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Matroid matching with Dilworth truncation

Márton Makai?

Abstract

Let H = (V,E) be a hypergraph and let k ≥ 1 and l ≥ 0 be fixed integers.
Let’ M be the matroid with ground-set E s.t. a set F ⊆ E is independent if and
only if each X ⊆ V with k|X|−l ≥ 0 spans at most k|X|−l hyperedges of F . We
prove that if H is dense enough, then M satisfies the double circuit property,
thus Lovász’ min-max formula on the maximum matroid matching holds for
M. Our result implies the Berge-Tutte formula on the maximum matching
of graphs (k = 1, l = 0), generalizes Lovász’ graphic matroid (cycle matroid)
matching formula to hypergraphs (k = l = 1) and gives a min-max formula for
the maximum matroid matching in the 2-dimensional rigidity matroid (k = 2,
l = 3).

1 Introduction

The theory of matroid matching is known to involve a range of combinatorial opti-
mization problems concerning parity. One of its numerous equivalent definitions is as
follows. Let M be a matroid with ground-set E, with rank-function rM, with span-
function spM and let A ⊆

(
E
2

)
be a set of (not necessarily disjoint) pairs of E. For

short, if F ⊆ E and M ⊆ A, then rM(F ∪M) stands for rM(F ∪
⋃

M) and sp(F ∪M)
stands for sp(F ∪

⋃
M). A set of pairs M ⊆ A is said to be a matroid matching of A

w.r.t. M if rM (M) = 2|M |. The matroid matching problem is to compute a matroid
matching of maximum size, the size of which is denoted by νM(A).

Jensen and Korte [6] and Lovász [10] proved that the computation of νM(A) needs
exponential time if M is given by independence oracle. On the other hand, matroid
matching relates the two important fields of combinatorial optimization involving
submodularity and parity. This phenomenon shows its particular importance.

Starting from the matching problem of graphs and the matroid intersection problem,
good characterization of the maximum size of a matroid matching [9] and also a
polynomial algorithm [10] was obtained by Lovász for matroids represented over the
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Section 1. Introduction 2

field of reals. Important applications where the notion of matroid matching is less
apparent are the maximum forest problem of 3-regular hypergraphs, the minimum
number of vertices of a graph to pin to obtain a 2-dimensional rigid graph, and the
maximum genus of graphs. By a construction of Schrijver [12], also Mader’s maximum
number of vertex-disjoint A-paths can be computed by this algorithm. However,
Lovász’ min-max formula is given in a geometric language, it cannot be translated
to a combinatorial one. This gap is partially filled by Lovász’ structure theorem for
2-polymatroids [8] which enables us to derive combinatorial min-max formulae for
some of the above problems.

Dress and Lovász [3] pointed out that the tractability of the above solvable cases is
due to the double circuit property of the above matroids. A set U ⊆ E is said to be a
double circuit of M if rM(U) = |U | − 2 and rM(U − {e}) = |U − {e}| − 1 = |U | − 2
for every e ∈ U . A double circuit U has a rather simple structure, it has a partition
U1∪̇U2∪̇ . . . ∪̇Ud (called principal partition) s.t. Ci = U −Ui (i = 1, 2, . . . , d) are all of
its circuits. The double circuit is said to be non-trivial if its principal partition has
at least three classes. The crucial situation where most of the solution approaches to
the matroid matching problem can get stuck is the existence of a non-trivial double
circuit of a certain distinguished size. In this case, good characterization is known
only for matroids having some special structural property. Lovász proved that in the
case of full linear matroids (linear matroids with ground-set the full linear space),
the modularity of lattice of flats (subspaces) is sufficient for this. However, there
are cases where modularity does not hold but the maximum matching has a good
characterization.

Dress and Lovász said that the matroid M has the double circuit property (DCP
for short) if

rM/Z

( ⋂
1≤i≤d

spM/Z(Ci)

)
> 0 (1)

holds for each non-trivial double circuit U of each contraction M/Z of M (using the
above notations). The following result is implicit in Lovász [8] and explicit in Dress
and Lovász [3].

Theorem 1.1 (Lovász [8], see Dress and Lovász [3]). If M is a matriod having
the DCP and A ⊆

(
E
2

)
, then

νM(A) = min rM(Z) +
t∑

j=1

⌊
rM/Z(Aj)

2

⌋
,

where the minimum is taken for all flats Z ⊆ E ofM and for all partitions A1, A2, . . . , At

of A.

The min-max formula has the same form as in Lovász [9] for linear matroids, but
in the case of Dress and Lovász it is stated in a more general setting.

