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Upgrading edge-disjoint paths in a ring

Jácint Szabó?

Abstract

In this paper we introduce the upgrading problem for edge-disjoint paths. In
the off-line upgrading problem a supply graph G and two demand graphs H1

and H2 are given on the same vertex set. What is the maximum size of a set
F ⊆ E(H1)∩E(H2) such that F has a routing in G which can be extended to a
routing of Hi in G, for i = 1, 2? In the online upgrading problem we are given a
supply graph G, a demand graph H with a routing and another demand graph
H2 such that E(H) ⊆ E(H2). What is the maximum size of a set F ⊆ E(H)
such that the restriction of the given routing to F can be extended to routing
of H2? Thus, depending on whether the graphs are directed or undirected, we
have four different versions. In this paper we give full solution for the case when
G is a ring and the demand graphs are stars. All four versions are NP-complete
in general.

1 Introduction

The following notions are meant both in the directed and in the undirected case. Let
G be a supply graph with capacity function c : E(G) → N and let H be a demand
graph on the same vertex set V . A map P from E(H) is a routing of H in G if, for
each edge f ∈ E(H) joining s to t, P(f) is an st path in G, moreover, for each edge
e ∈ E(G), at most c(e) of these paths use e. The number of the paths in P using
edge e is the load of e, denoted by lP(e). For F ⊆ E(H) we say that the routing P
of H extends the routing PF of F if PF = P|F . Now we introduce the two kinds of
upgrading problems.

Definition. In the off-line upgrading problem we are given a supply graph G,
a demand graph Hi on the same vertex set V , and a routing of Hi in G, for i = 1, 2.
Let ϕoff(G; H1, H2) denote the maximum size of a set F ⊆ E(H1) ∩E(H2) such that
F has a routing in G which can be extended to a routing of Hi in G, for i = 1, 2.
Determine ϕoff(G; H1, H2).
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Section 1. Introduction 2

Definition. In the online upgrading problem we are given a supply graph G,
a demand graph H with a routing P in G, and another demand graph H2 with a
routing in G, such that E(H) ⊆ E(H2). Let ϕon(G;P ; H2) denote the maximum size
of a set F ⊆ E(H) such that P|F can be extended to a routing of H2 in G. Determine
ϕon(G;P ; H2).

These problems are motivated by telecommunication networks. Assume that such
a network is given and different set of demands arise one at a time. Every time when
such a new demand graph arises, we have to route it online. Furthermore, if we prefer
routings where as much already present paths are kept intact as possible then we
arrive to the online upgrading problem. Note that here we may assume that the
previous demand graph is a subgraph of the new one. This observation explains why
our definition requires in the online upgrading problem that E(H) ⊆ E(H2).

The off-line upgrading problem may arise if there exists some time dependent
structure of the demand graphs so that we have enough computational capacity to off-
line route a sequence of demand graphs in such a way that we reroute as few already
existing paths as possible. Actually, our off-line upgrading problem concerns
with the case when there are only two demand graphs one after another, but we could
also introduce the off-line k-upgrading problem when a sequence of k demand
graphs is given and the goal is to minimize the total number of already existing paths
which are rerouted. We do not consider the k-upgrading problem in this paper.

In the definition of the upgrading problems it is assumed that routings of H1 and
H2 in G are given. We did this in order to exclude the NP-complete problem of
finding a routing of a demand graph in G. However, in Section 4 we prove that all
four versions of the upgrading problem is NP-complete. We do this by a reduction
of the two-commodity integral flow problem of Even, Itai and Shamir [2].

In this paper we solve the upgrading problem in one special setting.

Definition. A bidirected circuit is a directed graph with vertex set {v1, v2, . . . , vn =
v0} (n ≥ 3) and edge set {vivi+1, vi+1vi : 0 ≤ i ≤ n − 1} (two oppositely directed
circuits on the same vertex set). An undirected or a bidirected circuit is a ring.

Section 2 considers the directed case. We give a polynomial algorithm together
with a minimax formula in the case when G is a bidirected circuit and all edges in the
demand graphs have the same source vertex. We give a solution for both the online

and the off-line upgrading problem.
In Section 3 we consider the undirected case, when G is a circuit and all edges in

the demand graphs have a vertex in common. We give polynomial algorithms for
both kinds of the problem, and a minimax formula for the off-line case. It seems that
there exists no nice formula for the undirected online case. We will not count exact
running times in this paper.

