be the realization of G obtained
from (G1, q1) by putting q(v) = Q. Then r(G, q) = r(G1, q1) + 2.

Lemma 2.4. [20, Lemma 2.2.2] Let G1 = (V1, E1) be a graph, v1, v2, v3 be distinct
vertices of G1 and v1v2 be an edge of G1. Let G be obtained from G1− v1v2 by adding
a new vertex v and edges vv1, vv2, vv3. Let (G1, q1) be a realization of G1 such that
q1(v1), q1(v2), q1(v3) are not collinear. Let Q ∈ R2 be a point on the line through
q1(v1), q1(v2) distinct from q1(v1), q1(v2). Let (G, q) be the realization of G obtained
from (G1, q1) by putting q(v) = Q. Then r(G, q) = r(G1, q1) + 2.

The following result is given without proof in [20, Figure 2.9]. We include a proof
for the sake of completeness.

Lemma 2.5. Let G = (V, E) be a graph, v ∈ V and EG(v) = {vv1, vv2, . . . , vvk}
for some k ≥ 2. Choose j such that 2 ≤ j ≤ k and let G′ be the graph obtained
from G− v by adding two new vertices v′, v′′ and edges v′v1, v

′v2, . . . , v
′vj, v′′v1, v

′′v2,
v′′vj+1, . . . , v

′′vk. Suppose q : V → R2. Define q′ : V (G′) → R2 by q′(u) = q(u) for all
u ∈ V −v and q(v′) = q(v′′) = q(v). Suppose q(v)− q(v1) and q(v)− q(v2) are linearly
independent. Then r(G′, q′) ≥ r(G, q) + 2.

Proof: Since q(v) − q(v1) and q(v) − q(v2) are linearly independent, we can include
vv1, vv2 in a basis B of R(G, q). Let I1 = {vvi ∈ B : 3 ≤ i ≤ j} and I2 = {vvi ∈ B :
j + 1 ≤ i ≤ k}. Put

B′ = (B − EG(v)) ∪ {v′vi : vvi ∈ I1} ∪ {v′′vi : vvi ∈ I2} ∪ {v′v1, v
′v2, v

′′v1, v
′′v2}.
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Section 2. Bar-and-joint frameworks 5

We will show that B′ is independent in R(G′, q′). Suppose not. Then the rows
of R(G′, q′) corresponding to B′ are linearly dependent. Thus there exist constants
αuw ∈ R, uw ∈ B′ not all equal to zero, such that, for each u ∈ V (G′), we have∑

uw∈B′

αuw(q(u)− q(w)) = 0. (1)

Define constants βuw ∈ R, uw ∈ B, as follows: βuw = αuw when uw is not incident
to v; βvvi

= αv′vi
for vvi ∈ I1; βvvi

= αv′′vi
for vvi ∈ I2; βvv1 = αv′v1 + αv′′v1 ;

βvv2 = αv′v2 + αv′′v2 . Then (1) implies that
∑

uw∈B βuw(q(u) − q(w)) = 0 for all
u ∈ V (G). Since B is independent, we must have βuw = 0 for all uw ∈ B. Thus
αuw = 0 for all uw ∈ B′ with uw 6∈ {v′v1, v

′v2, v
′′v1, v

′′v2}. Substituting into (1)
with u = v′ we may also deduce that αv′v1(q(v) − q(v1)) + αv′v2(q(v) − q(v2)) = 0.
Since q(v) − q(v1) and q(v) − q(v2) are linearly independent, we must have
αv′v1 = 0 = αv′v2 . Similarly, αv′′v1 = 0 = αv′′v2 . This contradicts the assumption
that not all of the constants αuw are equal to zero. Thus B′ is independent and
r(G′, q′) ≥ |B′| = |B|+ 2 = r(G, q) + 2. •

We refer to the operations in Lemmas 2.3, 2.4 and 2.5 as 0-extensions, 1-extensions,
and vertex-splits, respectively. The next result is a non-generic extension of [20,
Lemma 3.1.4 (1)]. It can be proved similarly.

Lemma 2.6. Let (G, q) be a framework and let G1, G2 be subgraphs of G with 2 ≤
|V (Gi)| ≤ |V (G)|−1, G1∪G2 = G and V (G1)∩V (G2) = X. Suppose that (Gi, qi) are
both infinitesimally rigid frameworks, where qi denotes the restriction of q to V (Gi),
i = 1, 2. Then df(G, q) = 6 if X = ∅, df(G, q) = 4 if |q(X)| = 1, and df(G, q) = 3
(so (G, q) is infinitesimally rigid) if |q(X)| ≥ 2.

Lemma 2.7. Let G = (V, E), G1 = (V1, E1), G2 = (V2, E2) be connected graphs such
that G = G1∪G2, and G1∩G2 = K is a complete graph on t vertices, for t ∈ {0, 1, 2}.
Let (G, q) be a realization of G and let qi be the restriction of q to Vi, i ∈ {1, 2}.
Suppose the affine hull of qi(Vi) is 2-dimensional for each i ∈ {1, 2} and that q(u) 6=
q(v) if u, v are distinct vertices of K. Then r(G, q) = r(G1, q1) + r(G2, q2)− |E(K)|.

Proof: Choose a base Bi of R(Gi, qi) with E(K) ⊆ Bi. Since the affine hull of
qi(Vi) is 2-dimensional, we can add edges to the graph (Vi, Bi) such that the resulting
graph Hi = (Vi, Ti) satisfies |Ti| = 2|Vi| − 3 and (Hi, qi) is infinitesimally rigid. Let
H = H1 ∪ H2. Lemma 2.6 now implies that r(H, q) = |E(H)| and hence T1 ∪ T2 is
independent in R(H, q). Since B = B1 ∪ B2 ⊆ T1 ∪ T2, B is independent in R(G, q).
On the other hand, the fact that Bi spans Ei in R(Gi, qi) implies that B spans E in
R(G, q). Thus B is a base of R(G, q) and

r(G, q) = |B| = |B1|+ |B2| − |E(Kt)| = r(G1, q) + r(G2, q)− |E(Kt)|.

•

As noted in the Introduction, the space of infinitesimal motions of an infinitesimally
rigid bar-and-joint framework in Rd can be coordinatized using screw centers, which
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Section 3. Bricks and Superbricks 6

are real vectors of length
(

d+1
2

)
, see [1]. We will use this coordinatization for the

special case d = 2 in Section 5 to define 2-dimensional body-and-hinge frameworks
and their associated rigidity matrices. We derive the required properties of screw
centers in 2-dimensional space in the remainder of this section.

For S = (w1, w2, w3)
T ∈ R3, let MS = w3

(
0 1

−1 0

)
, vS =

(
w2

w1

)
and define

fS : R2 → R2 by fS(x) = MSx + vS. We use 〈(x, y, z)〉 to denote the subspace of R3

spanned by a vector (x, y, z) ∈ R3. The following lemma is straightforward to check.

Lemma 2.8. Suppose S, T ∈ R3 and x = (x1, x2) ∈ R2. Then
(a) fS+T (x) = fS(x) + fT (x).
(b) fS(x) = 0 if and only if S ∈ 〈(x1,−x2, 1)〉.

Let G = (V, E) be a graph and (G, q) be a realization of G as a 2-dimensional bar-
and-joint framework. Since the columns of the rigidity matrix R(G, q) are indexed by
V we can consider the vectors in the null space of R(G, q), i.e the infinitesimal motions
of (G, q), as maps q′ : V → R2 with the property that (q(u)−q(v)) · (q′(u)−q′(v)) = 0
for all uv ∈ E. We adopt this convention in our next result.

Lemma 2.9. Let G = (V, E) be a graph with at least two vertices, q : V → R2, and
S = (w1, w2, w3) ∈ R3. Let fS ◦ q : V → R2 by fS ◦ q(v) = fS(q(v)) for all v ∈ V .
Then
(a) fS ◦ q belongs to the null space, Z(G, q), of R(G, q).
(b) If (G, q) is infinitesimally rigid, then the map f : R3 → Z(G, q) by f(S) = fS ◦ q
for all S ∈ R3 is a vector space isomorphism.