If there exists a matroid M′ with ground-set E ′ ⊇ E s.t. the restriction of M′ to
E is M, then νM(A) = νM′(A). Thus, the natural question which arises is to explore
the class of matroids which have the DCP, and matroids which have extensions having

EGRES Technical Report No. 2005-11



Section 1. Introduction 3

DCP. Dress and Lovász proved that full linear, full algebraic, full transversal, and full
graphic matroids have the DCP, for definitions see [3]. In other words, every linear,
algebraic, transversal, and graphic matroid is a restriction of a matroid which has the
DCP.

Based on lattice theoretic concepts, Björner and Lovász [2] introduced the class of
pseudomodular matroids and they have shown that the above mentioned matroids
are pseudomodular. Later, Hochstättler and Kern [4] proved that pseudomodular
matroids have the DCP.

How can we exploit that M is a restriction of a member of one of the above classes?
Most of the matroids and polymatroids which we meet in applications are linear, as
these are constructed from free matroids by the operations of sum, series and parallel
extensions, principal extensions, truncations, Dilworth truncations, restrictions, con-
tractions and dualizations, and these operations keep representability over the field
of reals. Some of the above operations, (e.g. Dilworth truncation) are polymatroid
operations, however, this does not cause problem due to the well-known correspon-
dance of matroids and polymatroids proved by Pym and Perfect [11]. However, if
only linearity is known, then the matroid is extended to the full linear space and
combinatorial min-max formula cannot be expected. Moreover, some of the matroids
defined by Dilworth truncation are not known to be deterministically representable,
which is a requirement for computational results.

Björner and Lovász [2] prove that the class of pseudomodular matroids is closed
under most of the above operations, however, they put the question of finding pseu-
domodular lattices whose Dilworth truncations are pseudomodular. Hence, if the
matroid is defined by Dilworth truncation, it can be difficult to extend it to a pseu-
domodular matroid.

Thus it remains a great challenge to explore combinatorially suggested tractable
classes which give a more unified view of the solvable cases. Our main goal is to take
a step in the way of better comprehension of the matching problem of matroids defined
by Dilworth truncation. This is carried out by considering the matroid matching in
the following class of purely combinatorially defined matroids. This may be a class
where Dilworth truncation arises in the most simple way, but even this gives a more
unified view of some solved cases and also contains previously unsolved problems.

Let k ≥ 1 and l ≥ 0 be fixed integers and let H = (V, E) be a finite hypergraph.
Let us define b : 2V → Z by b(X) = k|X| − l if k|X| − l ≥ 0 and 0 otherwise. For
X ⊆ V and F ⊆ E let F [X] = {e ∈ F : e ⊆ X}. Finally, let M be the matroid
(called (k, l)-matroid) with ground-set E s.t. F ⊆ E is independent in M if and only
if |F [X]| ≤ b(X) for each X ⊆ V . We may suppose that each hyperedge has size
bigger than l

k
since the smaller hyperedges are loops. The hyperedges of size two will

be called simply edges.
The particular interest of the matroid matching of this matroid is due to the fol-

lowing more special problem. Let H ′ = (V, E ′) be a hypergraph, and we ask for the

largest set F ′ ⊆ E ′ s.t. |F ′[X]| ≤ k|X|−l
2

for every X ⊆ V , k|X| − l ≥ 0. Notice
that, if H ′ is a graph, k = 1, l = 0, then this is exactly the matching problem of the
graph H ′. For graphs and k = l = 2, we get back the maximum forest problem. If
H ′ is a 3-regular hypergraph, k = l = 1 and F ′ ⊆ E ′, then |F ′[X]| ≤ |X|−1

2
holds for

EGRES Technical Report No. 2005-11



Section 1. Introduction 4

every ∅ 6= X ⊆ V if and only if the components of F ′ are triangle cacti (forests of
3-regular hypergraphs). Hence, in 3-regular hypergraphs and k = l = 1 we have the
maximum forest problem. Jackson and Jordán [5] proved that if H ′ is a graph and
k = 5, l = 7, then the arising edge-sets are independent in the 3-dimensional rigidity
matroid. The importance of this result is that the rank-function of the 3-dimensional
rigidity matroid is not known. Later we will give more examples.

The (k, l)-matroids can be shown to be linear, but for getting computational results
from the application of Lovász’ linear matroid matching theorem, the matroid has to
be represented. However, if H contains only edges, k = 2 and l = 3, then M is the 2-
dimensional rigidity matroid (Laman, [7]) which is not known to be deterministically
representable. Moreover, if we are looking for a combinatorial min-max relation, then
we cannot recline upon the linearity.

