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Rank and independence in the rigidity
matroid of molecular graphs

Bill Jackson⋆ and Tibor Jordán⋆⋆

Abstract

In this paper we consider the 3-dimensional rigidity matroid of squares of
graphs. These graphs are also called molecular graphs due to their importance in
the study of flexibility in molecules. The Molecular Conjecture, posed in 1984 by
T-S. Tay and W. Whiteley, indicates that determining independence (or more
generally, computing the rank) in the rigidity matroids of squares of graphs
may be tractable by combinatorial methods. We give sufficient conditions for
independence and upper bounds on the rank of these matroids. In particular,
we give a self-contained proof for the necessity part of the bar-and-joint version
of the Molecular Conjecture. Our proofs are based on new structural results
on forest covers of graphs as well as extensions of some basic techniques of
combinatorial rigidity.

1 Introduction

All graphs considered are finite and without loops. We will reserve the term graph for
graphs without multiple edges and refer to graphs which may contain multiple edges
as multigraphs. Let R(G) denote the 3-dimensional generic bar-and-joint rigidity
matroid of G, defined on ground-set E. (See [7, 22] for the definition of R(G).) We
denote the rank function of R(G) by rG and rG(E) by r(G). The following upper
bound on rG is due to Gluck.

Lemma 1.1. [4] Let G = (V,E) be a graph on at least three vertices. Then r(G) ≤
3|V | − 6.

A graph G = (V,E) is said to be rigid if either G = K2 or |V | ≥ 3 and r(G) =
3|V | − 6. It is a difficult open problem to determine which graphs are rigid. For a
survey and partial results see [3, 5, 6, 7, 8, 22].
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Figure 1: A graph G and its square G2.

The square of a graph G = (V,E) is denoted by G2, and the multigraph obtained
from G by replacing each edge e ∈ E by five copies of e is denoted by 5G. Squares
of graphs are sometimes called molecular graphs, because they are used to study the
flexibility of molecules, particularly biomolecules such as proteins [19]. The Molecular
Conjecture, due to Tay and Whiteley [18, Conjecture 1], see also [11, 22, 23, 24, 25, 26],
indicates that the problem of determining when molecular graphs are rigid may be
significantly easier than the problem for arbitrary graphs. This conjecture appears
in the literature in several different forms, and is typically formulated in terms of
‘body-and-hinge frameworks’. 1

In this paper we shall be concerned with bar-and-joint frameworks. Conjectures 1.2
and 1.3 below are the bar-and-joint versions of the Molecular Conjecture. (We have
not been able to find them explicitly in the literature.)

1The conjecture is related to four different realizations of a multigraph in 3-space: a body-and-

bar framework, in which vertices are represented by rigid bodies and edges by bars attached to the
corresponding pair of bodies at universal joints; a body-and-hinge framework, in which vertices are
represented by rigid bodies and edges by hinges attached to the corresponding pair of bodies; a
molecular framework, which is a body-and-hinge framework in which the lines containing the hinges
incident to each body are constrained to meet at a common point; a bar-and-joint framework, in
which vertices are represented by universal joints and edges by bars attached to the corresponding
pair of joints. The body-and-bar and bar-and-joint representations each define a matroid on the
edge set of the multigraph. Tay [16] showed that a multigraph H is rigid as a generic body-and-bar
framework if and only if H has six edge-disjoint spanning trees. Indeed, Tay’s result implies that the
generic body-and-bar matroid of H is equal to the matroid union of six copies of the cycle matroid
of H. The generic body-and-hinge framework and the generic molecular framework for a graph G

are each equivalent to a special kind of non-generic body-and-bar framework for the multigraph 5G.
Tay [17] and Whiteley [21] independently showed that a graph G is rigid as a generic body-and-hinge
framework if and only if 5G has six edge-disjoint spanning trees (this result was first announced in
[18]). They also conjectured in [18, Conjecture 1] that G is rigid as a generic molecular framework
if and only if G is rigid as a generic body-and-hinge framework. By the preceding result, this is
equivalent to the conjecture that G is rigid as a generic molecular framework if and only if 5G has
six edge-disjoint spanning trees. Whiteley [25] has recently shown that a graph G of minimum degree
at least two is rigid as a generic molecular framework if and only if G2 is rigid as a generic bar-and-
joint framework. It follows that the above mentioned Molecular Conjecture of Tay and Whiteley
is equivalent to Conjecture 1.2 in this paper. See [22, 26] for definitions and more details on these
different frameworks.
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Conjecture 1.2. (Molecular Conjecture) Let G be a graph with minimum degree
at least two. Then G2 is rigid if and only if 5G contains six edge-disjoint spanning
trees.

The ‘defect form’ of Conjecture 1.2 is the following. Let G = (V,E) be a graph.
For a family F of pairwise disjoint subsets of V let EG(F) denote the set, and eG(F)
the number, of edges of G connecting distinct members of F . For a partition P of V
let

defG(P) = 6(|P| − 1) − 5eG(P)

denote the deficiency of P in G and let

def(G) = max{defG(P) : P is a partition of V }.

Note that def(G) ≥ 0 since defG({V }) = 0.

Conjecture 1.3. (Molecular Conjecture, defect form) Let G = (V,E) be a
graph with minimum degree at least two. Then

r(G2) = 3|V | − 6 − def(G). (1)

Part (b) of the following theorem shows that Conjecture 1.3 implies Conjecture 1.2.
(In Section 5 we shall prove that the reverse implication also holds.)

Theorem 1.4. [12, 13, 20] Let H = (V,E) be a multigraph and let k be a positive
integer. Then
(a) the maximum size of the union of k forests in H is equal to the minimun value of

eH(P) + k(|V | − |P|) (2)

taken over all partitions P of V ;
(b) H contains k edge-disjoint spanning trees if and only if

eH(P) ≥ k(|P| − 1)

for all partitions P of V ;
(c) the edge set of H can be covered by k forests if and only if

|E(H[X])| ≤ k(|X| − 1)

for each nonempty subset X of V .

Theorem 1.4(a) appears in [15, Chapter 51]. It follows easily from the matroid union
theorem of Nash-Williams [14] and Edmonds [1], which determine the rank function
of the union of k matroids, by applying this theorem to the matroid Mk(H) which is
the union of k copies of the cycle matroid of H. Part (a) implies parts (b) and (c),
which are well-known results of Tutte [20] and Nash-Williams [12], and Nash-Williams
[13], respectively.
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The minimum value of (2) is equal to rk(E), where rk denotes the rank function of
Mk(H). Thus Conjecture 1.3 states that r(G2) = r6(5G)−3|V |. Note, however, that
the independence of E(G2) in R(G2) is, in general, not equivalent to the independence
of E(5G) in M6(5G), as shown for example by taking G = C3, C4.

The rest of the paper is organized as follows. In Section 2 we recall some basic
results from combinatorial rigidity. Section 3 contains a proof that the right hand
side of (1) gives an upper bound on r(G2). We give new structural results on forest
covers and extend some basic operations in combinatorial rigidity in Sections 4 and
7, respectively. In Section 5 we show that Conjecture 1.2 implies Conjecture 1.3. In
Sections 6 and 8 we give various conditions for E(G2) to be independent in R(G2).