Proof: Choose u, v ∈ V . Then

(q(u)− q(v)) · (fS ◦ q(u)− fS ◦ q(v)) = w3(q(u)− q(v))MS(q(u)− q(v))T = 0.

Thus fS ◦ q ∈ Z(G, q) and (a) holds. To prove (b) we assume that (G, q) is
infinitesimally rigid, and hence that dim Z(G, q) = 3. It is straightforward to
check that f is a linear map. Suppose f(S) = 0. Since (G, q) is infinitesimally
rigid, we may choose v1, v2 ∈ V such that (x1, y1) = q(v1) 6= q(v2) = (x2, y2).
Lemma 2.8(b) and the fact that fS(q(v1)) = 0 = fS(q(v2)) now imply that
S ∈ 〈(x1,−y1, 1)〉 ∩ 〈(x2,−y2, 1)〉 = {0}. Thus S = 0 and hence f is an injection.
Since R3 and Z(G, q) both have the same dimension, f is an isomorphism. •

3 Bricks and Superbricks

In this section we summarize the structural results on forest covers of multigraphs
that we shall use. Let H = (V, E) be a multigraph. For a family F of pairwise
disjoint subsets of V let EH(F) denote the set, and eH(F) the number, of edges of H
connecting distinct members of F .
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Section 3. Bricks and Superbricks 7

The following theorem is well-known.3

Theorem 3.1. [10, 11, 17] Let H = (V, E) be a multigraph and let k be a positive
integer. Then
(a) the maximum size of the union of k forests in H is equal to the minimum value of

eH(P) + k(|V | − |P|) (2)

taken over all partitions P of V ;
(b) H contains k edge-disjoint spanning trees if and only if

eH(P) ≥ k(|P| − 1)

for all partitions P of V ;
(c) the edge set of H can be covered by k forests if and only if

|E(H[X])| ≤ k(|X| − 1)

for each nonempty subset X of V .

In this paper we shall be concerned with the case when H = 2G, for some multi-
graph G, and k = 3. Let G = (V, E) be a multigraph. For a partition Q of V
let

defG(Q) = 3(|Q| − 1)− 2eG(Q)

denote the deficiency of Q in G and let

def(G) = max{defG(Q) : Q is a partition of V }.

Note that def(G) ≥ 0 since defG({V }) = 0. We say that a partition Q of V is a tight
partition of G if defG(Q) = def(G).

A multigraph G is strong if 2G has three edge-disjoint spanning trees. Equivalently,
by Theorem 3.1(b), G is strong if def(G) = 0. A subgraph H of a multigraph G is said
to be a brick of G if H is a maximal strong subgraph of G. Thus bricks are induced
subgraphs.

We say that a multigraph G = (V, E) is superstrong if 2G−e has three edge-disjoint
spanning trees for all e ∈ E(2G). Equivalently, by Theorem 3.1(b), G is superstrong
if def(G) = 0 and the only tight partition of V is {V } itself. A subgraph H of G
is said to be a superbrick of G if H is a maximal superstrong subgraph of G. Thus
superbricks are induced subgraphs.

The following properties of bricks and superbricks were verified in [5]4.

3Theorem 3.1(a) appears in [13, Chapter 51]. It follows easily from the matroid union theorem of
Nash-Williams [12] and Edmonds [2], which determine the rank function of the union of k matroids,
by applying this theorem to the matroid Mk(H) which is the union of k copies of the cycle matroid of
H. Part (a) implies parts (b) and (c), which are well-known results of Tutte [17] and Nash-Williams
[10], and Nash-Williams [11], respectively. The minimum value of (2) is equal to rk(E), where rk

denotes the rank function of Mk(H).
4In [5] these notions and the following lemmas were formulated for graphs and for a different

count: with six edge-disjoint spanning trees in 5G. However, as was noted in [5], they hold in a
much more general context, which implies the results for multigraphs and for both counts.
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Section 4. Body-and-Pin Realizations of Graphs as Bar-and-Joint Frameworks 8

Figure 1: The brick partition B1 and the superbrick partition B2 of a graph G. We
have def(G) = defG(B1) = defG(B2) = 1.

Lemma 3.2. [5] Let G = (V, E) be a multigraph. Then the vertex sets of the bricks
(resp. superbricks) of G partition V .

The term brick partition (resp. superbrick partition) of G refers to the partition of
V given by the vertex sets of the bricks (resp. superbricks) of G, see Figure 1. We
shall frequently use the fact that the brick and superbrick partitions of G are both
tight. This follows from the next lemma.

Lemma 3.3. [5] Let G = (V, E) be a multigraph and P be a tight partition of V .
(a) If P is chosen so that |P| is as small as possible then P is the brick partition of
G.
(b) If P is chosen so that |P| is as large as possible then P is the superbrick partition
of G.

4 Body-and-Pin Realizations of Graphs as Bar-

and-Joint Frameworks

Let G = (V, P ) be a multigraph. For v ∈ V let EG(v) be the set of all edges of G
incident to v. The body-and-pin graph of G is the graph G∗ with V (G∗) = V ∪P and

E(G∗) = {vp : v ∈ V and p ∈ EG(v)} ∪ {p1p2 : v ∈ V and p1, p2 ∈ EG(v)}.

See Figure 2.
We first show that def(G) can be used to obtain an upper bound on r(G∗).

Lemma 4.1. Let G = (V, P ) be a multigraph with no isolated vertices. Then r(G∗) ≤
2(|V |+ |P |)− 3− def(G).

Proof: Since |V (G∗)| = |V |+ |P |, we have r(G∗) ≤ 2(|V |+ |P |)− 3 by Lemma 2.1.
Thus we may assume that def(G) ≥ 1. Let Q = {Q1, Q2, ..., Qt} be a tight partition
of V . Since def(G) ≥ 1, we must have t ≥ 2.

For v ∈ V let B∗(v) = {v}∪EG(v) ⊂ V (G∗) and let Xi = ∪v∈Qi
B∗(v), for 1 ≤ i ≤ t.

Then every edge of G∗ is induced by some Xi, and since G has no isolated vertices,
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Section 4. Body-and-Pin Realizations of Graphs as Bar-and-Joint Frameworks 9

we have |Xi| ≥ 2, for 1 ≤ i ≤ t. Furthermore,
∑t

i=1 |Xi| = |V | + |P | + eG(Q). Now
we can use Lemma 2.1 to deduce that

r(G∗) ≤
t∑

i=1

(2|Xi| − 3) = 2(|V |+ |P |) + 2eG(Q)− 3t

= 2(|V |+ |P |)− 3− def(G).

•

We shall see later, in Corollary 6.12, that equality holds in Lemma 4.1. (This could
also be proved directly using the characterization of the rank function of the rigidity
matroid of a graph given by Lovász and Yemini [9].)

Let G = (V, P ) be a multigraph and G∗ be the body-and-pin graph of G. Given
a map q : V (G∗) → R2, we say that the bar-and-joint framework (G∗, q) is a body-
and-pin realization of G if q acts injectively on {v} ∪ EG(v) for all v ∈ V and the
subframework, Bv, of (G∗, q) induced by {v} ∪ EG(v) is infinitesimally rigid. The
realization (G∗, q) is said to be pin-collinear if the points q(p), p ∈ EG(v), are collinear
for each v ∈ V . In this case, the line through q(p), p ∈ EG(v), is unique when
dG(v) ≥ 2, and we denote it by L(G∗,q)(v). We extend this notation for vertices v ∈ V
with dG(v) = 1, say EG(v) = {p}, by putting L(G∗,q)(v) equal to the line through q(p)
which is orthogonal to the line containing q(v), q(p). We refer to the lines L(G∗,q)(v),
v ∈ V , as the pin-lines of (G∗, q). Note that the infinitesimal rigidity of Bv implies
that q(v) must not lie on L(G∗,q)(v) for each v ∈ V . The pin-collinear body-and-pin
realization (G∗, q) of G is said to be non-degenerate if L(G∗,q)(u) 6= L(G∗,q)(v) for all
uv ∈ P . Note that if G has a non-degenerate pin-collinear body-and-pin realization
(G∗, q) then G must be a graph, since if u, v ∈ V are joined by two or more edges in
G then we must necessarily have L(G∗,q)(u) = L(G∗,q)(v).