Thus, the matroid will be extended to a relatively small, combinatorially defined
matroid which has the DCP. This extension is obtained by adding further hyperedges
to H. As this operation does not affect νM(A), we may assume for simplicity that
the new hyperedges are already in H. We have to note that the new hyperedges have
no individual importance. In a matroid which have the DCP, the flats have a very
special structure. The main goal of adding new hyperedges is to reach this desired
structure. For this, we require that

rM(E[X]) = b(X) holds for every X ⊆ V. (2)

Our main theorems are the following.

Theorem 1.2. IfM is a (k, l)-matroid and rM(E[X]) = b(X) holds for every X ⊆ V ,
then M has the DCP.

Theorem 1.3. Let M be a (k, l)-matroid s.t. rM(E[X]) = b(X) holds for every
X ⊆ V and A ⊆

(
E
2

)
. Then for each contraction N of M,

νN (A) = min rN (Z) +
t∑

j=1

⌊
rN/Z(Aj)

2

⌋
, (3)

where the minimum is taken for all flats Z ⊆ E of N and for all partitions A1, A2, . . . , At

of A.

Theorem 1.3 immediately follows from Theorem 1.2 and Theorem 1.1. We give a
short study of some criteria which imply (2). First, it is easy to see that if each set
X ⊆ V of size bigger than l

k
is in E with multiplicity k|X| − l, then (2) holds. A

weaker condition also assures (2), as it is described in the following theorem.

Theorem 1.4. Let l = ck + d where c, d are integers, 0 ≤ c and 0 ≤ d < k. Suppose
that E contains all the subsets of V of size c + 1 with multiplicity k − d. Suppose
moreover that if ck

c+1
< d, then E contains all the subsets of V of size c + 2 with

multiplicity cd + d− ck. Then (2) holds.
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Section 2. Preliminaries 5

Although the conditions of Theorem 1.4 seem to be artificial, they translate to clear
requirements in the case of each particular matroid of our class.

The rest of the paper is organized as follows. After detailing the technical prelimi-
naries on the rank-function of M, we discuss some special cases of Theorem 1.3. This
is followed by the proofs.

2 Preliminaries

It is not difficult to prove that the above defined (k, l)-matroids are matroids. The
correctness of the following claims can be seen immediately for the reader who is
familiar with matroid theory and Dilworth truncation. We sketch the proof of the
equality

rM(F ) = min

{
|Y |+

∑
X∈X

b(X) : Y ⊆ F, X ⊆
(

V

> l
k

)
, F ⊆ Y ∪

⋃
X∈X

E[X]

}
. (4)

X1 ⊆
(

V
> l

k

)
is said to be a refinement of X2 ⊆

(
V

> l
k

)
if for each X1 ∈ X1 there exists

X2 ∈ X2 s.t. X1 ⊆ X2.

Claim 2.1. (i) The right hand side of (4) is a matroid rank-function.

(ii) If F ⊆ E, then there exists a unique pair (XF , YF ), XF ⊆
(

V
> l

k

)
, YF ⊆ F , s.t.

rM(F ) = |YF |+
∑

X∈XF
b(X), F ⊆ YF ∪

⋃
X∈XF

E[X] and for every (X , Y ) with
the same properties, X is a refinement of XF (and YF ⊆ Y ).

(iii) If F1 ⊆ F2 ⊆ E, then XF1 refines XF2.

Proof. For (i), the right hand side of (4) is monotone increasing and singletons get
value at most one. Thus the only non-trivial thing is to prove that the right hand side
of (4) is submodular. Let F1 and F2 be subsets of E and let resp. (X1, Y1) and (X2, Y2)
give the corresponding minimum in (4). In what follows, the word collection stands
for a family where multiplicities are counted. Algebraic operations with collections are
defined by the corresponding operations with the multiplicity functions. Starting from
G0 = X1 + X2, we apply a simple uncrossing procedure and a sequence of collections
G0,G1, . . . ,Gl is computed. If for some i ≥ 0, Gi has already been defined, X1, X2 ∈ Gi,
|X1 ∩X2| ≥ l

k
, X1 6⊆ X2 and X2 6⊆ X1, then let us define Gi+1 by Gi−{X1}− {X2}+

{X1 ∩ X2} + {X1 ∪ X2}. Clearly,
∑

X∈Gi
χE[X] ≤

∑
X∈Gi+1

χE[X] and
∑

X∈Gi
b(X) =∑

X∈Gi+1
b(X). Next, this procedure is finite, since

∑
X∈Gi

|X|2 <
∑

X∈Gi+1
|X|2 and∑

X∈Gi
|X|2 ≤ |Gi||V |2 = |G0||V |2. When the uncrossing finishes in Gl, {E[X] : X ∈