2 Preliminaries

Let G = (V,E) be a multigraph. For X ⊆ V , let EG(X) denote the set, and iG(X)
the number, of edges in G[X], that is, in the subgraph induced by X in G. For X ⊂ V
let dG(X) = eG(X,V − X) denote the degree of X. If X = {v} for some v ∈ V then
we simply write dG(v) for the degree of v. The set of neighbours of X (i.e. the set
of those vertices v ∈ V − X for which there exists an edge uv ∈ E with u ∈ X) is
denoted by NG(X). We use E(X), i(X), d(X), or N(X) when the multigraph G is
clear from the context. A graph G = (V,E) is M-independent if E is independent in
R(G).

We shall use the following concepts and basic results from graph (rigidity) theory.

Lemma 2.1. [22, Lemma 9.1.3] Let H = (V,E) be a graph and v1, v2, . . . vs be distinct
vertices of G for some s ∈ {1, 2, 3}. Let G be obtained from H by adding a new vertex
v and all edges vvi for 1 ≤ i ≤ s. Then G is M-independent if and only if H is
M-independent.

Lemma 2.2. [22, Lemma 9.2.2] Let H = (V,E) be an M-independent graph and
vi ∈ V be distinct vertices for 1 ≤ i ≤ 4. Suppose v1v2 ∈ E. Let G be obtained
from H − v1v2 by adding a new vertex v and all edges vvi for 1 ≤ i ≤ 4. Then G is
M-independent.

We refer to the operations in Lemmas 2.1 and 2.2 as 0-extensions and 1-extensions,
respectively.

A cover of G = (V,E) is a collection X of subsets of V , each of size at least two, such
that ∪X∈XE(X) = E. A cover X = {X1, X2, . . . , Xm} of G is t-thin if |Xi ∩ Xj| ≤ t
for all 1 ≤ i < j ≤ m. For Xi ∈ X let f(Xi) = 1 if |Xi| = 2 and f(Xi) = 3|Xi| − 6 if
|Xi| ≥ 3. Let H(X ) be the set of all pairs of vertices uv such that Xi ∩ Xj = {u, v}
for some 1 ≤ i < j ≤ m. For each uv ∈ H(X ) let h(uv) be the number of sets Xi in
X such that {u, v} ⊆ Xi and put

val(X ) =
∑

X∈X

f(X) −
∑

uv∈H(X )

(h(uv) − 1).

We say that a cover X of a graph G = (V,E) is independent if the graph (V,H(X ))
is M -independent. The following lemma shows that independent covers of G can be
used to give an upper bound on r(G).
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Lemma 2.3. [7, Lemma 3.2] Let G = (V,E) be a graph, and X be an independent
cover of G. Then r(G) ≤ val(X ).

3 The upper bound

In this section we give a direct proof that the right hand side of (1) gives an upper
bound on r(G2). Given a graph G = (V,E), we say that a partition P of V is a tight
partition of G if defG(P) = def(G). We say that P induces a cycle of length k in G if
there exist distinct classes P1, P2, . . . , Pk ∈ P and distinct edges e1, e2, ..., ek ∈ E such
that ei ∈ EG(Pi, Pi+1) for 1 ≤ i ≤ k − 1 and ek ∈ EG(Pk, P1).

Lemma 3.1. Let G = (V,E) be a graph and P be a tight partition of V . Let Q ⊆ P
with |Q| ≥ 2, P ′ = ∪P∈QP and H = G[P ′]. Then
(a) defH(Q) ≥ 0 and P does not induce a cycle of length less than six in G.
(b) Furthermore, if P is chosen such that |P| is as small as possible, then defH(Q) ≥ 1
and P does not induce a cycle of length less than seven in G.

Proof: Let R = (P −Q) ∪ {P ′}. Then

defG(P) = defG(R) + defH(Q).

Since P is a tight partition of G we have defG(P) ≥ defG(R). Hence defH(Q) ≥ 0.
In particular, if 2 ≤ |Q| ≤ 5, we have eG(Q) ≤ 6

5
(|Q| − 1) < |Q|. Thus P does not

induce a cycle of length less than six in G and (a) holds.
Now suppose that defH(Q) = 0. Then defG(P) = defG(R). Thus R is a tight

partition of G with |R| = |P| − |Q| + 1. Hence, if P is chosen such that |P| is as
small as possible, then we must have defH(Q) ≥ 1. The implication concerning cycles
induced by P follows as in the previous paragraph. •

Theorem 3.2. Let G = (V,E) be a graph of minimum degree at least two. Then

r(G2) ≤ 3|V | − 6 − def(G).

Proof: Since r(G2) ≤ 3|V | − 6 by Lemma 1.1, we may assume that def(G) ≥ 1.
Let P = {P1, P2, ..., Pt} be a tight partition of V . Since def(G) ≥ 1, we must have
t ≥ 2. By Lemma 3.1(a), P does not induce a cycle of length less than six in G. In
particular, eG({Pi, Pj}) ≤ 1 for all 1 ≤ i < j ≤ t.

Let Xi = Pi ∪ NG(Pi) for 1 ≤ i ≤ t and let X = {X1, ..., Xt}. It is easy to see that
X is a cover of G2. Furthermore, since eG({Pi, Pj}) ≤ 1 for 1 ≤ i < j ≤ t, and G has
minimum degree at least two, we have |Xi| = |Pi|+dG(Pi) and |Xi| ≥ 3 for 1 ≤ i ≤ t.
By using the fact that P does not induce cycles of length two, three or four in G, it
is also easy to verify that X is a 2-thin cover with H(X ) = {uv : uv ∈ EG(P)} and
h(uv) = 2 for all uv ∈ H(X ).

We claim that K = (V,H(X )) = (V,EG(P)) is M -independent, and hence X is an
independent cover of G2. To see this consider a nonempty subset Z ⊆ V . If Z ⊆ Pi
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holds for some 1 ≤ i ≤ t then iK(Z) = 0. Now suppose that Z intersects at least two
members of P and let Q = {Pi ∈ P : Z ∩ Pi 6= ∅}. By Lemma 3.1(a) we have

5iK(Z) ≤ 5eG(Q) ≤ 6(|Q| − 1) ≤ 6(|Z| − 1).

Hence iK(Z) ≤ 6
5
(|Z| − 1) for all nonempty Z ⊆ V .

Thus K is sparse: every subgraph of K has average degree less than three, and
hence has a vertex of degree at most two. This implies that K can be obtained from
a collection of disjoint edges (which is M -independent) by a sequence of 0-extensions.
Thus K is M -independent by Lemma 2.1.

Since X is an independent cover of G2, we can use Lemma 2.3 to deduce that

r(G2) ≤ val(X ) =
t

∑

i=1

f(Xi) −
∑

uv∈H(X )

(h(uv) − 1)

=
t

∑

i=1

(3|Xi| − 6) − |EG(P)| =
t

∑

i=1

3(|Pi| + dG(Pi)) − |EG(P)| − 6t

= 3|V | + 6|EG(P)| − |EG(P)| − 6t = 3|V | + 5eG(P) − 6t

= 3|V | − 6 − def(P) = 3|V | − 6 − def(G),

as required. •

Remark Suppose that G = (V,E) is a graph of minimum degree at least two and let
P be a tight partition of V . The truth of Conjecture 1.3 would imply that r(G2) =
defG(P). Thus we would have r(G2) = val(X ) where X is the independent 2-thin
cover of G2 constructed from P as in the proof of Theorem 3.2. Hence Conjecture 1.3
would imply that the upper bound on r(H) given by Lemma 2.3 holds with equality
for some independent 2-thin cover of H, when H = G2. This is not the case when H
is an arbitrary graph, see [8, Example 3].