Lemma 4.2. Let G = (V, E) be a graph and (G∗, q1) be a pin-collinear body-and-
pin realization of G. Then there exists a non-degenerate pin-collinear body-and-pin
realization (G∗, q2) of G such that r(G∗, q2) ≥ r(G∗, q1).

Proof: Suppose L(G∗,q1)(u) = L(G∗,q1)(v) for some uv ∈ E. If dG(u) = 1 then we
may move q1(u) by Lemma 2.2(b) so that the line through q1(u), q1(uv) is no longer
perpendicular to L(G∗,q1)(v). Thus we may suppose that EG(u) = {uv, uv1, . . . , uvt}
for some t ≥ 1. By Lemma 2.2(b), there exists a neighborhood Si around each point
q1(uvi), i ∈ {1, 2, . . . , t}, such that r(G∗, q1) does not decrease if we move q1(uvi)
within Si. Thus we may modify (G∗, q1) by moving each point q1(uvi) slightly, in
such a way that it continues to lie on L(G∗,q1)(vi) and belong to Si, and also such that
q1(uv), q1(uv1), . . . , q1(uvt) all lie on a line L0 which is not parallel to L(G∗,q1)(v). (We
may imagine L0 is obtained by a small rotation of L(G∗,q1)(u) about the point q1(uv).)
Repeating this process for all such pairs of pin-lines we obtain a non-degenerate
pin-collinear body-and-pin realization (G∗, q2) of G such that r(G∗, q2) ≥ r(G∗, q1). •
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Section 5. Body-and-Pin Frameworks 10

Figure 2: A non-degenerate pin-collinear body-and-pin realization (G∗, q) of the graph
G = (V, P ) from Figure 1. White (resp. black) vertices of G∗ correspond to vertices
(resp. edges) of G. We have r(G∗) = r(G∗, q) = 2(|V | + |P |) − 3 − def(G). Since
def(G) = 1, (G∗, q) has exactly four degrees of freedom.

5 Body-and-Pin Frameworks

Let G = (V, E) be a multigraph and (G∗, q) be a body-and-pin realization of G as a
bar-and-joint framework. Since, for each v ∈ V , the vertices in {v} ∪ EG(v) induce
an infinitesimally rigid subframework of (G∗, q), it is not difficult to see that r(G∗, q)
will be uniquely determined by the position of the points q(e), e ∈ E. That is to
say r(G∗, q) is independent of the position of the points q(v), v ∈ V , as long as each
q(v) is chosen so that the points q(x), x ∈ {v} ∪ EG(v) are not collinear whenever
dG(v) ≥ 2 holds. This observation leads us to the following definition.

A body-and-pin framework (G, q) is a multigraph G = (V, E), together with a map
q : E → R2. Let q(e) = (q1(e), q2(e)) for each e ∈ E. We define an infinitesimal motion
of the body-and-pin framework (G, q) as a map S : V → R3 satisfying the constraints
that, for all e = uv ∈ E, S(u) − S(v) ∈ 〈P (e, q)〉, where P (e, q) = (q1(e),−q2(e), 1).
An infinitesimal motion S is trivial if S(u) = S(v) for all u, v ∈ V . The framework
(G, q) is infinitesimally rigid if all its infinitesimal motions are trivial. Given a body-
and-pin realization of a multigraph G = (V, E) as a bar-and-joint framework (G∗, q),
we may define the body-and-pin framework associated to (G∗, q) to be the body-and-
pin framework (G, q̂) where q̂ is the restriction of q to E. We shall see in Lemma
5.1 below that there is a natural correspondence between the infinitesimal motions of
(G∗, q) and (G, q̂).

We first show that the set of infinitesimal motions of a body-and-pin framework
(G, q) is the null space of a matrix. For each e ∈ E, let Q(e, q) = (1, 0,−q1(e)) and
R(e, q) = (0, 1, q2(e)). Then {Q(e, q), R(e, q)} is a basis for the orthogonal complement
of 〈P (e, q)〉 in R3. Thus the constraint that S(u) − S(v) ∈ 〈P (e, q)〉 for e = uv ∈ E
is equivalent to the simultaneous constraints (S(u)− S(v)) ·Q(e, q) = 0 and (S(u)−
S(v)) · R(e, q) = 0. Combining these constraints for each edge e ∈ E, we obtain a
system of 2|E| equations in the unknowns S(v), v ∈ V . The matrix of coefficients
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Section 5. Body-and-Pin Frameworks 11

of this system is the 2|E| × 3|V | matrix RBP (G, q) with pairs of consecutive rows
indexed by E and triples of consecutive columns indexed by V . The entries in the
rows corresponding to an edge e ∈ E and columns corresponding to a vertex u ∈ V

are given by the 2 × 3 matrix Xe,u where Xe,u =

(
Q(e, q)
R(e, q)

)
if e = uv is incident

to u and u < v in the ordering on V induced by the order of the column labels,

Xe,u = −
(

Q(e, q)
R(e, q)

)
if e = uv is incident to u and u > v, and Xe,u is the zero matrix

if e is not incident to u. We refer to RBP (G, q) as the body-and-pin rigidity matrix of
(G, q). By the above, a map S : V → R3 is an infinitesimal motion of (G, q) if and
only if S belongs to the null space, ZBP (G, q) of RBP (G, q). Hence the infinitesimal
motions of (G, q) form a vector space. Since every body-and-pin framework (G, q)
has three linearly independent (trivial) infinitesimal motions, obtained for example
by putting S(v) = x for all v ∈ V , for each x ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, the
dimension of ZBP (G, q) is at least three, and (G, q) is infinitesimally rigid if and only
if ZBP (G, q) has dimension equal to three. Equivalently, rank RBP (G, q) ≤ 3|V | − 3
and (G, q) is infinitesimally rigid if and only if rank RBP (G, q) = 3|V | − 3.

The matrix RBP (G, q) defines a 2-polymatroid RBP (G, q) on the groundset E, in
which the rank of a subset E ′ ⊆ E is given by the rank of the submatrix of RBP (G, q)
indexed by E ′ and V . We refer to RBP (G, q) as the body-and-pin polymatroid of (G, q)
and denote its rank by rBP (G, q).

The proof of the next lemma is similar to a related result for 3-dimensional frame-
works due to Whiteley [23].

Lemma 5.1. Let G = (V, E) be a multigraph, (G∗, q) be a body-and-pin realization of
G as a bar-and-joint framework, and (G, q̂) be the body-and-pin framework associated
to (G∗, q). Then the null spaces of R(G∗, q) and RBP (G, q̂) are isomorphic vector
spaces.

Proof: Let Z(G∗, q) and ZBP (G, q̂) be the null spaces of R(G∗, q) and RBP (G, q̂),
respectively. Choose σ ∈ Z(G∗, q). For v ∈ V , let G∗

v be the subgraph of G∗ induced
by {v}∪EG(v), qv the restriction of q to V (G∗

v), and σv the restriction of σ to V (G∗
v).

Then the bar-and-joint framework (G∗
v, qv) is infinitesimally rigid and σv ∈ Z(G∗

v, qv).
By Lemma 2.9(b), the map f : R3 → Z(G∗

v, qv) defined by f(S) = fS ◦ qv is an
isomorphism. Thus we may define Sσ : V → R3 by choosing Sσ(v) to be the unique
vector in R3 which satisfies f(Sσ(v)) = σv.