Note that if we have only one demand graph, which is a star as above, then the
cut condition is necessary and sufficient for the existence of a routing in G by the
max-flow-min-cut theorem. For the upgrading problem the answer is more involved
even if the supply graph is a ring.
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Section 2. The directed case 3

Due to its significance in telecommunication networks, many researchers studied the
routing problem in rings, with only one, not necessarily star, demand graph. The cut
condition is not sufficient for the existence of a fractional routing in a bidirected circuit,
explaining why we can find a fractional routing in a bidirected circuit only by solving a
linear program. On the contrary, in the undirected case the cut condition is sufficient,
and the first combinatorial algorithm finding a fractional routing in a circuit was
sketched by Schrijver, Seymour and Winkler [6]. Their method was further enhanced
by Király [4]. Shepherd and Zhang [5] gave an algorithm finding a minimum weight
fractional routing in an edge weighted undirected circuit. Wilfong and Winkler [7]
described an algorithm finding a routing in a bidirected circuit with integer capacities,
provided that a fractional routing exists. In the undirected case a routing can be
given in polynomial time by the method of Frank [3]. When the value of the demands
are integer not restricted to be 1, and we require them to be unsplittable, we get
an NP-complete problem even if the supply graph is a ring (Cosares and Saniee
[1]). In the undirected case, Schrijver, Seymour and Winkler [6] gave a combinatorial
approximation algorithm which, provided that a fractional routing exists, returns an
unsplittable routing requiring 3

2
D additional capacity on each edge, where D is the

maximum value of the demands. Their solution works for the directed case, too.
The idea of upgrading leads to other new questions of combinatorial optimization,

which may prove to be interesting on their own. E.g. the edges of a bipartite graph
are colored red, blue or both. Determine the maximum size of a matching consisting
of red-blue edges which can be extended both to a red perfect matching and to a blue
perfect matching. We do not know the complexity of this problem.

2 The directed case

Let G be a bidirected circuit with vertex set V . A directed demand graph is called a
star centered at s ∈ V if the source of each of its edges is s. In this section we give
algorithmic proofs of minimax formulas for both kinds of the upgrading problem

in the case when G is a bidirected circuit and both H1 and H2 are stars centered at
the same s ∈ V . In this section G, H, H1 and H2 always denote such directed graphs.
First we need some definitions.

Definition 2.1. From the two directions of the bidirected circuit G we choose one to
be the forward and the other one to be the backward direction. Accordingly, an edge
e ∈ E(G) can be forward or backward, and from the two possible u → v paths for

u, v ∈ V , [u, v] denotes the forward and
←−−
[u, v] the backward path (if u = v then both

consist of only this vertex). Let (u, v] = [u, v]− u. Finally, let ←−e ∈ E(G) denote the
reversely oriented pair of e ∈ E(G).

For star demand graphs we may assume that each routing has a special structure.

Definition 2.2. We say that a routing P of H is smooth if there exists a vertex
z ∈ V − s such that for all demands f ∈ E(H) with target t 6= z it holds that if
t ∈ V [s, z] (resp., t ∈ V [z, s]) then P(f) is the forward (resp., backward) s→ t path.
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Section 2. The directed case 4

The demands with target z may be routed in either direction. z is called a counter
vertex of P .

Lemma 2.3. For each routing P of a star demand graph H in a bidirected circuit,
H has a smooth routing P ′ with lP ′ ≤ lP .

Proof: Assume that f1 and f2 are demands joining s to t1 6= t2 resp., such that
P(fi) contains t3−i, for i = 1, 2. Now rerouting both demands to the other paths we
do not increase the load on any edge and we even decrease the load at some edges.
So after a finite number of steps the modified routing P ′ contains no such demands
f1, f2, implying that P ′ is smooth.

Note that this proof was algorithmic.

Definition 2.4. For a star demand graph H centered at s and for u, v ∈ V let

dH(u, v) = |{f : f ∈ E(H) with target in [u, v]}|.

We say that the forward edge e1 ∈ E(G) with target t1 and the backward edge
e2 ∈ E(G) with target t2 face each other if t1 ∈ V (s, t2]. Let dH(e1, e2) = dH(t1, t2).
Finally, for e ∈ E(G) let

rH(e) = min{c(←−e ) + c(e′)− dH(←−e , e′) : e′ ∈ E(G) faces ←−e }.

Call a routing of some F ⊆ E(H1) ∩ E(H2) extendible if it can be extended to a
routing of Hi in G, for i = 1, 2. Note that any extendible routing of F ⊆ E(H1) ∩
E(H2) has load at most rHi

(e) on edge e ∈ E(G), for i = 1, 2. Now we prove a
minimax formula for the off-line upgrading problem.