Gl} is a laminar family. Let Gmax contain one from each of the maximal members of Gl.
Then F1 ∪F2 ⊆ (Y1 ∩Y2)∪ (Y1−F2)∪ (Y2−F1)∪

⋃
X∈Gmax

E[X] and F1 ∩F2 ⊆ ((Y1 ∪
Y2)∩F1∩F2)∪

⋃
X∈Gl−Gmax

E[X], thus rM(F1)+rM(F2) = |Y1|+ |Y2|+
∑

X∈G0
b(X) =

|(Y1∩Y2)∪(Y1−F2)∪(Y2−F1)|+
∑

X∈Gmax
b(X)+|(Y1∪Y2)∩F1∩F2|+

∑
X∈Gl−Gmax

b(X) ≥
rM(F1 ∪ F2) + rM(F1 ∩ F2), which completes the proof.
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Section 3. Special cases 6

Next, we prove (ii). Let (X1, Y1) and (X2, Y2) be two different pairs which give the
minimum in the right hand side of (4). As there is a finite number of such pairs, it
is sufficient to construct a pair (X , Y ) with the same properties s.t. X1 and X2 refine
X . Let us apply the uncrossing procedure presented in the proof of part (i). Then
it constructs families Gmax for F ∪ F and Gl − Gmax for F ∩ F s.t. X1 and X2 are
refinements of Gmax. It can be seen easily that F ⊆ (Y1 ∩ Y2) ∪

⋃
X∈Gmax

E[X] and
E ⊆ (Y1∪Y2)∪

⋃
X∈Gl−Gmax

E[X], thus 2rM(F ) = |Y1|+|Y2|+
∑

X∈G0
b(X) = |Y1∩Y2|+∑

X∈Gmax
b(X) + |Y1 ∪ Y2|+

∑
X∈Gl−Gmax

b(X) ≥ 2rM(F ). Hence rM(F ) = |Y1 ∩ Y2|+∑
X∈Gmax

b(X), X1 and X2 are refinements of Gmax and F ⊆ (Y1 ∩Y2)∪
⋃

X∈Gmax
E[X].

Therefore both X1 and X2 refine X = Gmax.
Last we prove (iii). If we apply the above uncrossing procedure for XF1 and XF2 ,

then it produces families Gmax for F1 ∪ F2 = F2 and Gl − Gmax for F1 ∩ F2 = F1 s.t.
XF1 and XF2 are refinements of Gmax. We can see that F2 ⊆ (Y1 ∩ Y2) ∪ (Y2 − F1) ∪⋃

X∈Gmax
E[X] and F1 ⊆ ((Y1 ∪ Y2)∩F1)∪

⋃
X∈Gl−Gmax

E[X], thus rM(F1) + rM(F2) =
|Y1|+ |Y2|+

∑
X∈G0

b(X) = |(Y1 ∩Y2)∪ (Y2−F1)|+
∑

X∈Gmax
b(X) + |(Y1 ∪Y2)∩F1|+∑

X∈Gl−Gmax
b(X) ≥ rM(F2) + rM(F1). (ii) implies XF2 = Gmax, which completes the

proof.

Claim 2.2. If F ⊆ E, then {YF} ∪ {E[X] : X ∈ XF} forms a subpartition of E.

Proof. If YF ∩E[X] 6= ∅ for some X ∈ XF , then YF could be replaced by YF −E[X].
If |X1 ∩ X2| ≥ l

k
for some X1, X2 ∈ XF , then we could replace XF by XF − {X1} −

{X2}+ {X1 ∪X2}.

It can be proved easily that the matroid defined by the right hand side of (4) is
identical with our (k, l)-matroid. In the sense of these Claims, (2) can be reformulated
s.t. if X ⊆ V and b(X) > 0, then XE[X] = {X}.

For some applications, let %M(A) = min{|B| : B ⊆ A, rM(B) = rM(A)}. For any
matroid M, the computation of %M(A) is equivalent to computing νM(A). This is
formalized more specifically as follows.

Theorem 2.3 (Lovász, [10]). For any matroid M with ground-set E and A ⊆
(

E
2

)
,

νM(A) + %M(A) = rM(A).

3 Special cases

3.1 Berge-Tutte formula

First, we show that if k = 1 and l = 0, then Theorem 1.3 implies the Berge-Tutte
formula [1] as it was stated in Lovász [8]. In the Introduction we sketched a construc-
tion which contains the matching problem of graphs. The following, a bit different
construction gives an easier way to derive the Berge-Tutte formula.

Theorem 3.1 (Berge and Tutte, [1]). Let G = (V, E ′) be an undirected graph.
Then the maximum matching of G has cardinality

min |X|+
∑
C∈C

⌊
|C|
2

⌋
,
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3.2 Transversal matroids 7

where C denotes the set of vertex-sets of the components of G[V −X].