We next show that Sσ ∈ ZBP (G, q̂). It suffices to verify that, for each e = uv ∈ E,
we have Sσ(u)− Sσ(v) ∈ 〈P (e, q̂)〉. Since e ∈ V (G∗

u) ∩ V (G∗
v) we have σu(e) = σv(e).

Hence fSσ(u)(q(e)) = fSσ(v)(q(e)). By Lemma 2.8(a), fSσ(u)−Sσ(v)(q(e)) = 0. Now
Lemma 2.8(b) and the fact that q̂(e) = q(e), imply that Sσ(u) − Sσ(v) ∈ 〈P (e, q̂)〉.
Thus Sσ ∈ ZBP (G, q̂).

We may now define h : Z(G∗, q) → ZBP (G, q̂) by putting h(σ) = Sσ for all
σ ∈ Z(G∗, q). It is easy to check that h is a bijective linear map. Hence Z(G∗, q) and
ZBP (G, q̂) are isomorphic. •
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Section 5. Body-and-Pin Frameworks 12

We say that a body-and-pin framework (G, q) is generic if the (multi)set containing
the coordinates of the vectors q(e), e ∈ E, is algebraically independent over Q. Since
the entries in RBP (G, q) are polynomial functions of the coordinates of the vectors
q(e), e ∈ E, with rational coefficients, all generic body-and-pin frameworks for G give
rise to the same 2-polymatroid. We refer to this as the body-and-pin polymatroid of
G. We denote it by RBP (G), and its rank by rBP (G). We have rBP (G, q) ≤ rBP (G)
for all body-and-pin frameworks (G, q), with equality whenever (G, q) is generic.

Now suppose that (G∗, q) is a non-degenerate pin-collinear body-and-pin realization
of a graph G as a bar-and-joint framework. The fact that, for each uv ∈ E, the point
q(uv) is uniquely determined as the point of intersection of L(G∗,q)(u) and L(G∗,q)(v)
indicates that r(G∗, q) will be uniquely determined by the pin-lines of (G∗, q). We
formalize this observation by defining yet another kind of framework, and use it to
show that r(G∗, q) is maximized when its pin-lines are ‘generic’.

A rod-and-pin framework (G, p) is a graph G = (V, E), together with a map p :
V → R2 such that p(u) and p(v) are linearly independent for all uv ∈ E. Let
p(v) = (p1(v), p2(v)) for each v ∈ V . We define the pin-line of v to be Lv = {(x, y) ∈
R2 : p1(v)x+p2(v)y = 1}. The map p induces a map p̃ : E → R2 by p̃(uv) = Lu∩Lv

for all uv ∈ E. Thus

p̃(uv) = d(u, v)−1(p2(v)− p2(u), p1(u)− p1(v)),

where

d(u, v) = det

(
p1(u) p2(u)
p1(v) p2(v)

)
.

The map p̃ gives rise to a body-and-pin framework (G, p̃) which we refer to as the body-
and-pin framework associated to (G, p).5 We define the rod-and-pin rigidity matrix
RRP (G, p) and 2-polymatroid RRP (G, p) of (G, p) by putting RRP (G, p) = RBP (G, p̃)
and RRP (G, p) = RBP (G, p̃). Let rRP (G, p) = rank RRP (G, p).

We say that a rod-and-pin framework (G, p) is generic if the (multi)set containing
the coordinates of the vectors p(v), v ∈ V , is algebraically independent over Q. Since
the entries in RRP (G, p) are polynomial functions of the coordinates of the vectors
p(v), v ∈ V , with rational coefficients, all generic rod-and-pin frameworks for G give
rise to the same 2-polymatroid. We refer to this as the rod-and-pin polymatroid of
G. We denote it by RRP (G), and its rank by rRP (G). We have rRP (G, p) ≤ rRP (G)
for all rod-and-pin frameworks (G, p), with equality whenever (G, p) is generic. Note
also that even if (G, p) is a generic rod-and-pin framework, its associated body-and-
pin framework (G, p̃) will not in general be generic. Thus rRP (G) = rRP (G, p) =
rBP (G, p̃) ≤ rBP (G). We will see later that, by Theorems 7.1 and 7.2, equality must
hold.

Let (G∗, q) be a non-degenerate pin-collinear body-and-pin realization of a graph
G = (V, E) in which no pin-line passes through the origin. Then the equation of a pin-
line Lv can be uniquely written as p1(v)x + p2(v)y = 1 for each v ∈ V . We define the

5For each v ∈ V , the points p̃(e), e ∈ E(v), all lie on the line Lv. Thus (G, p̃) is a 2-dimensional
body-and-hinge framework in which the 0-dimensional hinges, i.e. pins, incident with each body all
lie on a 1-dimensional hyperplane, i.e. line. We may imagine each body as a rigid segement of this
pin-line, i.e. rod, containing the pins it is incident with, see Figure 3.
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Figure 3: The rod-and-pin framework associated to the non-degenerate pin-collinear
body-and-pin realization (G∗, q) of Figure 2.

rod-and-pin framework associated to (G∗, q) to be the rod-and-pin framework (G, p)
where p : V → R2 by p(v) = (p1(v), p2(v)) for all v ∈ V , see Figure 3.

We say (G∗, q) is pin-line-generic if (G∗, q) is non-degenerate and its associated
rod-and-pin framework is generic. It is easy to see that every graph G = (V, E) has
a pin-line-generic pin-collinear body-and-pin realization (G∗, q): we first choose an
algebraically independent set {p1(v), p2(v) : v ∈ V } to define the pin-lines Lv, then
define q : V → R2 by putting q(uv) equal to the point of intersection of Lu and Lv for
each uv ∈ E, and then choosing the points q(v), v ∈ V , such that the subframework
induced by {v} ∪ E(v) is infinitesimally rigid.

Our final result of this section verifies the intuitively obvious fact that the rank of
a pin-collinear body-and-pin realization of a graph as a bar-and-joint framework will
be maximized when it is pin-line-generic.

Lemma 5.2. Let G be a graph with no isolated vertices and (G∗, q0) be a pin-line-
generic pin-collinear body-and-pin realization of G. Then r(G∗, q0) = max{r(G∗, q)}
over all pin-collinear body-and-pin realizations (G∗, q) of G.

Proof: Let (G∗, q1) be a pin-collinear body-and-pin realization of G. By
Lemma 4.2 there exists a non-degenerate pin-collinear body-and-pin realiza-
tion (G∗, q2) of G such that r(G∗, q2) ≥ r(G∗, q1). Let (G, p0) and (G, p2) be
the rod-and-pin frameworks associated to (G∗, q0) and (G∗, q2), respectively.
Then (G, p0) is generic so rank RRP (G, p0) ≥ rank RRP (G, p2). Let (G, q̂0)
and (G, q̂2) be the body-and-pin frameworks associated to (G∗, q0) and (G∗, q2),
respectively. Then RRP (G, p0) = RBP (G, q̂0) and RRP (G, p2) = RBP (G, q̂2).
Hence dim ZBP (G, q̂0) ≤ dim ZBP (G, q̂2). Lemma 5.1 now implies that
dim Z(G∗, q0) ≤ dim Z(G∗, q2) and hence r(G∗, q0) ≥ r(G∗, q2) ≥ r(G∗, q1).
•
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6 Maximum Rank of Pin-Collinear Body-and-Pin

Realizations

Our first result determines the maximum rank of a pin-collinear body-and-pin real-
ization of a graph as a bar-and-joint framework. It will be extended to multigraphs
at the end of this section.

Theorem 6.1. Let G = (V, P ) be a graph with no isolated vertices. Then the maxi-
mum rank of a pin-collinear body-and-pin realization of G as a bar-and-joint frame-
work is 2(|V |+ |P |)− 3− def(G).