Theorem 2.5. Let G be a bidirected circuit and H1, H2 be stars centered at s ∈
V (G) with routings in G. We denote by H the graph with vertex set V and edge set
E(H1) ∩ E(H2). Then

ϕoff(G; H1, H2) ≤ |E(H)| −max {dH(e1, e2)− rH1
(e1)− rH2

(e2)}

taken over all facing pair of edges e1, e2 ∈ E(G). Moreover, either equality is attained
for some facing pair e1, e2 or ϕoff(G; H1, H2) = |E(H)|.

Proof: The inequality is obvious. For the other assertion, assume that ϕoff(G; H1, H2)
< |E(H)|. Among all maximum size edge sets F ⊆ E(H) with an extendible routing,
choose one with an extendible routing P minimizing

∑

{lP(e) : e ∈ E(G)}. Denote
the extending routing of Hi − F by Pi, for i = 1, 2. By Lemma 2.3, we can assume
that both P1 and P2 are smooth with counter vertices z1, z2. Assume that, say,
z1 ∈ V (s, z2] and redefine the counter vertex zi of Pi such that the paths [s, z1] and
[z2, s] are as short as possible. See Figure 1.
|F | < |E(H)| so let [s1, s2] be the minimal graph with s1 ∈ V (s, s2] which contains

the targets of all demands f ∈ E(H) \ F . By the maximality of F , the paths P1(f)
and P2(f) are distinct for each demand f ∈ E(H) \ F . Thus [s1, s2] ⊆ [z1, z2].
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Section 2. The directed case 5

We show that we can assume that P1(f) is a backward path for all f ∈ E(H) \ F .
This clearly holds if z1 6= z2. If z1 = z2 and there exist demands f1, f2 ∈ E(H)\F such
that P1(f1) is a forward and P1(f2) is a backward path then we could reroute both
paths in P1 hence adding f1 and f2 to F , a contradiction. So by possibly changing
the role of H1 and H2, the above assumption holds.

Let f ∈ E(H) \ F be a demand with target tf . We state that there exists no
demand g ∈ F with target tg 6= tf such that P(g) contains tf . Suppose otherwise
and assume that, say, P (g) is a forward path. Now the routing P ′ of F − g + f with
P ′(f) = P2(f), P ′|F−g = P|F−g is clearly extendible, contradicting to the choice that
P minimized the sum of its loads. Hence any vertex in [s1, s2] is a counter vertex of
P .

forward direction
s

z2

s2

z1P1(h)

s1

P1(f)

e2 e1e

e′

Figure 1: The off-line problem in the directed case

Let f ∈ E(H) \ F be a demand with target s1, see Figure 1. P1(f) cannot be
rerouted in P1 to the forward path by the maximality of F hence there exists a
forward edge e′ ∈ E[s, s1] such that lP1

(e′)+ lP(e′) = c(e′). Note that lP1
(e′) > 0 since

P2(f) loads e′. Thus e′ ∈ E[s, z1] and we can choose a demand h ∈ E(H1) \ E(H)
joining s to z1 for which P1(h) is a forward path. Now we cannot reroute both f and

h in P1 by the maximality of F , thus there exists a backward edge e ∈ E
←−−−−
[s1, z1] such

that lP1
(e) + lP(e) = c(e). As s1 is a counter vertex of P , we have lP(e) = 0. Let

e1 = ←−e . Summarizing, s1 (resp. z1) is a counter vertex of P (resp. P1), e′ ∈ E[s, z1]

and e ∈ E
←−−−−
[s1, z1] so

rH1
(e1) ≤ c(e) + c(e′)− dH1

(e, e′) = (lP1
(e) + lP1

(e′)) + lP(e′)− dH1
(e, e′) =

= dH1−F (e, e′) + (dF (e, e′) + lP(e1))− dH1
(e, e′) = lP(e1).

Thus lP(e1) = rH1
(e1). Similarly, there exists a backward edge e2 ∈ E

←−−−−
[z2, s2] with

lP(e2) = rH2
(e2). s1 and s2 are counter vertices of P hence dF (e1, e2) = lP(e1)+lP(e2).

Finally,
dH(e1, e2)− rH1

(e1)− rH2
(e2) =

= dH−F (e1, e2) + dF (e1, e2)− lP(e1)− lP(e2) = dH−F (e1, e2) = |E(H) \ F |,

proving the assertion.
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Section 2. The directed case 6

One can observe that this proof is algorithmic. Starting from the empty routing P
of F = ∅, in each step we either increase the cardinality of F or we change F keeping
its cardinality such that the sum of the loads of P strictly decreases.