Proof. Let k = 1, l = 0 and let E be the set of singletons of V . It can be seen imme-
diately that (2) holds. The set of pairs for the matroid matching is A = {{{u}, {v}} :
uv ∈ E ′}. Observe that M ′ is a matching of G if and only if M = {{{u}, {v}} : uv ∈
M ′} is a matroid matching of A w.r.t. M.

Let Z ⊆ E and A1, A2, . . . , At give equality in the min-max relation stated in
Theorem 1.3 so that spM(Z) is minimal, and subject to this, t is as small as possible.
Clearly, YF = ∅ and |XF | ≤ 1 for any F ⊆ E. Let us define XF by XF = {XF}
if XF 6= ∅ and let XF = ∅ otherwise. Let X = XZ . If X = ∅, then νM(A) =∑t

j=1

⌊
1
2
|X⋃

Aj
|
⌋
≥
∑

C∈C
⌊

1
2
|C|
⌋
. If X 6= ∅, then XZ∪

⋃
Aj
∩ XZ∪

⋃
Aj′

= X for every

1 ≤ j < j′ ≤ t. Then, νM(A) = |X|+
∑t

j=1

⌊
1
2
|XZ∪

⋃
Aj
−XZ |

⌋
≥ |X|+

∑
C∈C

⌊
1
2
|C|
⌋
.

This is exactly what we have needed.

3.2 Transversal matroids

One of the usual interpretations of transversal matroids is that we have a hypergraph
H = (V, E) and F ⊆ E is independent if and only if |F [X]| ≤ |X| holds for every
X ⊆ V . Similarly to the case of Berge-Tutte formula, if each singleton hyperedge is
in E with multiplicity one, then (2) holds.

We also have to note that the transversal matroid matching can be solved in an
easier way. Tong, Lawler and Vazirani [14] showed that even the weighted case can
be reduced to the weighted matching problem of graphs.

3.3 Hypergraphic matroid and rigidity matroid

We have mentioned in the Introduction that the maximum forest problem of 3-regular
hypergraphs is also a special case. As in the case of the Berge-Tutte formula, this
problem fits into our set-up in two different ways. We switch to that one which
contains also the more general graphic matroid matching problem.

Let 1 ≤ k ≤ l ≤ 2k − 1. According to this choice, c = 1 and d = l − k. To satisfy
the requirements of Theorem 1.4, E has to contain 2k − l parallel edges on each pair
of vertices. If d > ck

c+1
= k

2
or equivalently l = k + d > 3k

2
, then we have to put

cd + d − ck = 2d − k = 2l − 3k parallel hyperedges of size three to each triple of
vertices. Next we consider the applications of this case.

If k = l = 1, then M is the hypergraphic matroid with ground-set E. As l ≤ 3k
2
,

then (2) holds if
(

V
2

)
⊆ E. If E contains only edges, then Theorem 1.3 specializes to

Lovász’ theorem on the maximum graphic matroid matching [8].

Theorem 3.2 (Lovász, [8]). Let A ⊆
((V

2)
2

)
and let M be the cycle matroid of the

graph
(
V,
(

V
2

))
. Then

νM(A) = min |V | − |P|+
t∑

j=1

⌊
rN (Aj)

2

⌋
,
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3.4 A connectivity augmentation problem 8

where the minimum is taken for all partitions P = {P1, P2, . . . , Pq} of V and for all
partitions A1, A2, . . . , At of A and N is the cycle matroid of the graph obtained from
(V,
⋃

Aj) by contracting the members of P.

If
⋃

A contains also hyperedges of size bigger than two, then Theorem 1.3 cannot
be rewritten in such a special form. In this case, the contraction cannot be described
by a partition of V . To see this, let e0, e1, . . . , em, m ≥ 3 be pairwise vertex-disjoint
hyperedges of size three and A = {{e0, ei} : 1 ≤ i ≤ m}. Then the only possibility
of obtaining equality in the min-max formula is Z = {e0} and Aj = {{e0, ej}},
1 ≤ j ≤ t = m.

If k = 2 and l = 3, then F ⊆ E is independent in M if and only if |F [X]| ≤ 2|X|−3
for every X ∈

(
V
≥2

)
. Notice that, if

⋃
A contains only edges, then this is the “smallest”

case when Theorem 1.3 gives a new result. Just as above, (2) is satisfied if
(

V
2

)
⊆ E.