Proof: By Lemmas 2.2(a) and 4.1 it will suffice to show that there exists a pin-
collinear body-and-pin realization (G∗, q) of G such that r(G∗, q) = 2(|V |+ |P |)− 3−
def(G). We proceed by contradiction. Suppose there exists a graph G = (V, P ) such
that, for all pin-collinear body-and-pin realizations (G∗, q) of G, we have r(G∗, q) <
2(|V |+ |P |)−3−def(G). We may suppose that G has been chosen such that |V |+ |E|
is as small as possible. It can easily be seen that G has at least four vertices. We
denote the number of vertices and edges of G by n and m, respectively. We will extend
this notation using subscripts, so that for example, the number of vertices and edges
in a graph G1 will be denoted by n1 and m1, respectively. We will frequently use the
fact that if n1 < n then, by induction and Lemma 5.2, there exists a pin-line-generic
pin-collinear body-and-pin realization (G∗

1, q) of G1 with r(G∗
1, q) = 2(n1 + m1)− 3−

def(G1). Since (G∗
1, q) is pin-line-generic, no two pin-lines of (G∗

1, q) are parallel and
every point q(p), p ∈ P1, belongs to exactly two pin-lines in (G∗

1, q).

Claim 6.2. G is connected.

Proof: Suppose the claim is false. Then there exist disjoint subgraphs G1, G2 of G
such that G = G1 ∪G2. Clearly def(G) = def(G1) + def(G2) + 3. By induction, there
exists a pin-collinear body-and-pin realization (G∗

i , qi) of Gi such that r(G∗
i , qi) =

2(ni +mi)− 3− def(Gi), for each i ∈ {1, 2}. Taking the union of (G∗
1, q1) and (G∗

2, q2)
we obtain a pin-collinear body-and-pin realization (G∗, q) of G. By Lemma 2.6 satisfies

r(G∗, q) = r(G∗
1, q1) + r(G∗

2, q2)

= 2(n1 + m1)− 3− def(G1) + 2(n2 + m2)− 3− def(G2)

= 2(n + m)− 3− def(G).

This contradicts the choice of G. •

Claim 6.3. For each v ∈ V , dG(v) ≥ 2.

Proof: Suppose there exists v1 ∈ V with dG(v1) = 1. Let p1 = u1v1 be the edge of G
incident to v1 and G1 = G−v1. Let B1 be a tight partition of G1. Put B = {v1} and let
Q = B1 ∪ {B}. Then def(G) ≥ defG(Q) = defG1(B1) + 1 = def(G1) + 1. By induction
and Lemma 5.2, there exists a pin-line-generic pin-collinear body-and-pin realization
(G∗

1, q1) of G1 such that r(G∗
1, q1) = 2(n1 + m1)− 3− def(G1). Choose p2 ∈ EG1(u1).
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Let Q1 be a point on L(G∗
1,q1)(u1) such that Q1 6= q1(p) for all p ∈ EG1(u1). Choose

another point Q2 6= Q1. We may now extend (G∗
1, q1) to a pin-collinear body-and-

pin realization (G∗, q) of G by putting q(p1) = Q1 and q(v1) = Q2. Since G∗ can
be obtained from G∗

1 by performing a 0-extension (adding the vertex p1 and edges
p1u1, p1p2), then adding the vertex v1 and edge v1p1, and finally adding the remaining
edges of E(G∗), Lemma 2.3 implies that

r(G∗, q) ≥ r(G∗
1, q1) + 3 = 2(n1 + m1)− 3− def(G1) + 3 ≥ 2(n + m)− 3− def(G).

This contradicts the choice of G. •

Claim 6.4. G is 2-edge-connected.

Proof: Suppose the claim is false. Then there exists p0 ∈ P and disjoint subgraphs
G1, G2 of G0 = G− p0 such that G0 = G1 ∪G2. By induction and Lemma 5.2, there
exists a pin-line-generic pin-collinear body-and-pin realization (G∗

0, q0) of G0 which
satisfies r(G∗

0, q0) = 2(n0 +m0)−3−def(G0). Clearly def(G) = def(G0)−2. Let ui be
the vertex of Gi incident to p0, for each i ∈ {1, 2} and Q be the point of intersection
of the lines L(G∗

0,q0)(u1) and L(G∗
0,q0)(u2). We may extend (G∗

0, q0) to a pin-collinear
body-and-pin realization (G∗, q) of G by putting q(p0) = Q. Let Hi be the subgraph
of G∗ induced by V (G∗

i )∪ {p0}, qi the restriction of q to V (G∗
i ) and q′i the restriction

of q to V (Hi), for i ∈ {1, 2}. Lemmas 2.3 and 2.7 imply that

r(G∗, q) = r(H1, q
′
1) + r(H2, q

′
2) ≥ r(G∗

1, q1) + 2 + r(G∗
2, q2) + 2 ≥ r(G∗

0, q0) + 4

= 2(n0 + m0)− 3− def(G0) + 4 = 2(n + m)− 3− def(G).

This contradicts the choice of G. •

Claim 6.5. For each v ∈ V , dG(v) ≥ 3.

Proof: Suppose there exists v1 ∈ V with dG(v1) = 2. Let p1 = u1v1 and p2 = u2v1 be
the edges of G incident to v1 and G1 = G− v1. Let B1 be the brick partition of G1.

We first consider the case when u1 and u2 both belong to the same brick B1 of G1.
Let B = B1 + v1 and Q = B1 − {B1} ∪ {B}. Then

def(G) ≥ defG(Q) = defG1(B1) = def(G1).

By induction and Lemma 5.2, there exists a pin-line-generic pin-collinear body-and-
pin realization (G∗

1, q1) of G1 such that

r(G∗
1, q1) = 2(n1 + m1)− 3− def(G1) ≥ 2(n + m)− 9− def(G).

For i ∈ {1, 2}, let Qi be a point on L(G∗
1,q1)(ui) such that Qi 6= q1(p), p ∈ EG1(ui),

and Q1 6= Q2. Choose a point Q which does not lie on the line through Q1, Q2.
We may now extend (G∗

1, q1) to a pin-collinear body-and-pin realization (G∗, q) of
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G by putting q(pi) = Qi for i ∈ {1, 2} and q(v1) = Q. Lemma 2.3 implies that
r(G∗, q) ≥ r(G∗

1, q1) + 6 ≥ 2(n + m)− 3− def(G). This contradicts the choice of G.
Thus u1 and u2 must belong to distinct bricks of B1. Let B = {v1} and Q =

B1 ∪ {B}. Then

def(G) ≥ defG(Q) = defG1(B1)− 1 = def(G1)− 1.

Consider the following three cases.

Case 1. u1u2 6∈ E.

Let p0 = u1u2 and G2 = G1 + p0. Since u1, u2 belong to distinct bricks of G1,
def(G2) ≤ def(G1) − 1. By induction and Lemma 5.2, there exists a pin-line-generic
pin-collinear body-and-pin realization (G∗

2, q2) of G2 such that

r(G∗
2, q2) = 2(n2 + m2)− 3− def(G2) ≥ 2(n1 + m1)− 3− def(G1) + 3.

Let q1 be the restriction of q2 to V (G∗
1). Then (G∗

1, q1) is a pin-line-generic pin-
collinear body-and-pin realization of G1 so, again by induction and Lemma 5.2,
r(G∗

1, q1) = 2(n1 + m1) − 3 − def(G1). Thus r(G∗
1 + p0u1 + p0u2 + p0p4, q2) =

2(n1 + m1) − 3 − def(G1) + 3 for some p4 ∈ EG1(u1) ∪ EG1(u2). By symmetry we
may assume that p4 ∈ EG1(u1). Let H2 = G∗

1 + p0u1 + p0u2 + p0p4. By Lemma 2.2,
r(H2, q2) does not decrease if we move q2(p0) in a small enough neighbourhood to a
new position Q1, in such a way that it remains on L(G∗

2,q2)(u1), but no longer lies on
L(G∗

2,q2)(u2), and such that the line L0 through Q1 and q2(u2) intersects L(G∗
2,q2)(u2) at

a point Q2 6= q2(p) for all p ∈ EG2(u2). Choose a point Q0 such that Q0, Q1, Q2 are
not collinear. Define q : V (G∗) → R2 by putting q(x) = q2(x) for x ∈ V (G∗

2) − p0,
q(p1) = Q1, q(p2) = Q2, and q(v1) = Q0. Then (G∗, q) is a pin-collinear body-and-
pin realization of G. Since G∗ can be obtained from H2 by first relabelling p0 as
p1, then performing a 1-extension (deleting p1u2 and adding p2, p2p1, p2u2, p2p3 for
some p3 ∈ EG1(u2)), then performing a 0-extension (adding v1, v1p1, v1p2), and finally
adding the remaining edges of E(G∗), Lemmas 2.3 and 2.4 imply that

r(G∗, q) ≥ r(H2, q2) + 4 ≥ 2(n1 + m1)− 3− def(G1) + 7 ≥ 2(n + m)− 3− def(G).