The following proof of a formula for the online upgrading problem is also
algorithmic.

Theorem 2.6. Let G be a bidirected circuit and H2 be a star centered at s ∈ V (G)
with a routing in G. Let H be a subgraph of H2 with a routing P in G. Then

ϕon(G;P ; H2) ≤ |E(H)| −max
{

dH2−E(H)(e1, e2) + lP(e1) + lP(e2)− c(e1)− c(e2)
}

taken over all facing pair of edges e1, e2 ∈ E(G). Moreover, either equality is attained
for some facing pair e1, e2 or ϕon(G;P ; H2) = |E(H)|.

Proof: The inequality is clear. For the second assertion, assume that ϕon(G;P ; H2)
< |E(H)|. Let F ⊆ E(H) be a maximum size edge set for which P ′ = P|F can be
extended to a routing of H2 in G. Denote this extending routing of H2 − F by P2.
By Lemma 2.3, we may assume that P2 is smooth. Let z1 and z2 be counter vertices
of P2 minimizing [s, z1] and [z2, s]. Possibly z1 = z2. See Figure 2.
|F | < |E(H)| and F is maximal so there exists a demand f ∈ E(H)\F with target

tf such that, say, P(f) is a backward and P2(f) is a forward path. Choose f such that
[tf , z1] is minimal. P2(f) cannot be rerouted to the backward path by the maximality

of F hence there exists a backward edge e ∈ E
←−−−
[s, tf ] such that lP2

(e) + lP ′(e) = c(e).

Observe that P(f) shows that lP2
(e) > 0, implying that e ∈ E

←−−−
[s, z2] and that there

exists a demand h ∈ E(H2) \ F with target z2 for which P2(h) is a backward path.
Now we cannot reroute both P2(f) and P2(h) in the routing P2 by the maximality
of F so there exists a forward edge e1 ∈ E[tf , z2] such that lP2

(e1) + lP ′(e1) = c(e1).
Note that no path in P2(E(H) \ F ) loads e1 by the choice of f .

forward direction
s

z2 z1

tfP2(f)P2(h)

e2 e1

Figure 2: The online problem in the directed case

Now there are two cases. If no demand in E(H)\F is routed in the backward path
in P2 then choose e2 = e. Otherwise if f ′ ∈ E(H) \ F is routed in the backward path
in P2 then P(f ′) shows that lP2

(e1) > 0 and hence that e1 ∈ E[tf , z1]. Applying the

above considerations in the backward sense we get that there exists an edge e2 ∈
←−−−
[s, z2]
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Section 3. The undirected case 7

such that lP2
(e2)+lP ′(e2) = c(e2) and no path in P2(E(H)\F ) loads e2. Summarizing,

in both cases c(ei) = lP2
(ei) + lP ′(ei) (i = 1, 2), z1 and z2 are counter vertices of P2

hence lP2
(e1) + lP2

(e2) = dH2−F (e1, e2), moreover, no path in P2(E(H) \ F ) loads ei

thus dH2−F (e1, e2) = dH2−E(H)(e1, e2) and

lP(e1)− lP ′(e1) + lP(e2)− lP ′(e2) ≥ |E(H) \ F |.

So
dH2−E(H)(e1, e2) + lP(e1) + lP(e2)− c(e1)− c(e2) =

= dH2−F (e1, e2) + lP(e1) + lP(e2)− lP2
(e1)− lP2

(e2)− lP ′(e1)− lP ′(e2) ≥ |E(H) \ F |,

proving the theorem.

3 The undirected case

An undirected graph H is called a star centered at the vertex s ∈ V if each edge of H
is incident to s. In this section we consider the case when G is an undirected circuit
and both H1 and H2 are stars centered at the same s ∈ V . We give an algorithmic
proof of a minimax formula for the off-line upgrading problem. However, in
the online case we give only an algorithm finding an extendible set of maximum size.

Forward and backward directions, smoothness and counter vertices are defined as
in the directed case. An s − t path is forward (backward) if orienting it from s to t
results in a forward (backward) path.

Lemma 3.1. For each routing P of a star demand graph H in a circuit, H has a
smooth routing P ′ such that lP ′ ≤ lP .

Proof: It is easy to find an algorithmic proof exactly as in the directed case.

Definition 3.2. For a star demand graph H centered at s and for u, v ∈ V let

dH(u, v) = |{f : f ∈ E(H) joins s to a vertex in [u, v]}| .