We close this section by showing that, if true, Conjecture 1.3 could be used to
determine the rank of squares of all graphs, not just graphs of minimum degree at
least two. Let G = (V,E) be a connected graph on at least two vertices and let L(G)
denote the set, and l(G) the number of vertices of degree one in G. Let Gcore be the
maximal subgraph of G of minimum degree at least two. Note that Gcore is empty if
and only if G is a tree, and G = Gcore if and only if L(G) is empty. Part (a) of the
next lemma is due to Franzblau [3].

Lemma 3.3. Let G = (V,E) be a connected graph on at least two vertices. Then
(a) if G is a tree then r(G2) = 2|V | − 5 + l(G);
(b) if G is not a tree then

r(G2) = r((Gcore)
2) + 2|V (G − Gcore)| + l(G).

Proof: Induction on |V |. The theorem is trivially true if |V | = 2 or L(G) = ∅, so
we may assume that L(G) 6= ∅ and |V | ≥ 3. Let v ∈ L(G), let H = G − v, and let
u be the neighbour of v in G. If dG(u) ≥ 3, then r(G2) = r(H2) + 3 (by Lemma
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2.1), Gcore = Hcore and l(G) = l(H) + 1. On the other hand, if dG(u) = 2 then
r(G2) = r(H2) + 2 (by Lemma 2.1), Gcore = Hcore and l(G) = l(H). In both cases,
the lemma follows by applying induction to H. •

4 Bricks and superbricks

We say that a graph G is strong if 5G has six edge-disjoint spanning trees. Equiva-
lently, by Theorem 1.4(b), G is strong if def(G) = 0.

Lemma 4.1. Let G = (V,E) be a graph, and P be a tight partition of G. Choose
P ∈ P and let H = G[P ]. Then:
(a) H is strong;
(b) if P is chosen such that |P| is as large as possible, then {P} is the only tight
partition of H.

Proof: Let Q be a tight partition of H and R = (P − {P}) ∪ Q. Then R is a
partition of V and

defG(R) = defG(P) + defH(Q).

Since P is a tight partition of G we have defH(Q) ≤ 0. Since Q is a tight
partition of H, defH(Q) ≥ 0. Thus defH(Q) = 0 and H is strong. Furthermore,
defG(R) = defG(P). Thus, if P is chosen such that |P| is as large as possible, we
must have |Q| = 1 and Q = {P}. •

A subgraph H of a graph G is said to be a brick of G if H is a maximal strong
subgraph of G. Thus bricks are induced subgraphs.

Lemma 4.2. Let G = (V,E) be a graph, let X1, X2 ⊆ V with X1 ∩ X2 6= ∅ and
suppose that G[X1] and G[X2] are strong. Then G[X1 ∪ X2] is strong.

Proof: For a contradiction suppose that H = G[X1 ∪ X2] is not strong, and let
P = {P1, P2, ..., Pt} be a tight partition of H for which |P| is as small as possible.
Since def(H) ≥ 1, we have t ≥ 2. Let Qi = {Pj ∈ P : Xi ∩ Pj 6= ∅} and Q′

i =
{Xi ∩ Pj : Pj ∈ Qi}, for i = 1, 2. Suppose that |Qi| = |Q′

i| ≥ 2 for some i ∈ {1, 2}.
Then

6(|Q′
i| − 1) ≤ 5eG[Xi](Q

′
i) ≤ 5eH(Qi) ≤ 6(|Qi| − 1) − 1,

where the first inequality follows from the fact that G[Xi] is strong, and the last
inequality follows from Lemma 3.1(b). This contradiction implies that |Qi| = 1, and
hence Xi is a subset of some member of P , for i = 1, 2. This contradicts the fact that
P is a partition of X1 ∪ X2, t ≥ 2, and X1 ∩ X2 6= ∅. Thus H is strong. •

It follows immediately that the bricks of a graph G are vertex disjoint. Since, by
definition, a single vertex is strong, every vertex of G belongs to a brick, and hence
we have:
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Figure 2: The brick partition and the superbrick partition of graph G.

Corollary 4.3. The vertex sets of the bricks of a graph G = (V,E) partition V .

We shall use the term brick partition of G to refer to the partition of V given by
the vertex sets of the bricks of G.

Lemma 4.4. Let G = (V,E) be a graph and P be a tight partition of V such that |P|
is as small as possible. Then P is the brick partition of G.

Proof: Let B be the brick partition of G. If def(G) = 0 then G is a brick and
B = {V } = P , so we may assume that def(G) ≥ 1. Lemma 4.1(a) implies that each
of the parts in P induces a strong subgraph of G. Thus P is a refinement of B by
Lemma 4.2. Since each part of B induces a strong subgraph of G, Lemma 3.1(b) now
implies that B = P . •

We say that a graph G = (V,E) is superstrong if 5G − e has six edge-disjoint
spanning trees for all e ∈ E(5G). Equivalently, by Theorem 1.4(b), G is superstrong
if def(G) = 0 and the only tight partition of V is {V } itself. A subgraph H of G is
said to be a superbrick of G if H is a maximal superstrong subgraph of G.

Lemma 4.5. Let G = (V,E) be a graph, let X1, X2 ⊆ V with X1 ∩ X2 6= ∅ and
suppose that G[X1] and G[X2] are superstrong subgraphs of G. Then G[X1 ∪ X2] is
superstrong.

Proof: Let H = G[X1 ∪ X2] and suppose H is not superstrong. Then we may
choose e ∈ E(5H) such that the graph G∗ = 5H − e does not have six edge-
disjoint spanning trees. By Theorem 1.4, there exists a partition P of V such that
6(|P|−1)−eG∗(P) > 0. Choose P such that 6(|P|−1)−eG∗(P) is as large as possible
and, subject to this condition, |P| is as small as possible. Using the same argument
as in the proof of Lemma 3.1(b), we may deduce that 6(|Q| − 1)− eG∗(Q) > 0 for all
Q ⊆ P with |Q| ≥ 2. We may now use the fact that 5G[Xi] − e has six edge-disjoint
spanning trees for i = 1, 2 to obtain a contradiction as in the proof of Lemma 4.2. •
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It follows immediately that the superbricks of a graph G are vertex disjoint. Since,
by definition, a single vertex is superstrong, every vertex of G belongs to a superbrick,
and hence we have:

Corollary 4.6. The vertex sets of the superbricks of a graph G = (V,E) partition V .

We shall use the term superbrick partition of G to refer to the partition of V given
by the vertex sets of the superbricks of G.

Lemma 4.7. Let G be a graph and P be a tight partition of V such that |P| is as
large as possible. Then P is the superbrick partition of G.

Proof: Let S be the superbrick partition of G. If |P| = 1 then G is a superbrick
and S = {V } = P , so we may assume that |P| ≥ 2. Lemma 4.1(b) implies that each
of the parts in P induces a superstrong subgraph of G. Thus P is a refinement of S
by Lemma 4.5. Since the union of two or more parts of P induces a subgraph of G
which is not superstrong by Lemma 3.1(a), we may deduce that S = P . •

We say that a superstrong graph G is minimally superstrong if G − e is not super-
strong for all e ∈ E(G).