This contradicts the choice of G.

Case 2. u1u2 ∈ E and dG(ui) ≥ 3 for all i ∈ {1, 2}.
Let p3 = u1u2, EG1(u1) = {p3, p4, . . . , pj} and EG1(u2) = {p3, pj+1, pj+2, . . . , pk}. Since
dG(u1), dG(u2) ≥ 3, j ≥ 4 and k ≥ 5. Since u1, u2 belong to distinct bricks of G1 and
u1u2 ∈ E, no vertex of G1 is adjacent to both u1, and u2. Thus the (multi)graph G3

obtained from G1 by contracting the edge p3 onto a new vertex z contains no parallel
edges. Furthermore, the fact that u1, u2 belong to distinct bricks of G1 also implies
that def(G3) ≤ def(G1) − 1. Since dG(v1) = 2 and G is a 2-edge-connected graph
on at least four vertices, G3 contains no isolated vertices. By induction and Lemma
5.2, there exists a pin-line-generic pin-collinear body-and-pin realization (G∗

3, q3) of
G3 such that

r(G∗
3, q3) = 2(n3 + m3)− 3− def(G3).
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Section 6. Maximum Rank of Pin-Collinear Body-and-Pin Realizations 17

Each vertex pi, 4 ≤ i ≤ k, lies on exactly two pin-lines of (G∗
3, q3). Let Li be the pin

line of (G∗
3, q3) which contains pi and is distinct from L(G∗

3,q3)(z).
Let S = {pspt : 4 ≤ s ≤ j, j + 1 ≤ t ≤ k, (s, t) 6= (4, j + 1)}, H0 = G∗

3 − S,
F be the subgraph of H0 induced by {z} ∪ {pi : 4 ≤ i ≤ k}, and q0 be the
restriction of q3 to F . Since (F, q0) is infinitesimally rigid, r(H0, q3) = r(G∗

3, q3).
Let H1 be the graph obtained from H0 − p4pj+1 by adding two new vertices, p1, p3,
and edges p1p3, p1p4, p1z, p3pj+1, p3z. Choose two distinct points Q1, Q3 on L(G∗

3,q3)(z)
such that Qi 6= q3(p) for all i ∈ {1, 3} and p ∈ EG3(z), and define q4 : V (H1) → R2

by q4(x) = q3(x) for x ∈ V (G∗
3), q4(p1) = Q1 and q4(p3) = Q3. Since (H1, q4)

can be obtained from (H0, q3) by applying two 1-extensions, Lemma 2.4 implies that
r(H1, q4) = r(H0, q3) + 4 = r(G∗

3, q3) + 4.
Let H2 be the graph obtained from H1−z by adding two new vertices, u1, u2, edges

u1pi for i ∈ {1, 3, 4, . . . , j}, and edges u2pi for i ∈ {1, 3, j + 1, j + 2, , . . . , k}. Define
q5 : V (H2) → R2 by q5(x) = q4(x) for x ∈ V (H1) − z, and q5(u1) = q5(u2) = q4(z).
Since (H2, q5) can be obtained from (H1, q4) by a vertex-split, Lemma 2.5 implies that
r(H2, q5) ≥ r(H1, q4) + 2. By Lemma 2.2, there exists a neighborhood Si around each
point q5(pi), i ∈ {1, 4, . . . , j}, such that r(H2, q5) does not decrease if we move q5(pi)
within Si. Thus we may modify (H2, q5) by moving each point q5(pi), i ∈ {1, 4, . . . , j},
slightly, in such a way that it continues to lie on Li and belong to Si, and also such
that p1, p3, p4, . . . , pj all lie on a line L0 which is not parallel to L(G∗

3,q3)(z). (We may
imagine L0 is obtained by a small rotation of L(G∗

3,q3)(z) about the point q5(p3).)
Let L1 be the line through q5(p1) and q5(u2). By using Lemma 2.2(b) to move q5(u2)

if necessary, we may suppose that Q2, the point of intersection of L1 and L(G∗
3,q3)(z),

is distinct from q5(p) for all p ∈ EG1(u2). Choose a point Q0 which does not lie on
L1. Define q : V (G∗) → R2 by q(x) = q5(x) for x ∈ V (G∗) − {p2, v1}, q(p2) = Q2

and q(v1) = Q0. Then (G∗, q) is a pin-collinear body-and-pin realization of G. Since
(G∗, q) can be obtained from (H2, q5) by a 1-extension, (which deletes u2p1, and adds
a new vertex p2 and edges p2p1, u2p2, p2p3), a 0-extension (which adds v1, v1p1, v1p2)
and by adding other edges, we have

r(G∗, q) ≥ r(H2, q5) + 4 ≥ r(H1, q4) + 6 = r(G∗
3, q3) + 10

= 2(n3 + m3)− 3− def(G3) + 10 ≥ 2(n + m)− 3− def(G),

since def(G) ≥ def(G1)− 1 ≥ def(G3). This contradicts the choice of G.

Case 3. u1u2 ∈ E and dG(ui) = 2 for some i ∈ {1, 2}.
Let p3 = u1u2. Suppose, without loss of generality, that EG(u2) = {p2, p3}. Let
G4 = G − {v1, u2}. Note that G is obtained from G4 by attaching a complete graph
on three vertices (which is strong) at vertex u1, and hence def(G4) = def(G). By
Claim 6.4 we have |EG4(u1)| ≥ 2.

By induction and Lemma 5.2, there exists a pin-line-generic pin-collinear body-and-
pin realization (G∗

4, q6) of G4 such that

r(G∗
4, q6) = 2(n4 + m4)− 3− def(G4).

Let p4 ∈ EG4(u1). Let H4 be the graph obtained from G∗
4 by adding new ver-

tices p1, p2, p3, v1, u2 and edges p1u1, p1p4, p3u1, p3p4, p2p1, p2p3, v1p1, v1p2, u2p3, u2p2.
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Choose distinct points Q1, Q3 on L(G∗
4,q6)(u1) such that Qi 6= q6(p) for all i ∈ {1, 3}

and p ∈ EG4(u1). Choose a point Q2 which is not on L(G∗
4,q6)(u1), and choose

points Q5, Q6 such that Q5 is not on the line through Q1, Q2, and Q6 is not on
the line through Q3, Q2. Define q7 : V (H4) → R2 by q7(x) = q6(x) for x ∈ V (G∗

4),
q7(p1) = Q1, q7(p3) = Q3, q7(p2) = Q2, q7(v1) = Q5, and q7(u2) = Q6. Since
(H4, q7) can be obtained from (G∗

4, q6) by five 0-extensions, Lemma 2.3 implies that
r(H4, q7) = r(G∗

4, q6) + 10. Since def(G4) = def(G) and |V (G∗)| = |V (G∗
4)| + 5, we

have
r(G∗, q7) ≥ r(H4, q7) = r(G∗

4, q6) + 10 = 2(n + m)− 3− def(G).

This contradicts the choice of G. •

Claim 6.6. For each p ∈ P , def(G− p) ≥ def(G) + 1.