For the edges ei = uivi ∈ E(G) (i = 1, 2) we say that the ordered pair (e1, e2) is facing
if the forward order of these vertices is s, u1, v1, u2, v2 (some of them may coincide).
In this case let dH(e1, e2) = dH(v1, u2). Finally, for the edge e = uv ∈ E(G) with
u ∈ V [s, v] let

r+
H(e) = min{c(e) + c(e′)− dH(e′, e) : e′ ∈ E[s, u]}, and

r−H(e) = min{c(e) + c(e′)− dH(e, e′) : e′ ∈ E[v, s]}.

Call a routing of some F ⊆ E(H1) ∩ E(H2) extendible if it can be extended to
a routing of Hi in G, for i = 1, 2. Note that in any extendible routing of F ⊆
E(H1) ∩ E(H2) at most br+

Hi
(e)/2c forward paths and at most br−Hi

(e)/2c backward
paths load e ∈ E(G), for i = 1, 2. Now we prove a minimax formula for the off-line

upgrading problem.
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Section 3. The undirected case 8

Theorem 3.3. Let G be a circuit and H1, H2 be stars centered at s ∈ V (G) with
routings in G. We denote by H the graph with vertex set V and edge set E(H1) ∩
E(H2). Then

ϕoff(G; H1, H2) ≤ |E(H)| −max

{

dH(e1, e2)−

⌊

r+
H1

(e1)

2

⌋

−

⌊

r−H2
(e2)

2

⌋}

taken over all facing pairs (e1, e2). Moreover, either equality is attained for some
e1, e2 or ϕoff(G; H1, H2) = |E(H)|.

Proof: The inequality is clear. For the other assertion, assume that ϕoff(G; H1, H2)
< |E(H)|. Among all maximum size edge sets F ⊆ E(H) with an extendible routing,
choose one with an extendible routing P minimizing

∑

{lP(e) : e ∈ E(G)}. Denote
the extending routing of Hi − F by Pi, for i = 1, 2. By Lemma 3.1 we can choose Pi

to be smooth with counter vertex zi, for i = 1, 2. Assume that, say, z1 ∈ V (s, z2] and
choose P1 (resp. P2) to be smooth having the most number of forward (resp. backward)
paths. Redefine z1 and z2 such that the paths [s, z1], [z2, s] are as short as possible.
See Figure 3.
|F | < |E(H)| so let [s1, s2] be the minimal graph with s1 ∈ V (s, s2] containing

the vertices t for all demands f ∈ E(H) \ F joining s to t. The maximality of F
implies that [s1, s2] ⊆ [z1, z2]. As in the directed case, we may assume that P1(f) is a
backward path for all f ∈ E(H) \ F . Also, exactly as in the directed case, it cannot
happen that there exists a demand f ∈ E(H) \F joining s to tf and a demand g ∈ F
joining s to tg 6= tf such that P(g) contains tf , because P minimized the sum of its
loads. Hence any vertex in [s1, s2] is a counter vertex of P .

forward direction
s

z2

s2

z1

s1

P1(f)

P1(h)

e′

e2 e1

Figure 3: The off-line problem in the undirected case

Let f ∈ E(H) \ F be a demand joining s to s1, see Figure 3. P1(f) cannot be
rerouted in P1 to the forward path by the maximality of F hence there exists an
edge e′ ∈ E[s, s1] such that lP1

(e′) + lP(e′) = c(e′). We show that we can choose
e′ ∈ E[s, z1]. Indeed, P2(f) loads the edges of [z1, s1] so otherwise we could reroute in
P1 the longest backward path of P1, contradicting that P1 maximized the number of
its forward paths. Now let h ∈ E(H1) \ E(H) be a demand joining s to z1 for which
P1(h) is a forward path. Now we cannot reroute both f and h in P1 by the maximality
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Section 3. The undirected case 9

of F . Thus there exists an edge e1 ∈ E[z1, s1] such that lP(e1) + lP1
(e1) ≥ c(e1)− 1.

Summarizing, s1 (resp. z1) is a counter vertex of P (resp. P1), e′ ∈ E[s, z1] and
e1 ∈ E[z1, s1] so

r+
H1

(e1) ≤ c(e1)+c(e′)−dH1
(e′, e1) ≤ (lP1

(e1)+lP1
(e′))+(lP(e1)+lP(e′))−dH1

(e′, e1)+1 =

= dH1−F (e′, e1) + (dF (e′, e1) + 2 · lP(e1))− dH1
(e′, e1) + 1 = 2 · lP(e1) + 1.