Lemma 4.8. Let G = (V,E) be a minimally superstrong graph and let H be a super-
strong subgraph of G. Then H is minimally superstrong.

Proof: Let e ∈ E(H) and consider the superbrick partition S = {P1, P2, ..., Pt} of
G − e. Since G is minimally superstrong, t ≥ 2 and the endvertices of e belong to
different classes of S. Let Q ⊆ S consist of those classes of S which contain at least
one vertex of H. If H − e is superstrong, we must have 5eH(Q) ≥ 6(|Q| − 1) + 1.
Since S is a tight partition of V by Lemma 4.7, this contradicts Lemma 3.1(a). Thus
H − e is not superstrong, as claimed. •

The results of this section hold in a much more general context. Let q be a positive
rational number and k, h be positive integers such that q = k/h. Given a multigraph
G = (V,E) we define G to be q-strong if hG has k edge-disjoint spanning trees. By
Theorem 1.4, G is q-strong if and only if heG(P) ≥ k(|P| − 1) for all partitions P
of V , and hence the definition of q-strong does not depend on which integers k, h we
use to represent q. We may proceed as above to define the q-bricks, the q-superbricks,
the q-brick partition, and the q-superbrick partition of G.2 (When q = k is a positive
integer, the concepts of k-strong and k-superstrong have already been considered by
Frank and Király [2], where they are referred to as k-tree-connected and (k, 1)-tree-
connected, respectively.) By using well-known algorithms for packing trees, or more
generally, packing independent sets in a matroid (see [15] for a survey) it is easy to
obtain efficient algorithms for testing whether a multigraph G is q-(super)strong, and
for determining the q-(super)brick partition of G.

2This general approach would have simplified the proof of Lemma 4.5, but would not have been
relevant to the rest of the paper.
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5 The equivalence of Conjectures 1.2 and 1.3

Lemma 5.1. Conjectures 1.2 and 1.3 are equivalent.

Proof: The fact that Conjecture 1.3 implies Conjecture 1.2 follows immediately from
Theorem 1.4(b), as we noted earlier.

Suppose Conjecture 1.2 holds and let G = (V,E) be a graph of minimum degree
at least two. We show that Conjecture 1.3 holds for G by induction on def(G). If
def(G) = 0, then Theorem 1.4(b) implies that 5G has six edge-disjoint spanning trees.
Since Conjecture 1.2 holds, G2 is rigid and hence r(G2) = 3|V | − 6. Thus Conjecture
1.3 holds for G. Hence we may assume that def(G) ≥ 1. Let B be the brick partition
of G. Since def(G) ≥ 1, we have |B| ≥ 2. Choose two vertices u, u′ belonging to
distinct bricks B,B′ ∈ B, respectively.

Let G1 be the graph obtained from G by attaching an ear P = ux1x2x3x4u
′ of

length five at u, u′.

Claim 5.2. def(G1) = def(G) − 1.

Proof: Consider the brick partition B1 of G1. Since each brick with at least three
vertices has minimum degree two, the vertices x1, x2, x3, x4 either each occur as
singleton bricks of G1, or are all contained in the same brick of G1. Since the bricks
of G are maximal strong subgraphs of G, it follows that B1 = P or B1 = P ′, where

P = B ∪ {{x1}, {x2}, {x3}, {x4}} ,

and

P ′ = (B −Q) ∪ {(
⋃

Bi∈Q

Bi) ∪ {x1, x2, x3, x4}},

for some Q ⊆ B with B,B′ ∈ Q. We have

defG1
(P) = 6(|P| − 1) − 5eG1

(P) = 6(|B| + 4 − 1) − 5(eGB + 5)

= defG(B) − 1 = def(G) − 1.

On the other hand, if we let R = (B−Q)∪
{
⋃

Bi∈Q
Bi

}

then R partitions V , |R| < |B|
since |Q| ≥ 2, and

defG1
(P ′) = defG(R) < defG(B) = def(G),

by Lemma 4.4. Thus defG1
(B1) = def(G) − 1. The claim now follows since

def(G1) = defG1
(B1). •

It follows from Claim 5.2 that we may apply induction to G1 and deduce that

r(G2
1) = 3|V (G1)| − 6 − def(G1) = 3(|V | + 4) − 6 − (def(G) − 1)

= 3|V | − 6 − def(G) + 13. (3)
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Consider the graph H obtained from G by adding the vertices x1, x4 and edges
ux1, u

′x4. Since the neighbour sets of u and u′ in H2 each induce complete (and hence
rigid) subgraphs with at least three vertices, we have r(H2) = r(G2) + 6. This gives

r(G2
1) ≤ r(H2) + |E(G2

1) − E(H2)| = (r(G2) + 6) + 7 = r(G2) + 13. (4)

Combining (3) and (4), we obtain 3|V |−6−def(G)+13 = r(G2
1) ≤ r(G2)+13. Hence

r(G2) ≥ 3|V | − 6− def(G). Theorem 3.2 now implies that r(G2) = 3|V | − 6− def(G).
Hence Conjecture 1.3 holds for G. •

6 Independent squares

Recall that a graph G = (V,E) is M-independent if r(G) = |E|. We say that a graph
G is Laman if for all subgraphs of G induced by a subset X ⊆ V with |X| ≥ 3, the
number of edges is at most 3|X| − 6. Lemma 1.1 implies that if G is M -independent
then G is Laman. Jacobs [10] conjectures that the reverse implication also holds for
squares of graphs. 3

Conjecture 6.1. Let G be a graph. Then G2 is M-independent if and only if G2 is
Laman.

We will show that Conjecture 6.1 would follow from Conjecture 1.3. We use the
following two results.

Lemma 6.2. Let G = (V,E) be a graph such that G2 is Laman. Then each vertex of
G has degree at most three.

Proof: Choose v ∈ V . Then G2[NG(v) ∪ {v}] is a complete graph on dG(v) + 1
vertices. Since the complete graph Kn is Laman only when n ≤ 4, we have dG(v) ≤ 3.
•

Theorem 6.3. Suppose that G has minimum degree at least two and G2 is Laman.
Then |E(G2)| ≤ 3|V (G)| − 6 − def(G).

Proof: We may assume that def(G) ≥ 1, since the theorem trivially holds for Laman
graphs with deficiency zero. Let P = {P1, P2, ..., Pt} be a tight partition of V . Since
def(G) ≥ 1, we must have t ≥ 2.

An edge uw ∈ E(G2) is called a cross edge, if uw ∈ EG2(P) and uw /∈ E(G).
Lemma 3.1(a) implies that for every cross edge uw there is a unique pair uv, vw of
adjacent edges of G which ‘implies’ uw. Clearly, at least one of the edges uv, vw must
also belong to EG2(P). We say that the cross edge uw is normal (special) if precisely
one (respectively, both) of the edges uv, vw connect distinct members of P . Let Cn

3He states the conjecture as a result, [10, Proposition 4.9], but his proof is incomplete since it
assumes the truth of [10, Observation 3.1] for which no proof is yet known.
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Section 6. Independent squares 12

and Cs denote the number of normal and special cross edges of G2, respectively. A
normal edge f is rooted at Pi if one of the two edges of G that ‘imply’ f is induced
by Pi.