Proof: Clearly def(G− p) ≥ def(G). Suppose def(G− p1) = def(G) for some p1 ∈ P .
Let p1 = v1v2 and G1 = G− p1. By induction and Lemma 5.2, there exists a pin-line-
generic pin-collinear body-and-pin realization (G∗

1, q1) of G1 such that r(G∗
1, q1) =

2(n1 + m1) − 3 − def(G1). Let Q be the point of intersection of L(G∗
1,q1)(v1) and

L(G∗
1,q1)(v2). We may extend (G∗

1, q1) to a pin-collinear body-and-pin realization (G∗, q)
of G by putting q(p1) = Q. Lemma 2.3 implies that

r(G∗, q) ≥ r(G∗
1, q1) + 2 = 2(n1 + m1)− 3− def(G1) + 2 = 2(n + m)− 3− def(G).

This contradicts the choice of G. •

Claim 6.7. G is not 3-edge-connected.

Proof: Choose p0 ∈ P and let G0 = G−p0. By Claim 6.6, def(G0) ≥ def(G)+1 ≥ 1.
Thus G0 is not a brick. Let B0 be a tight partition of G0. We have
def(G0) = defG0(B0) = 3(|B0| − 1) − 2eG0(B0) ≥ 1. Thus 2eG0(B0) ≤ 3|B0| − 4 and
2eG(B0) ≤ 3|B0| − 2. Hence, there exists B ∈ B0 such that dG(B) ≤ 2. •

Claim 6.8. If S = {p1, p2} is a 2-edge-cut of G then def(G− p1) = def(G) + 2.

Proof: Let p1 = uv and G1 = G − p1. It follows from the definition of def(G) and
Claim 6.6 that def(G)+1 ≤ def(G1) ≤ def(G)+2. Suppose that def(G1) = def(G)+1.
By induction and Lemma 5.2, there exists a pin-line-generic pin-collinear body-and-
pin realization (G∗

1, q1) of G1 such that r(G∗
1, q1) = 2(n1 + m1)− 3− def(G1). Let Q

be the point of intersection of L(G∗
1,q1)(u) and L(G∗

1,q1)(v). We may assume that Q does
not lie on the line through q1(p2) and q1(v), since if it does, then we can use Lemma
2.2(b) to move q1(v) in a small neighbourhood without decreasing r(G∗

1, q1). Choose
p3 ∈ EG1(u) and let H1 be the graph obtained from G∗

1 by adding the vertex p1 and
edges p1u, p1p3. We may extend (G∗

1, q1) to a bar-and-joint realization (H1, q) of H1

by putting q(p1) = Q. Lemma 2.3 implies that r(H1, q) = r(G∗
1, q1) + 2. Let H2 be

obtained from H1 by adding the edge p1v. Since Q is not on the line through q1(p2)
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and q1(v), the infinitesimal motion of (H1, q) which keeps both p2 and the component
of H1 − p2 containing u fixed, and rotates the other component about p2, is not an
infinitesimal motion of (H2, q) (since it changes ||q(p1) − q(v)||). Thus (H2, q) has
fewer degrees of freedom than (H1, q) and r(H2, q) = r(H1, q) + 1. Hence (G∗, q) is a
pin-collinear body-and-pin realization of G for which

r(G∗, q) ≥ r(H2, q) ≥ r(G∗
1, q1) + 3

= 2(n1 + m1)− 3− def(G1) + 3 = 2(n + m)− 3− def(G).

This contradicts the choice of G. •

Claim 6.9. G is not a superbrick.

Proof: Suppose G is a superbrick. Then 2eG(P) ≥ 3(|P| − 1) + 1 for all partitions
P of G with |P| ≥ 2. Hence def(G− p) ≤ def(G) + 1 for all p ∈ P . This contradicts
Claims 6.7, 6.8. •

We now continue the proof of the theorem. Let B be the superbrick partition of
G. By Claim 6.9, |B| ≥ 2. Since def(G) = 3(|B| − 1) − 2eG(B) ≥ 0, we may use a
similar argument to that given in the proof of Claim 6.7 to deduce that there exists
a superbrick B1 ∈ B with dG(B1) = 2. By Claim 6.5, we have 2 ≤ |B1| ≤ n− 2. Let
p1 = u1v1 and p2 = u2v2 be the edges in G from B1 to V − B1, where u1, u2 ∈ B1.
Let H1, H2 be the components of G − {p1, p2} where V (H1) = B1. Let G1 be the
graph obtained from H1 by adding two new vertices w0, w1 and edges p3 = u1w0, p4 =
w0w1, p5 = w1u2. Let G2 be the graph obtained from H2 by adding a new vertex w2

and edges p6 = v1w2, p7 = v2w2.

Claim 6.10. (a) G1 is a brick.
(b) def(G) ≥ def(G2).

Proof: (a) Suppose G1 is not a brick. Let B1 be the brick partition of G1. Then
|B1| ≥ 2. Since G[B1] is strong and since strong graphs with at least two vertices
have minimum degree at least two, we must have B1 = {B1, {w0}, {w1}}. But then
def(G1) = defG1(B1) = 0, contradicting the assumption that G1 is not a brick.

(b) Consider the brick partition B2 of G2. Let B2 be the brick of G2 which contains
w2 and Q = B2 − {B2} ∪ {B2 ∪B1}. Then

def(G) ≥ defG(Q) = defG2(B2) = def(G2).

•

It follows from Claims 6.5 and 6.9 that |V (Gi)| < |V (G)| for i ∈ {1, 2}. Thus, by
induction and Lemma 5.2, there exists a pin-line-generic pin-collinear body-and-pin
realization (G∗

i , qi) of Gi such that r(G∗
i , qi) = 2(ni + mi) − 3 − def(Gi), for each

i ∈ {1, 2}. Since r(G∗
2, q2) is preserved by a translation, rotation, and dilation of R2,

we may assume that q1(p3) = q2(p6) and q1(p5) = q2(p7). Define q : V (G∗) → R2
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by putting q(x) = q1(x) for x ∈ V (G∗
1) − {w0, w1, p3, p4, p5}, q(x) = q2(x) for x ∈

V (G∗
2) − {w2, p6, p7}, q(p1) = q1(p3) = q2(p6), and q(p2) = q1(p5) = q2(p7). Then

(G∗, q) is a pin-collinear body-and-pin realization of G.
By Claim 6.10(a), def(G1) = 0. Thus r(G∗

1, q1) = 2(n1 + m1) − 3 and (G∗
1, q1) is

infinitesimally rigid. Hence r(G∗
1 + p3p5, q1) = r(G∗

1, q1). Let F1 = G∗
1 − {w0, w1, p4}

and F2 = G∗
2 − {w2}. For i = 1, 2 let ti be the restriction of qi to V (Fi). Using

Lemma 2.3 we may deduce that r(F1, t1) = 2(n1 + m1)− 3− 6 = r(F1 + p3p5, t1) and
r(F2, t2) = 2(n2 + m2)− 3− def(G2)− 2. Now Lemma 2.7 implies that

r(G∗ + p1p2, q) = r(F1 + p3p5, t1) + r(F2, t2)− 1

= 2(n1 + m1) + 2(n2 + m2)− def(G2)− 15.

Since r(F1, t1) = r(F1 + p3p5, t1) we have r(G∗, q) = r(G∗ + p1p2, q). Since n =
n1 + n2 − 3 and m = m1 + m2 − 3 this gives

r(G∗, q) = 2(n + m)− 3− def(G2) ≥ 2(n + m)− 3− def(G),

by Claim 6.10(b). This contradicts the choice of G and completes the proof of the
theorem. •

We close this section by extending Theorem 6.1 to multigraphs.

Theorem 6.11. Let G = (V, P ) be a multigraph without isolated vertices. Then
there exists a pin-collinear body-and-pin realization (G∗, q) of G such that r(G∗, q) =
2(|V |+ |P |)− 3− def(G).