If E contains only edges, then it is known that the bases of M are exactly the
2-dimensional minimally rigid graphs on V (Laman, [7]). Let G = (V, E ′) be a 2-
dimensional rigid graph and let A be a set of (not necessarily disjoint) pairs from E ′.
Then the maximum number of edge-pairs from A which are contained in a minimally
rigid subgraph of G is νM(A), which can be computed by Theorem 1.3. If G = (V, E ′)

is not a rigid graph but (V, E ′ ∪
⋃

A) is rigid, where A ⊆
((V

2)
2

)
, then %M/E′(A) is the

minimum cardinality of a set B ⊆ A s.t. (V, E ′ ∪
⋃

B) is rigid. This problem can be
solved by Theorem 1.3 and Theorem 2.3.

For larger k and l, (2) does not follow from
(

V
2

)
⊆ E. Say, if k = 3 and l = 5, then

a hyperedge of size three has to be put to each triple of vertices.

3.4 A connectivity augmentation problem

The problems discussed here were proposed by Zsolt Fekete. Let G = (V, E ′) be an
undirected graph, let 1 ≤ k ≤ l ≤ 2k − 1 and M be as above. Let moreover an other
edge-set E ′′ on V and a set of packets A ⊆ 2E′′

be given. We ask for the minimum
cardinality set B ⊆ A s.t. the rank of (V, E ′ ∪

⋃
B) is k|V | − l in M. Clearly, if A is

composed by singletons, then this is a minimum cardinality spanning subset problem
in a matroid.

Frank observed (personal communication) that if each packet is composed by p
parallel edges, p = k = l and k is part of the input, then then the problem is NP-
hard. The graph on 2 vertices obtained from G after contracting |V | − 2 pairs of
vertices consecutively contains k edge-disjoint spanning trees if and only if G has a
cut of size at least k. Hence, this reduces the maximum cut problem to our problem.

If p = 2 and k ≥ 1, l ≥ 0 are arbitrary integers, then we just have to compute
%M/E′(A). This contains the problem of adding a minimum number of capacity 2 edges
to G (from a prescribed set) so that the resulting graph has k edge disjoint spanning
trees (k = l). By Theorem 1.3 and Theorem 2.3, a combinatorial characterization is
achieved.

EGRES Technical Report No. 2005-11



Section 4. Structure of double circuits 9

4 Structure of double circuits

The key phenomenon in the background of Theorem 1.2 is the modular structure of
double circuits. Let Z ⊆ E be a flat of the (k, l)-matroidM, and let U be a non-trivial
double circuit of M/Z with principal partition U = U1∪̇U2∪̇ . . . ∪̇Ud. For the positive
integer n, let [n] = {1, 2, . . . , n}, and for T ⊆ [d], let C(T ) denote

⋂
t∈T spM/Z(Ct)

(where C(∅) is defined to be spM/Z(U)).

Theorem 4.1. If (2) holds, U is a non-trivial double circuit of M/Z with the above
notations, and T ⊆ [d], then

spM/Z (C(T − {i}) ∪ C(T − {j})) = C(T − {i, j}), (5)

where i, j ∈ T , i 6= j, and

rM/Z(C(T )) = |U | −
∑
t∈T

|Ut|+ |T | − 2. (6)

Proof. First, we have to take some observations on the structure of circuits of M/Z.

Claim 4.2. If C is a circuit of M/Z, then YC∪Z ⊆ YZ and |XC∪Z −XZ | = 1.

Proof. Since XZ is a refinement of XC∪Z , then
⋃

X∈XC∪Z
E[X] ⊇

⋃
X∈XZ

E[X] and
YC∪Z ∩

⋃
X∈XC∪Z

E[X] = ∅ imply YC∪Z ∩
⋃

X∈XZ
E[X] = ∅. If YC∪Z 6⊆ YZ , then let

e ∈ YC∪Z − YZ . In this case, rM/Z(C − e) = rM/Z(C) − 1, contradicting that C is a
circuit. Hence,

|C| = |YC∪Z |+
∑

X∈XC∪Z

b(X)− |YZ | −
∑

X∈XZ

b(X) + 1 =

∑
X∈XC∪Z

b(X)− |YZ [X]| −
∑

W∈XZ [X]

b(W )

+ 1.

Thus, |C[X]| ≥ b(X) − |YZ [X]| −
∑

W∈XZ [X] b(W ) + 1 for some X ∈ XC∪Z . If

|C[X]| ≥ b(X) − |YZ [X]| −
∑

W∈XZ [X] b(W ) + 2 for some X ∈ XC∪Z , then a hy-

peredge could be removed from C[X] without making C independent, contradict-
ing that C is a circuit. If there would be different X1, X2 ∈ XC∪Z with |C[Xi]| =
b(Xi)−|YZ [Xi]|−

∑
W∈XZ [Xi]

b(W )+1, then C[X1] could be removed from C without
making C independent, contradicting that C is a circuit, and finishing the proof.