It follows from Lemma 4.1(a) that G[Pi] is strong, and hence for all 1 ≤ i ≤ t either
|Pi| = 1, or |Pi| ≥ 3 and dG[Pi](v) ≥ 2 holds for all v ∈ Pi. Let Ps = {Pi : Pi ∈
P , |Pi| = 1} and let Pb = {Pi : Pi ∈ P, |Pi| ≥ 3}.

Consider a set Pi ∈ Pb and an edge uv ∈ EG2(P) with v ∈ Pi. Since G2 is Laman,
dG(v) ≤ 3 by Lemma 6.2. Thus, since dG[Pi](v) ≥ 2, there are exactly two normal
cross edges which are ‘implied’ by pairs uv, vw, for some w ∈ Pi. Hence the number
of normal cross edges rooted at Pi is 2dG(Pi). It also follows that if a pair of edges
‘implies’ a special cross edge then their common vertex cannot belong to Pi.

Now consider a set Pj ∈ Ps. By Lemma 3.1(a) G2[NG(Pj)] is a complete subgraph
consisting of special cross edges, and all special cross edges can be obtained this way
for a unique member of Ps. Since dG(v) ∈ {2, 3} for all v ∈ V , we have

|E(G2[NG(Pj)])| = 2dG(Pj) − 3. (5)

By using these observations we can count the normal edges at their roots and special
edges in the neighbourhoods of the singleton members of P . Thus

Cn =
∑

Pi∈Pb

2dG(Pi), (6)

Cs =
∑

Pj∈Ps

|E(G2[NG(Pj)])|. (7)

Using (5), (6), (7), and the fact that G2 is Laman we obtain:

|E(G2)| =
t

∑

i=1

|E(G2[Pi])| + eG(P) + Cn + Cs

≤
∑

Pi∈Pb

(3|Pi| − 6) + eG(P) +
∑

Pi∈Pb

2dG(Pi) +
∑

Pj∈Ps

|E(G2[NG(Pj)])|

=
t

∑

i=1

(3|Pi| − 6) + eG(P) +
t

∑

i=1

2dG(Pi)

= 3|V | − 6t + 5eG(P) = 3|V | − 6 − def(P) = 3|V | − 6 − def(G),

as claimed. •

We can now show that Conjecture 6.1 would follow from Conjecture 1.3. To see
this suppose, for a contradiction, that G2 is Laman but r(G2) < |E(G2)|. Since
for graphs G of maximum degree at most three G2 is M -independent if and only
if (Gcore)

2 is M -independent, we may assume that G has minimum degree at least
two. By using Theorem 6.3 and assuming that Conjecture 1.3 holds for G, this gives
|E(G2)| ≤ 3|V | − 6 − def(G) = r(G2) < |E(G2)|, a contradiction.

EGRES Technical Report No. 2006-02



Section 6. Independent squares 13

We next show that the superbrick partition of a graph G can be used to determine
when G2 is Laman. More precisely we will show in Theorem 6.8 below that G2 is
Laman if and only if each vertex of G has degree at most three and each superbrick
of G has at most four vertices.

Lemma 6.4. Let G = (V,E) be a superstrong graph with at least five vertices and
with maximum degree ∆ ≤ 3. Then |E(G2)| ≥ 3|V | − 5.

Proof: Without loss of generality, we may assume that G is minimally superstrong.
By Lemma 4.8 this implies that every superstrong subgraph H of G is minimally
superstrong. We may deduce the following claim concerning cycles in G. We say an
edge uv is a chord of a cycle C of G if u, v ∈ V (C) and uv 6∈ E(C). It is a long chord
of C if it is a chord and u and v have distance at least three around C.

Claim 6.5. (a) No cycle of length at most five in G can have a chord.
(b) No cycle of length at most seven in G can have two chords.
(c) No cycle of length eight in G can have two chords, at least one of which is long.
(d) No cycle C of length at most seven in G can contain three vertices with a common
neighbour in G − C.

Proof: This follows since a cycle of length at most five, a cycle of length at most
seven with a chord, a cycle of length eight with a long chord, and the graph obtained
from a cycle of length at most seven by joining a new vertex to two non-adjacent
vertices of the cycle, are all superstrong. •

Consider the following four graphs: H1 = K3; H2 = K2,2; H3 = K2,3; H4 is obtained
from a cycle of length six by adding a long chord. We will refer to a subgraph of G
which is isomorphic to Hi for some 1 ≤ i ≤ 4 as a Hi-subgraph of G. Since Hi is
superstrong for all 1 ≤ i ≤ 4, each Hi-subgraph of G is an induced subgraph. A
subgraph F of G is special if F is a Hi-subgraph of G for some 1 ≤ i ≤ 4, and F is
not a proper subgraph of a Hj-subgraph of G for all 1 ≤ j ≤ 4. The proof of the next
claim is rather long and tedious. A reader who is not interested in the details could
skip it without compromising their understanding of the rest of the proof.

Claim 6.6. Any two special subgraphs of G are vertex disjoint.

Proof: We proceed by contradiction. Suppose F1 = (V1, E1) and F2 = (V2, E2) are
special subgraphs of G and V1 ∩ V2 6= ∅. Note that since ∆ ≤ 3 and each special
subgraph has minimum degree two, F1 ∩ F2 has minimum degree at least one.

Suppose F1 = K3. Since F2 is an induced subgraph of G we have V1 ∩ V2 = {u, v}
and uv ∈ E2. Since all edges of F2 are contained in a cycle of length at most four, we
have a cycle of length at most five with a chord in F1 ∪ F2. This contradicts Claim
6.5(a). Thus F1 6= K3 and, by symmetry, F2 6= K3.

Suppose F1 = K2,2. Since F1 is not a subgraph of F2 and F2 is induced, we have
|V1 ∩ V2| ≤ 3. We first consider the case when |V1 ∩ V2| = 3. Then F1 ∩ F2 is a
path u1u2u3 of length two and V1 = {u1, u2, u3, x}. Then u1, u3 have degree two in
F2. If u2 also has degree two in F2 then we must have F2 = K2,2. This would give
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F1 ∪F2 = K2,3 and contradict the maximality of F1. Hence u2 has degree three in F2.
If F2 = K2,3 then F1 ∪F2 is a cycle of length six with two chords, and if F2 = H4 then
(F1 ∪ F2) − u2 is a cycle of length six. These alternatives contradict Claim 6.5 parts
(b) and (d), respectively. Thus we have |V1 ∩ V2| = 2 and E1 ∩ E2 = {uv}, say. If
F2 = K2,2 then F1 ∪F2 = H4. This would contradict the maximality of F1. Since u, v
are two adjacent vertices of degree two in F2, F2 6= K2,3. Thus we must have F2 = H4.
But then F1 ∪ F2 is a cycle of length eight with two long chords, contradicting Claim
6.5(c). Thus F1 6= K2,2 and, by symmetry, F2 6= K2,2.