Proof: Suppose the theorem is false and choose a counterexample G with as few
multiple edges as possible. If G has no multiple edges then the theorem follows from
Theorem 6.1. Hence G has a pair u1, u2 of vertices joined by t ≥ 2 parallel edges.
We may show that G is connected as in the proof of Claim 6.2. If t ≥ 3 then we may
proceed as in the proof of Claim 6.6, since deleting one of the parallel edges does not
increase the deficiency in this case. Thus we may suppose that t = 2 and proceed as
in Case 2 of the proof of Claim 6.5 when both u1 and u2 have a neighbour outside
u1, u2, and as in Case 3 of the proof of Claim 6.5 when one of u1, u2 has its only
neighbour in {u1, u2}. (Note that the graph G1 obtained from G by contracting the
multiple edge u1u2 to a single vertex satisfies def(G1) = def(G).) •

Corollary 6.12. Let G = (V, P ) be a multigraph without isolated vertices. Then
r(G∗) = 2(|V |+ |P |)− 3− def(G).

Proof: This follows immediately from Theorem 6.11 and Lemmas 4.1 and 2.2(a). •

Corollary 6.13. Let G = (V, P ) be a multigraph. Then G has an infinitesimally
rigid pin-collinear body-and-pin realization if and only if G has an infinitesimally
rigid body-and-pin realization.

Proof: This follows by putting def(G) = 0 in Theorem 6.11 and Corollary 6.12. •
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7 The Molecular Conjecture in 2-Dimensional

Space

In this section we use our results on body-and-pin realizations of graphs as bar-and-
joint frameworks to show that the rank functions for the body-and-pin and rod-and-pin
2-polymatroids of a graph are identical. We also deduce that the Molecular Conjecture
holds in 2-dimensional space.

Theorem 7.1. Let G = (V, E) be a graph with no isolated vertices. Then rRP (G) =
3|V | − 3− def(G).

Proof: Let (G∗, q) be a pin-line-generic pin-collinear body-and-pin realiza-
tion of G as a bar-and-joint framework. By Theorem 6.1 and Lemma 5.2,
r(G∗, q) = 2(|V | + |E|) − 3 − def(G) and hence dim Z(G∗, q) = 3 + def(G).
Let (G, p) be the rod-and-pin framework associated to (G∗, q) and (G, q̂)
be the body-and-pin framework associated to (G∗, q). By Lemma 5.1,
dim Z(G∗, q) = dim ZBP (G, q̂). Thus dim ZRP (G, p) = dim ZBP (G, q̂) = 3 + def(G).
Hence rRP (G) = rRP (G, p) = 3|V | − 3− def(G). •

Theorem 7.2. Let G = (V, E) be a multigraph with no isolated vertices.
(a) rBP (G) = 3|V | − 3− def(G).
(b) There exists a body-and-pin framework (G, q) such that rBP (G) = 3|V |−3−def(G)
and, for each v ∈ V , the sets of points {q(e) : e ∈ EG(v)} are collinear.

Proof: We proceed as in the proof of Theorem 7.1. For (a), we choose a generic
body-and-pin realization (G∗, q1) of G as a bar-and-joint framework, and use
Corollary 6.12 rather than Theorem 6.1. For (b), we again choose a pin-line-generic
pin-collinear body-and-pin realization (G∗, q1) of G as a bar-and-joint framework and
consider the body-and-pin framework (G, q̂) associated to (G∗, q). •

Theorems 7.1 and 7.2 imply that, if G is a graph, then its rod-and-pin 2-polymatroid
RRP (G) is identical to its body-and-pin 2-polymatroidRBP (G). Theorems 7.2 and 3.1
also imply the following characterization of infinitesimal rigidity (by taking def(G) =
0), and hence solve the 2-dimensional version of the Molecular Conjecture.

Theorem 7.3. Let G = (V, E) be a multigraph. Then the following statements are
equivalent.
(a) G has a realization as an infinitesimally rigid body-and-hinge framework in R2.
(b) G has a realization as an infinitesimally rigid body-and-hinge framework (G, q) in
R2 with each of the sets of points {q(e) : e ∈ EG(v)}, v ∈ V , collinear.
(c) 2G contains three edge-disjoint spanning trees.

A body-and-pin framework (G, q) is independent if the rows of RBP (G, q) are linearly
independent i.e. rBP (G, q) = 2|E|. We close this section by using Theorems 7.2 and
3.1 to derive a result of Whiteley which characterizes when a graph G can be realized
as an independent ‘pin-collinear’ body-and-pin framework.
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Theorem 7.4. [19, Theorem 5.4] Let G = (V, E) be a multigraph. Then the following
statements are equivalent.
(a) G has a realization as an independent body-and-hinge framework in R2.
(b) G has a realization as an independent body-and-hinge framework (G, q) in R2 with
each of the sets of points {q(e) : e ∈ EG(v)}, v ∈ V , collinear.
(c) 2G can be covered by three forests.

Proof: We may suppose that G has no isolated vertices. By Theorem 7.2, it will
suffice to show that 2|E| = 3|V | − 3 − def(G) if and only if 2G can be covered by
three forests. This follows easily from Theorem 3.1(a). •

Note that an infinitesimally rigid body-and-pin framework (G, q) need not have
an independent infinitesimally rigid spanning subframework. For example, when |V |
is even, we have rBP (G, q) = 3|V | − 3 is odd, whereas all independent body-and-pin
frameworks have even rank. On the other hand, the body-and-pin 2-polymatroid of an
arbitrary body-and-pin framework (G, q) is linear, so we can determine the maximum
rank of an independent subframework of (G, q) using the results of Lovász [8].

8 Concluding Remarks

In the body-and-hinge frameworks investigated so far in this paper, each hinge is
shared by exactly two bodies. We can obtain more general structures by relaxing this
condition.

An identified body-and-hinge framework in Rd is an ordered pair (H, q) where H =
(V ∪ P, I) is a bipartite graph and q is a map which associates a (d− 2)-dimensional
affine subspace q(p) with each p ∈ P . Infinitesimal motions and infinitesimal rigidity
of (H, q) are defined in an analogous way as for body-and-hinge frameworks. Tay and
Whiteley [16, Conjecture 2, Theorem 3] give a conjectured characterization of when
a bipartite graph has an infinitesimally rigid realization as a d-dimensional identified
body-and-hinge framework and point out that their conjecture holds when d = 2.
Indeed we may use the rank formula for the 2-dimensional generic (bar-and-joint)
rigidity matroid given by Lovász and Yemini in [9] to determine the maximum rank
of a realization of a bipartite graph as a 2-dimensional identified body-and-hinge
framework. To see this we extend the definition of a body-and-pin graph.

Let H = (V ∪ P, I) be a bipartite graph without isolated vertices. The identified
body-and-pin graph of H is the graph HBP with V (HBP ) = V ∪ P and

E(HBP ) = {vp : v ∈ V, p ∈ P, vp ∈ I} ∪ {p1p2 : v ∈ V and p1, p2 ∈ EH(v)}.

(This definition extends the earlier definition for a graph G by taking H to be the
bipartite graph obtained by subdividing each edge of G. We then have G∗ = HBP .)
Let F be a partition of V . For each p ∈ P let wF(p) be the number of sets F ∈ F
for which NH(p) ∩ F 6= ∅. Put defH(F) = 3(|F| − 1) − 2(

∑
p∈P (wF(p) − 1)) and

let def(H) = maxF{defH(F)}. By using the above mentioned rank formula for the 2-
dimensional generic rigidity matroid it is not difficult to show that r(HBP ) = 2(|V |+
|P |)− 3− def(H).
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We believe that Theorem 6.11 can be extended to identified body-and-pin graphs.

Conjecture 8.1. Let H be a bipartite graph. Then there exists a pin-collinear real-
ization (HBP , q) of HBP such that r(HBP , q) = r(HBP ).

An affirmative answer to Conjecture 8.1 for the special case when H has a realization
as an independent body-and-pin framework follows from the above mentioned result
of Whiteley [19, Theorem 5.4]. Whiteley also formulated a similar conjecture to
Conjecture 8.1 for 3-dimensional frameworks in [19, Page 93].
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and-joint frameworks.
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