Claim 4.3. If ∅ 6= T ⊆ [d], then YC(T ) ⊆ YZ and |XC(T ) − XZ | ≤ 1. If, moreover,
rM/Z(C(T )) > 0, then |XC(T ) −XZ | = 1.

Proof. The statement is proved by induction on |T |. If |T | = 1, then we are done by
Claim 4.2. Next, we suppose |T | ≥ 2, and let i ∈ T .

By induction we have XC({i}) − XZ = {Xi}. Similarly, either XC(T−{i}) − XZ = ∅
or XC(T−{i}) − XZ = {XT−{i}}. In the first case, XC(T ) = XZ . In the second case,
XC(T ) −XZ = {Xi ∩XT−{i}} if b(Xi ∩XT−{i}) > 0 and XC(T ) −XZ = ∅ otherwise.
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YC(T ) ⊆ YZ can be seen easily, as for each hyperedge e ∈ C({i}) ∩ C(T − {i}),
either e ∈ E[Xi] ∩ E[XT−{i}], thus e /∈ YC(T ), or e ∈ YC({i}) ∪ YC(T−{i}) ⊆ YZ . Last, if
XC(T ) −XZ = ∅, then rM/Z(C(T )) = 0, which proves the last statement.

The following claims have crucial role in proving the lower bound for rM/Z(C(T )).

Claim 4.4. If X1, X2, X3 ∈
(

V
> l

k

)
are s.t. b(Xi ∩ Xj) > 0 for every 1 ≤ i < j ≤ 3,

then

∑
1≤i<j≤3

b(Xi ∩Xj) + b(X1 ∪X2 ∪X3) ≤
3∑

i=1

b(Xi) + b(X1 ∩X2 ∩X3).

Proof. If k|
⋂

1≤i≤3 Xi|−l ≥ 0, then the inequality holds with equality. If k|
⋂

1≤i≤3 Xi|−
l < 0, then the right hand side is greater by l − k|

⋂
1≤i≤3 Xi|.

Claim 4.5. Let F1, F2 and F3 be flats of M/Z s.t. |XFi∪Z −XZ | = 1 and YFi∪Z ⊆ YZ

for every 1 ≤ i ≤ 3. Suppose, moreover, that rM/Z(Fi∩Fj) > 0 for every 1 ≤ i < j ≤
3. Then

∑
1≤i<j≤3

rM/Z(Fi ∩ Fj) + rM/Z(F1 ∪ F2 ∪ F3) ≤
3∑

i=1

rM/Z(Fi) + rM/Z(F1 ∩ F2 ∩ F3).

Proof. According to the hypothesis, let {Xi} = XFi∪Z − XZ , Zi = XZ − XFi∪Z , and
Yi = YZ − YFi∪Z . Then

rM/Z(Fi) = |YFi∪Z |+
∑

X∈XFi∪Z

b(X)− |YZ | −
∑

X∈XZ

b(X) =

− |Yi|+ b(Xi)−
∑
X∈Zi

b(X).

If W ∈ XZ and 1 ≤ i ≤ 3, then either W ⊆ Xi or |W ∩Xi| < l
k
. Therefore, if W ∈ XZ ,

X ∈ {X1 ∩X2, X1 ∩X3, X2 ∩X3, X1 ∩X2 ∩X3}, then W ⊆ X or |W ∩X| < l
k

also
holds.

By Claim 2.1, XZ refines X(Fi∩Fj)∪Z which refines both XFi∪Z and XFj∪Z . If b(Xi ∩
Xj) = 0 for some 1 ≤ i < j ≤ 3, then X(Fi∩Fj)∪Z would refine XZ , contradicting
rM/Z(Fi∩Fj) > 0. Thus b(Xi∩Xj) > 0. By (2), XE[Xi∩Xj ] = {Xi∩Xj} which refines
X(Fi∩Fj)∪Z . This together implies

X(Fi∩Fj)∪Z = {Xi ∩Xj} ∪ (XZ − (Zi ∩ Zj)),

rM((Fi ∩ Fj) ∪ Z) = b(Xi ∩Xj) +
∑

X∈XZ−(Zi∩Zj)

b(X) + |YZ − (Yi ∩ Yj)|,

and
rM/Z(Fi ∩ Fj) = −|Yi ∩ Yj|+ b(Xi ∩Xj)−

∑
X∈Zi∩Zj

b(X).
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Similar argument shows that if b(X1 ∩X2 ∩X3) > 0, then

X(F1∩F2∩F3)∪Z = {X1 ∩X2 ∩X3} ∪ (XZ − (Z1 ∩ Z2 ∩ Z3)).