Suppose F1 = K2,3. Since F1 is not a subgraph of F2 we have |V1 ∩ V2| ≤ 4. We
first consider the case when |V1 ∩ V2| = 4. Since F1 ∩ F2 is a subgraph of F1, we have
F1 ∩ F2 = K2,2 or F1 ∩ F2 = K1,3. The first alternative would imply that F2 contains
two independent vertices of degree two in a 4-cycle. The second alternative would
imply that F2 contains three independent vertices of degree two. Thus, in both cases,
we must have F2 = K2,3. It is easy to see that F1 ∪ F2 will contain a cycle of length
six with two chords. This contradicts Claim 6.5(b). We next consider the case when
|V1 ∩ V2| = 3. Then F1 ∩ F2 is a path u1u2u3 of length two. Since ∆ ≤ 3, the vertices
u1, u3 must be non-adjacent vertices of degree two in F1 and F2. Furthermore u2 must
have degree three in F1, and hence must have degree two in F2. This is impossible
since either F2 = K2,3 or F2 = H4, and neither of these graphs have three vertices of
degree two which induce a path. Thus we must have |V1∩V2| = 2 and E1∩E2 = {uv},
say. Without loss of generality u has degree three in F1. The fact that ∆ ≤ 3, now
tells us that u has degree one in F2, which again gives a contradiction. Thus F1 6= K2,3

and, by symmetry, F2 6= K2,3.
Thus we must have F1 = H4 = F2 and |V1 ∩ V2| ≤ 5. We first consider the case

when |V1 ∩ V2| = 5. Since F1 ∩ F2 is a subgraph of F1, F1 ∩ F2 is either a path of
length four, say u1u2u3u4u5, or the graph obtained from a cycle of length four by
adding a new vertex joined to exactly one vertex of the cycle. Since F1 = H4 = F2,
the former case would imply that u3 has degree four in F1 ∪F2, and hence contradict
∆ ≤ 3, whereas the latter case would imply that F1 ∪ F2 can be obtained from a
cycle of length six by adding a vertex joined to three vertices of the cycle, and hence
contradict Claim 6.5(d). We next consider the case when |V1 ∩ V2| = 4. Then F1 ∩F2

is either K2,2, or K1,3, or a path of length three, or two disjoint K2’s. If F1∩F2 = K2,2

then F1 ∪ F2 is a cycle of length eight with two long chords, contradicting Claim
6.5(c). If F1 ∩F2 = K1,3 then the fact that F1 = F2 = H4 implies that some vertex of
F1 ∩ F2 has degree at least four in F1 ∪ F2 and contradicts ∆ ≤ 3. If F1 ∩ F2 is either
a path of length three or two disjoint K2’s then F1 ∪ F2 contains a cycle of length
eight with two long chords, and hence contradicts Claim 6.5(c). We next consider
the case when |V1 ∩ V2| = 3. Then F1 ∩ F2 is a path of length two, say v1v2v3. Then
v1 and v3 must have degree two in both F1 and F2. Since ∆ ≤ 3, v2 has degree two
in either F1 or F2. This is impossible since neither F1 nor F2 contain three vertices
of degree two which induce a path of length two. Finally, we consider the case when
|V1 ∩ V2| = 2. Then F1 ∩ F2 is a path of length one, say uv. Then u and v must have
degree two in both F1 and F2. Thus F1 ∪ F2 contains a cycle of length eight with
two long chords. This contradicts Claim 6.5(c) and completes the proof of the claim. •
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For each pair of vertices u, v ∈ V , let tG(u, v) be the number of u, v-paths in G of
length at most two. Let G(2) be the multigraph with vertex set V , in which each pair
of vertices u, v ∈ V is joined by tG(u, v) parallel edges. (Thus G2 can be obtained
from G(2) by replacing each set of parallel edges by a single edge.) Since each vertex
v ∈ V , is the central vertex in

(

d(v)
2

)

paths of length two, we have

|E(G(2))| =
∑

v∈V

(

d(v)

2

)

+
1

2

∑

v∈V

d(v). (8)

We next determine |E(G(2)) − E(G2)|. If u, v ∈ V belong to a multiple edge in
G(2) then u, v are either joined by a path of length one and a path of length two in
G, or by two disjoint paths of length two in G. In the former case u, v belong to a
triangle, that is to say a H1-subgraph of G. In the latter case u, v belong to a a cycle
of length four, that is to say a H2-subgraph of G. Thus, in both cases, u, v belong
to a special Hi subgraph of G, for some 1 ≤ i ≤ 4. Since the special subgraphs of G
are vertex disjoint by Claim 6.6, u, v belong to a unique special subgraph F . Thus
we may determine |E(G(2)) − E(G2)| by summing |E(F (2)) − E(F 2)| over all special
subgraphs of G. Hence, if hi is the number of special Hi-subgraphs of G, we have
|E(G(2)) − E(G2)| = 3h1 + 2h2 + 5h3 + 4h4. Combining this with (8), and using nj

for the number of vertices of G of degree j, we obtain

|E(G2)| = 2n2 + 9
2
n3 − 3h1 − 2h2 − 5h3 − 4h4. (9)

Since G is superstrong, 5G−e has six edge-disjoint spanning trees for all e ∈ E(5G).
For each special subgraph F of G these trees can contain at most 5(|V (F )|−1) edges.
Since the special subgraphs of G are vertex disjoint and each spanning tree has |V |−1
edges, we may deduce that

5|E| − 3h1 − 2h2 − 6h3 − 5h4 ≥ 6|V | − 6, (10)

with equality only if each edge e ∈ E belongs to a special subgraph of G. Note that,
since G is connected and the special subgraphs are vertex disjoint, this means that
equality can occur only if G is the unique special subgraph of itself. Since |V | = n2+n3

and |E| = n2 + 3
2
n3 we may use (10) to deduce that

3
2
n3 − n2 ≥ 3h1 + 2h2 + 6h3 + 5h4 − 6.

Using (9) we now obtain

|E(G2)| = 3n2 + 3n3 + 3
2
n3 − n2 − 3h1 − 2h2 − 5h3 − 4h4

≥ 3n2 + 3n3 − 6 = 3|V | − 6,

with equality only if h3 = 0 = h4. Since equality can occur in (10) only if G is a
special subgraph of itself, we deduce that |E(G2)| ≥ 3|V | − 6 with equality only if
|V | ≤ 4. •

EGRES Technical Report No. 2006-02
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Lemma 6.7. Let G = (V,E) be a graph on at least three vertices such that G has
maximum degree ∆ ≤ 3, and each superbrick of G has at most four vertices. Then
|E(G2)| ≤ 3|V | − 6.

Proof: We proceed by induction on |V |+ |E|. The lemma holds when |V | = 3 so we
may suppose that |V | ≥ 4. If G has a cycle of length four with a chord e then, since
∆ ≤ 3, (G− e)2 = G2 and we are done by applying induction to G− e. Thus we may
assume that no cycles of length four in G have chords. Suppose G has a vertex v with
d(v) ≤ 1. Then each superbrick of G − v has size at most four and, since ∆ ≤ 3, G2

has at most three more edges than (G− e)2. Thus we are done by applying induction
to G − v. Hence we may assume that d(v) ∈ {2, 3} for all v ∈ V . Let n2, n3 be the
numbers of vertices of G of degree two and three, respectively, and put |V | = n.