Thus lP(e1) =
⌊

r+
H1

(e1)/2
⌋

. Similarly, there exists an edge e2 ∈ E[s2, z2] with lP(e2) =
br−H2

(e2)/2c. s1 and s2 are counter vertices of P hence dF (e1, e2) = lP(e1) + lP(e2).
Finally,

dH(e1, e2)−
⌊

r+
H1

(e1)/2
⌋

− br−H2
(e2)/2c =

= dH−F (e1, e2) + dF (e1, e2)− lP(e1)− lP(e2) = dH−F (e1, e2) = |E(H) \ F |,

proving the theorem.

The above proof is algorithmic.
Now we turn to the online upgrading problem. We are given a circuit G, a star

H2 centered at s ∈ V (G) with a routing in G and a subgraph H of H2 with a routing
P in G. We say that F ⊆ E(H) is extendible if P|F can be extended to a routing
of H2 in G. We present an algorithm returning an extendible set F ⊆ E(H) of size
ϕon(G;P ; H2). In Theorem 3.5 possibly no facing pair (e1, e2) gives equality, this is
why we cannot prove a nice minimax formula here. Nevertheless, if ϕon(G;P ; H2) <
|E(H)| then the gap is at most 1.

Definition 3.4. For e1, e2 ∈ E(G) let Pe1,e2
denote the set of demands f ∈ E(H) for

which P(f) contains both e1 and e2.

Theorem 3.5. Let G be a circuit and H2 be a star centered at s ∈ V (G) with a
routing in G. Let H be a subgraph of H2 with a routing P in G. Then

ϕon(G;P ; H2) ≤ µ := |E(H)| −max

{

|Pe1,e2
| −

⌊

c(e1) + c(e2)− dH2
(e1, e2)

2

⌋}

taken over all facing pairs (e1, e2). Moreover, ϕon(G;P ; H2) ∈ {|E(H)|, µ, µ − 1}.
We can decide which case occurs in polynomial time.

Proof: The inequality is clear. We present an algorithm showing the two other
statements. The algorithm maintains an extendible set F ⊆ E(H) and a routing
P|F ∪ P2 of H2. Let P ′ = P|F . In the beginning we can choose F = ∅ and P2 to
be the given routing of H2. In each step we either increase the size of F or find an
extendible set F− ⊆ E(H) such that |F−| = |F | and the sum of the loads of P|F− is
less than that of P ′. If F = E(H) then we are done so assume otherwise.

Choose the routing P2 of H2−F to be smooth and let z1 and z2 be counter vertices
of P2 such that the paths [s, z1], [z2, s] are as short as possible. Whenever a demand
f ∈ E(H)\F shows up with P(f) = P2(f) then we can add f to F , so we will assume
otherwise.
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First suppose that P2(f) is a forward path for all demands f ∈ E(H) \ F . In
this case choose P2 to be a smooth routing such that no forward path of P2 can
be rerouted to the backward path. This means that we have an edge e2 ∈ E[z1, s]
such that lP2

(e2) + lP ′(e2) = c(e2). If still |F | < |E(H)| then consider a demand
f ∈ E(H) \ F joining s to tf minimizing [tf , z1]. Now P(f) shows that actually
e2 ∈ E[z2, s]. Let h ∈ E(H2)− E(H) be a demand joining s to z2 such that P2(h) is
a backward path. If we can reroute both P2(f) and P2(h) in P2 then we increased F .
Otherwise there exists an edge e1 ∈ E[tf , z2] such that lP2

(e1) + lP ′(e1) ≥ c(e1) − 1.
Now E(H) \ F ⊆ Pe1,e2

by the choice of f . Hence

c(e1) + c(e2)− dH2
(e1, e2) ≤

≤ (lP2
(e1) + lP2

(e2)) + (lP ′(e1) + lP ′(e2))− dH(e1, e2)− dH2−E(H)(e1, e2) + 1 = (1)

= dH2−E(H)(e1, e2) + (2|F ∩ Pe1,e2
|+ dH(e1, e2))− dH(e1, e2)− dH2−E(H)(e1, e2) + 1 =

= 2|F ∩ Pe1,e2
|+ 1,

showing that |F | = µ, and we are done.
Now suppose that there exist demands f1, f2 ∈ E(H) \ F joining s to t1, t2 resp.,

such that P2(f1) is a forward and P2(f2) is a backward path. See Figure 4. Choose
f1 minimizing [t1, z1] and f2 minimizing [z2, t2]. Let hi ∈ E(H2) \ F be a demand
joining s to zi (i = 1, 2), such that P2(h1) is a forward and P2(h2) is a backward path
(possibly hi = fi). If we can reroute both P2(f1) and P2(h2) in P2 then we increased
F . Otherwise there exists an edge e1 ∈ E[t1, z2] such that lP2