Let S be the superbrick partition of G and let si be the number of superbricks in
S with i vertices. (Thus si = 0 for i 6∈ {1, 3, 4}.) We have

0 ≤ def(G) = defG(S) = 6(|S| − 1) − 5eG(S). (11)

Since |E| = 3s3 +4s4 + eG(S) and |S| = s1 + s3 + s4 = n− 2s3 − 3s4, we may use (11)
to obtain

|E| ≤ 3s3 + 4s4 + 6
5
(n − 2s3 − 3s4 − 1) = 1

5
(6n + 3s3 + 2s4 − 6).

Since n = n2 + n3 and |E| = n2 + 3
2
n3, it follows that

3
2
n3 − n2 ≤ 3s3 + 2s4 − 6. (12)

Since the superbricks of G are vertex disjoint, we may apply the argument used to
deduce (9) to obtain

|E(G2)| = 2n2 + 9
2
n3 − 3s3 − 2s4 = 3n2 + 3n3 + 3

2
n3 − n2 − 3s3 − 2s4. (13)

Since |V | = n2 + n3, we may use (12) and (13) to deduce that |E(G2)| ≤ 3|V | − 6. •

Theorem 6.8. Let G be a graph. Then G2 is Laman if and only if each vertex of G
has degree at most three and each superbrick of G has at most four vertices.

Proof: First suppose that G2 is Laman. Then G has maximum degree at most three
by Lemma 6.2 and each superbrick of G has at most four vertices by Lemma 6.4.

Next suppose each vertex of G has degree at most three and each superbrick of G
has at most four vertices. For a contradiction suppose that G2 is not Laman and let
X be a subset of V (G) for which h(X) = iG2(X) − (3|X| − 6) is as large as possible,
and subject to this condition, |X| is as large as possible. We have h(X) ≥ 1 and
|X| ≥ 3. The maximality of h(X) and |X|, and the fact that G has maximum degree
at most three, imply that G[X] has minimum degree at least one, and no vertex in
V − X is adjacent to two non-adjacent vertices of X in G. Thus G2[X] = G[X]2.
Since G[X] satisfies the hypotheses of Lemma 6.7, this implies iG2(X) ≤ 3|X| − 6, a
contradiction. •

Using Theorem 6.8 we may deduce that Conjecture 6.1 is equivalent to:
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Conjecture 6.9. Let G be a graph. Then G2 is M-independent if and only if each
vertex of G has degree at most three and each superbrick of G has at most four vertices.

Conjecture 6.9 would imply that if G is a graph of maximum degree at most three
and every superbrick of G has exactly one vertex, then G2 is M -independent. By
Lemmas 3.1(a) and 4.7 this is equivalent to:

Conjecture 6.10. Let G be a graph of maximum degree at most three. If 5i(X) ≤
6(|X| − 1) for all nonempty X ⊆ V , then G2 is M-independent.

We shall show in Section 8 below that Conjecture 6.10 is true under the stronger
hypothesis that 10i(X) ≤ 11(|X| − 1) for all nonempty X ⊆ V .

Note that for graphs without cycles of length less than five, Conjectures 6.9 and
6.10 are equivalent. For this family of graphs these conjectures and Theorem 1.4(c)
would imply:

Conjecture 6.11. Let G be a graph without cycles of length three and four. Then G2

is M-independent if and only if the edge set of 5G can be partitioned into six forests.

7 Extending independent graphs

In this section we use Lemmas 2.1 and 2.2 to derive some more complex operations
which preserve M -independence in a graph.

Lemma 7.1. Let H = (V,E) be an M-independent graph and {u1, u2, u3} and
{v1, v2, v3} be two sets of distinct vertices of G (we allow the sets to have common ver-
tices). Suppose v1v2 ∈ E. Let G be obtained from H−v1v2 by adding two new vertices
u, v, the edge uv, and all edges uui, vvi for 1 ≤ i ≤ 3. Then G is M-independent.

Proof: This follows from Lemmas 2.1 and 2.2, since G can be constructed from H
by first performing a 0-extension with u, then a 1-extension with v. •

We refer to the operation in Lemma 7.1 as an edge-extension.

Lemma 7.2. Let H = (V,E) be an M-independent graph and {u1, u2},
{v1, v2} and {w1, w2} be three sets of distinct vertices of G with
|{u1, u2, v1, v2, w1, w2}| ≥ 3. Let G be obtained from H by adding three new
vertices u, v, w, the edges uv, vw, uw, and all edges uui, vvi, wwi for 1 ≤ i ≤ 2. Then
G is M-independent.

Proof: By renaming the sets, if necessary, we may suppose that u1, u2, v1 are
distinct vertices. Then the lemma follows from Lemmas 2.1 and 7.1, since G can be
constructed from H by first performing a 0-extension with u using u1, u2, v1, then an
edge-extension with v, w which deletes the edge uv1. •

We refer to the operation in Lemma 7.2 as a triangle-extension.
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Let G be a graph and u, v be, not necessarily distinct, vertices of G. A uv-ear in
G is subgraph X which is a uv-path if u 6= v or a cycle containing u if u = v, and
is such that all vertices of V (X) − {u, v} have degree two in G, and u, v both have
degrees not equal to two in G. We say that X is an ear of length r if X has length r,
and that X is a closed ear if X is a cycle.

The next two lemmas are due to Franzblau. We include proofs for the sake of
completeness.

Lemma 7.3. [3] Let H = (V,E) be a graph such that H2 is M-independent. Let G
be obtained from H by attaching a uv-ear. Suppose u has degree three in G and v has
degree one in G. Then G2 is M-independent.

Proof: We have G = H ∪P where P = ux1x2 . . . xr−1v is an ear in G and dG(v) = 1.
We can construct G2 from H2 by a sequence of 0-extensions, we first add x1, then x2

and so on. Thus G2 is M -independent by Lemma 2.1. •

Lemma 7.4. [3] Let H = (V,E) be a graph such that H2 is M-independent. Let G
be obtained from H by attaching a uv-ear of length at least six, where u, v both have
degree three in G. (Note that u = v may hold.) Then G2 is M-independent.

Proof: We have G = H∪X where X = ux1x2 . . . xr−1v is an ear in G of length r ≥ 6.
Let F = H ∪ (X − {x2, x3, x4}). Then F 2 is M -independent by two applications of
Lemma 7.3. Since G2 can be obtained from F 2 by a triangle-extension (using the
triangle x2x3x4x2 of G2), G2 is M -independent by Lemma 7.2. •

Lemma 7.5. Let H = (V,E) be a graph. Let G be obtained from H by attaching a
uv-ear of length at least five, where u, v both have degree three in G. If H2 + uv is
M-independent, then G2 is M-independent.

Proof: We have G = H ∪ P where P = ux1x2 . . . x4v is an ear in G of length five.
Since F = G2 − {x2, x3} + x1x4 can be obtained from H2 + uv by two 1-extensions,
it is M -independent by Lemma 2.2. Now G2 can be obtained from F by an edge
extension (adding the vertices x2, x3 and deleting the edge x1x4), so it is also
M -independent by Lemma 7.1. •

A claw of size (r1, r2, r3) attached at vertices v1, v2, v3 in a graph G is a subgraph
W of G which can be expressed as the union of three ears P1, P2, P3 of G, where Pi

is a viu-ear of length ri for 1 ≤ i ≤ 3 and u is a vertex of G of degree three. We will
assume throughout that r1 ≥ r2 ≥ r3.

Lemma 7.6. Let H = (V,E) be a graph such that H2 is M-independent. Let G be
obtained from H by attaching a claw W of size (r1, r2, r3) at vertices v1, v2, v3. Suppose
v1, v2, v3 all have degree three in G, r1 + r2 + r3 ≥ 12 and r2 + r3 ≥ 6. Then G2 is
M-independent.
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Proof: We have G = H ∪ W and W = P1 ∪ P2 ∪ P3 where Pi is a viu-ear in G of
length ri and r1 ≥ r2 ≥ r3. Let P1 = v1x1x2 . . . xr1−1u, P2 = v2y1y2 . . . yr2−1u, and
P3 = v3z1z2 . . . zr3−1u.

We first consider the case when r1 ≥ 6. Let F = H ∪ P2 ∪ P3. Since H2 is
M -independent and r2 + r3 ≥ 6, F 2 is M -independent by Lemma 7.4. Now, since
G = F ∪ P1 and r1 ≥ 6, G2 is M -independent, again by Lemma 7.4.

We next consider the case when r1 = r2 = 5. Since r1 + r2 + r3 ≥ 12, we have
r3 ≥ 2. Let F = H ∪ (P3 − u) ∪ (P2 − {y2, y3, y4, u}. Since H2 is M -independent, F 2

is M -independent by Lemma 7.3. Let

G1 = F 2 + u + {uv1, uzr3−1, uzr3−2},

taking zr3−2 = v3 if r = 2. Then G1 is a 0-extension of F 2 so is M -independent by
Lemma 2.1. Let

G2 = G1 + {y2, y3, y4} + {y2y3, y3y4, y4y2, y2v2, y2y1, y3y1, y3u, y4u, y4zr3−1}.

Then G2 is a triangle-extension of G1 so is M -independent by Lemma 7.2. Since
G2 = (H ∪ P2 ∪ P3)

2 + uv1, we can now apply Lemma 7.5 to deduce that G2 is
M -independent.

We next consider the case when r1 = 5 and r2 = 4. Since r1 + r2 + r3 ≥ 12, we have
r3 ≥ 3. Let F = H∪ (P3−{u, zr3−1})∪ (P2−{y2, y3, u}). Since H2 is M -independent,
F 2 is M -independent by Lemma 7.3. Let

G1 = F 2 + {u, zr3−1} + {uv1, uy1, uzr3−2, zr3−1u, zr3−1zr3−2, zr3−1zr3−3},

taking zr3−3 = v3 if r = 3. Then G1 can be obtained from F 2 by two 0-extensions, so
is M -independent by Lemma 2.1. Let

G2 = (G1 − uy1) + {y2, y3} + {y2y3, y2y1, y2v2, y2u, y3y1, y3u, y3zr3−1}.

Then G2 is an edge-extension of G1 so is M -independent by Lemma 7.1. Since G2 =
(H∪P2∪P3)

2+uv1, we can now apply Lemma 7.5 to deduce that G2 is M -independent.
Finally we consider the case when r1 = r2 = 4. Since r1 + r2 + r3 ≥ 12 and r1 ≥

r2 ≥ r3, we have r3 = 4. Let F = H ∪ {x1, y1, z1} ∪ {x1v1, y1v2, z1v3}. Since H2 is M -
independent, F 2 is M -independent by Lemma 7.3. Let G1 = F 2 +u+{ux1, uy1, uz1}.
Then G1 is a 0-extension of F 2, so is M -independent by Lemma 2.1. Let

G2 = (G1 − uy1) + {y2, y3} + {y2y3, y2y1, y2v2, y2u, y3y1, y3u, y3x1}.

Then G2 is an edge-extension of G1 so is M -independent by Lemma 7.1. Let

G3 = (G2 − uz1) + {z2, z3} + {z2z3, z2z1, z2zr3−4, z2u, z3u, z3z1, z3y3}.

Then G3 is an edge-extension of G2 so is M -independent by Lemma 7.1. Let

G4 = (G3 − y3x1) + x3 + {x3x1, x3u, x3y3, x3z3}.

Then G4 is a 1-extension of G3 so is M -independent by Lemma 2.2. Finally, we have

G2 = (G4 − ux1) + x2 + {x2x1, x2x3, x2u, x2v1}.

Thus G2 is a 1-extension of G4 so is M -independent by Lemma 2.2. •
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8 Independent squares of sparse graphs

In this section we show that squares of sufficiently sparse graphs are M -independent.

Lemma 8.1. Let G = (V,E) be a connected graph in which all vertices have degree
two or three. Suppose that G is not a cycle, G contains no closed ears, and k|E| ≤
(k + 1)(|V | − 1) for some positive integer k. Then G has a claw of size (r1, r2, r3) for
some r1 + r2 + r3 ≥ k + 2.

Proof: Let n2, n3 be the number of vertices of G of degree two and three respectively.
Then |E| = n2 + 3

2
n3. Let H be the 3-regular multigraph obtained by suppressing all

vertices of degree two in G and w : E(H) → Z+ be defined by letting w(e) be the
length of the ear in G corresponding to e, for each e ∈ E(H). Note that H is loopless
since G has no closed ears. For v ∈ V (H) let w(v) be the sum of the weights of the
edges incident to v. Then we have

∑

v∈V (H)

w(v) = 2|E| = 2n2 + 3n3. (14)

Since k|E| ≤ (k + 1)(|V | − 1) we also have

k(n2 + 3
2
n3) ≤ (k + 1)(n2 + n3 − 1),

and hence n2 ≥
1
2
kn3 − n3 + k + 1. Substituting into (14) we obtain

∑

v∈V (H)

w(v) ≥ (k + 1)n3 + 2k + 2.

Thus there exists a vertex v ∈ V (H) with w(v) ≥ k + 2. •

Theorem 8.2. Let G = (V,E) be a graph of maximum degree at most three. If
10i(X) ≤ 11(|X| − 1) for all nonempty X ⊆ V , then G2 is M-independent.

Proof: Suppose the theorem is false and choose a counterexample G with as few
vertices as possible. Then G is connected. If G has a vertex v of degree one then
we may choose a uv-ear P in G. Let H = G − (P − u). By induction H2 is M -
independent. Thus G2 is M -independent by Lemma 7.3. Hence all vertices of G have
degree two or three.

Suppose G has a uv-ear P of length at least six, for some u, v ∈ V . Let H = G−(P−
{u, v}). By induction H2 is M -independent. Thus G2 is M -independent by Lemma
7.4. Hence all ears of G have length at most five. Thus, since 10i(X) ≤ 11(|X| − 1)
for all nonempty X ⊆ V , G is not a cycle and G contains no closed ears.

By Lemma 8.1, G has a claw W of size (r1, r2, r3) where r1 + r2 + r3 ≥ 12. Since
r1 < 6, we have r2 + r3 > 6. Let v1, v2, v3 be the vertices of attachment of W in G,
and let H = G − (W − {v1, v2, v3}). By induction H2 is M -independent. Thus G2 is
M -independent by Lemma 7.6. •
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9 Further remarks

In [9] we study the rigid components (i.e. maximal rigid subgraphs) of molecular
graphs and show that two other conjectures in combinatorial rigidity (due to Dress
and Jacobs, respectively) imply Conjecture 1.3. Furthermore, by assuming the truth
of Conjecture 1.2, we give an efficient algorithm for computing the rigid components
of a molecular graph.
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