(e1)+ lP ′(e1) ≥ c(e1)−1.
Both P(f1) and P(f2) load the edges of [z1, z2] so e1 ∈ E[t1, z1]. Similar considerations
give an edge e2 ∈ E[z2, t2] such that lP2

(e2) + lP ′(e2) ≥ c(e2)− 1. If we can choose e1

or e2 such that strict inequality occurs then we are done. Indeed, E(H) \ F ⊆ Pe1,e2

by the choice of f1 and f2, thus we can argue as in (1).

forward direction
s

z1
z2

P2(h1)P2(h2)

P2(f1)P2(f2)t2 t1

e2

e′e′′

e1

Figure 4: The online problem in the undirected case

So assume that lP2
(e)+ lP ′(e) ≤ c(e)− 1 holds for all e ∈ E[t1, z1]∪E[z2, t2]. P(f1)

and P(f2) shows that this holds for all e ∈ E[z1, z2], too. If it also holds for all
e ∈ E[t2, s] then we can reroute P2(f1) increasing F . Hence assume that we have an
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edge e′′ ∈ E[t2, s] such that lP2
(e′′) + lP ′(e′′) = c(e′′), and similarly, we have an edge

e′ ∈ E[s, t1] such that lP2
(e′) + lP ′(e′) = c(e′).

We say that F ′ ⊆ H is nice if there exist no two demands f ′ ∈ F ′ ∩ Pe1,e2
, f ′′ ∈

Pe1,e2
\ F ′ such that P(f ′′) is a proper subpath of P(f ′). We can assume that F is

nice since otherwise the routing P|F−f ′+f ′′ of F −f ′ +f ′′ can be extended to a routing
of H2 and the sum of its loads is less than that of P ′.

E(H) \ F ⊆ Pe1,e2
so exactly as in (1) we get that

c(e1) + c(e2)− dH2
(e1, e2) ≤ 2|F ∩ Pe1,e2

|+ 2. (2)

Thus ϕon(G;P ; H2) ≤ |F | + 1. Assume that F ∗ ⊆ E(H) is extendible and |F ∗| =
|F | + 1. Then clearly equality holds in (2). Let P∗ = P|F ∗ and let P∗ ∪ P∗

2 be a
routing of H2. Now

2|F ∗ ∩ Pe1,e2
| ≥ 2|F ∩ Pe1,e2

|+ 2 = c(e1) + c(e2)− dH2
(e1, e2) ≥

≥ (lP∗

2
(e1) + lP∗

2
(e2)) + (lP∗(e1) + lP∗(e2))− dH(e1, e2)− dH2−E(H)(e1, e2) ≥

≥ dH2−E(H)(e1, e2) + (2|F ∗ ∩ Pe1,e2
|+ dH(e1, e2))− dH(e1, e2)− dH2−E(H)(e1, e2) =

= 2|F ∗ ∩ Pe1,e2
|,

so equality holds throughout. First it follows that E(H)\F ∗ ⊆ Pe1,e2
. Second, for i =

1, 2, lP∗

2
(ei)+ lP∗(ei) = c(ei), thus lP2

(ei) = lP∗

2
(ei) holds, because lP∗(ei) = lP ′(ei)+1.

Third, we get that for all f ′ ∈ E(H2)−E(H) the path P∗
2 (f ′) does not contain both e1

and e2. With the notation P− = (P ′ ∪P2)|E(H2)\Pe1,e2
and P∗

− = (P∗ ∪P∗
2 )|E(H2)\Pe1,e2

we get that lP−
(e) = lP∗

−

(e) for all e ∈ E[s, t1]∪E[t2, s]. We can assume that also F ∗ is
nice so if, say, |{f ∈ F ∗\F : P(f) is a forward path}| = g > 0 then |{f ∈ F \F ∗ : P(f)
is a backward path}| = g−1. But then lP∗∪P∗

2
(e′) ≥ lP ′∪P2

(e′)+g−(g−1) = c(e′)+1,
a contradiction. So F is already maximum.

4 Complexity issues

In this section we prove that the upgrading problem is NP-complete in all four
versions for general graphs. Even, Itai and Shamir [2] proved that the following two-

commodity integral flow problem is NP-complete in both the directed and
in the undirected version. Given a graph G with vertices s1, t1, s2, t2 ∈ V (G) and
integers k1, k2. Decide if G has a collection of edge-disjoint paths consisting of k1

paths joining s1 to t1 and k2 paths joining s2 to t2.
The following definition is meant both in the directed and in the undirected case.

Definition 4.1. Given a supply graph G and a demand graph H on the same vertex
set. We say that we add a new demand edge f to H blocking the edge set {e1, . . . , el} ⊆
E(G), where l = 1 or l = 2, if we add f to E(H) and modify G as shown in Figure 5
(in the undirected case forget the orientations in the figure). We say that the routing
saibit of f forbids ei, 1 ≤ i ≤ l, see Figure 5.
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(1) (2)

u1u1 u1

v1v1 v1

ss

tt

u2u2u2

a2

b2

v2v2v2

a1a1

b1b1

e1e1

e1

e2

e2
e2

ff

Figure 5: Blocking the edge sets (1) {e1} and (2) {e1, e2}

Observe that the addition of a demand to H which blocks {e1} is equivalent to
deleting e1 from G both in the directed and in the undirected setting. Similarly,
adding a demand f blocking a pair {e1, e2} is tantamount to that at most one of e1

and e2 can be used in any routing of H. This edge is the one which is not forbidden
by the routing of f . This is clear for directed graphs and also easy to see for the
undirected case.

Theorem 4.2. All four versions of the upgrading problem are NP-complete.

Proof: We detail only the directed version, since the undirected case is analogous.
Let G′ be a directed graph with vertices s1, t1, s2, t2 ∈ V (G′) and integers k1, k2,
an instance of the directed two-commodity integral flow problem. Let
k = max{k1, k2}.

We construct an auxiliary graph for later reference. Add two vertices s and t to
V (G′), and add ki parallel ssi edges and ki parallel tit edges for i = 1, 2 to E(G′),
resulting in the directed graph I. Let the capacity of each edge be 1. We will need
that one can present an integer s− t flow in I of value k1 + k2 in polynomial time, if
a fractional one exists.

We construct another auxiliary graph G′′, which will be used as a skeleton of the
supply graph in our reductions. Add four new vertices u1, u2, v1, v2 to V (G′), and
add k parallel uisj and tjvi edges, for i, j ∈ {1, 2}, to E(G′), as shown in Figure 6
with solid edges.

k1 edges

k2 edges

v2

v1

t2

t1s1

s2

G′

k edges

u1

u2

Figure 6: The auxiliary graph G′′

Now we turn to the off-line upgrading problem. Let E(H1)∩E(H2) consist of
ki parallel uivi edges, as shown in Figure 6 by dashed lines. Construct E(H1)−E(H2)
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by blocking {e} for each edge e joining ui to s3−i, for i = 1, 2. Also, construct E(H2)−
E(H1) by blocking {e} for each edge e joining t3−i to vi, for i = 1, 2. G is defined to
be the modified supply graph, with all capacities 1. From an integer s− t flow in I of
value k1 +k2 one can easily construct a routing of both H1 and H2 in G. On the other
hand, if no such flow exists in I then the directed two-commodity integral

flow problem in G′ has clearly no solution. Finally, observe that E(H1) ∩ E(H2)
has a routing in G which can be extended both to a routing of H1 and to a routing
of H2 if and only if G′ has a collection of edge-disjoint paths consisting of k1 paths
joining s1 to t1 and k2 paths joining s2 to t2.

In the online upgrading problem let E(H2)− E(H) consist of ki parallel uivi

edges, for i = 1, 2, as in Figure 6. First let E(H) = ∅. Now for i = 1, 2 take a perfect
matching between the k edges joining ui to s1 and the k edges joining ui to s2, and for
each pair e, e′ in this matching add a demand edge to H blocking {e, e′}. Similarly,
for i = 1, 2 take a perfect matching between the k parallel t1vi and t2vi edges, and
block each pair in this matching in H. These blocking demand edges form E(H), and
the modified supply graph G′′ is denoted by G, with all capacities 1. Finally, let P be
the routing of H in G which forbids exactly the edges of the form uis3−i and t3−ivi,
for i = 1, 2. From an integer s− t flow in I of value k1 + k2 one can easily construct a
routing of H2 in G. On the other hand, if no such flow exists in I then the directed

two-commodity integral flow problem in G′ has no solution. Now we only
have to observe that P can be extended to a routing of H2 in G if and only if G′ has
a collection of edge-disjoint paths consisting of k1 paths joining s1 to t1 and k2 paths
joining s2 to t2.
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