If b(X1 ∩X2 ∩X3) = 0, then Z1 ∩ Z2 ∩ Z3 = ∅ and

X(F1∩F2∩F3)∪Z = XZ .

In both cases

rM/Z(F1 ∩ F2 ∩ F3) = −|Y1 ∩ Y2 ∩ Y3|+ b(X1 ∩X2 ∩X3)−
∑

X∈Z1∩Z2∩Z3

b(X).

Last,

F1 ∪ F2 ∪ F3 ∪ Z ⊆ E[X1 ∪X2 ∪X3] ∪
⋃

X∈XZ−(Z1∪Z2∪Z3)

E[X] ∪ (YZ − (Y1 ∪ Y2 ∪ Y3)),

and

rM/Z(F1 ∪ F2 ∪ F3) ≤ −|Y1 ∪ Y2 ∪ Y3|+ b(X1 ∪X2 ∪X3)−
∑

X∈Z1∪Z2∪Z3

b(X).

Now we apply Claim 4.4 and the statement follows.∑
1≤i<j≤3

rM/Z(Fi ∩ Fj) + rM/Z(F1 ∪ F2 ∪ F3) ≤

∑
1≤i<j≤3

−|Yi ∩ Yj|+ b(Xi ∩Xj)−
∑

X∈Zi∩Zj

b(X)


−

∣∣∣∣∣
3⋃

i=1

Yi

∣∣∣∣∣+ b

(
3⋃

i=1

Xi

)
−

∑
X∈Z1∪Z2∪Z3

b(X) ≤

3∑
i=1

(
−|Yi|+ b(Xi)−

∑
X∈Zi

b(X)

)
−

∣∣∣∣∣
3⋂

i=1

Yi

∣∣∣∣∣+ b

(
3⋂

i=1

Xi

)
−

∑
X∈Z1∩Z2∩Z3

b(X) =

3∑
i=1

rM/Z(Fi) + rM/Z(F1 ∩ F2 ∩ F3).

Claim 4.6. For i, j ∈ [d], i 6= j,

rM/Z(spM/Z(Ci)) = |U | − |Ui| − 1, (7)

rM/Z(spM/Z(Ci ∩ Cj)) = |U | − |Ui| − |Uj|, (8)

rM/Z(spM/Z(Ci) ∪ spM/Z(Cj)) = |U | − 2, (9)

spM/Z(Ci ∩ Cj) = spM/Z(Ci) ∩ spM/Z(Cj). (10)
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Proof. (7) is clear since Ci is a circuit. Ci ∩ Cj is independent, hence (8) follows.
For (9), U ⊆ spM/Z(Ci) ∪ spM/Z(Cj) ⊆ spM/Z(U). For (10), spM/Z(Ci ∩ Cj) ⊆
spM/Z(spM/Z(Ci) ∩ spM/Z(Cj)) = spM/Z(Ci) ∩ spM/Z(Cj) and rM/Z(spM/Z(Ci) ∩
spM/Z(Cj)) ≤ rM/Z(spM/Z(Ci))+rM/Z(spM/Z(Cj))−rM/Z(spM/Z(Ci)∪spM/Z(Cj)) =
|U | − |Ui| − |Uj| = rM/Z(spM/Z(Ci ∩ Cj)).

Now we turn to the proof of Theorem 4.1 by induction on |T |. Throughout the proof,
the singleton {i} is sometimes referred as i. For |T | = 0, (6) holds by definition. For
|T | = 1, (6) only is to be proved, which follows from (7). For |T | = 2, (5) follows from
(9), and (6) follows from (8) and (10).

So let us assume |T | ≥ 3 and T = [|T |] for sake of simplicity. First, (5) is proved.
It can be seen immediately that

C(T − i) ∪ C(T − j) ⊆ C(T − {i, j}).

By applying submodularity to C(T − i) ∪ C(T − j) and C(i), using

spM/Z(C(T − i) ∪ C(T − j) ∪ C(i)) = C(∅),

and
(C(T − i) ∪ C(T − j)) ∩ C(i) ⊇ C(T − j),

we get

rM/Z(C(T − i) ∪ C(T − j)) + rM/Z(C(i)) ≥
rM/Z(C(T − j)) + rM/Z(C(∅)) = rM/Z(C(T − {i, j})) + rM/Z(C(i)),

where the last equality is obtained by using the induction hypothesis for (6). As
C(T − {i, j}) is a flat, this implies

spM/Z(C(T − i) ∪ C(T − j)) = C(T − {i, j}),

proving (5).
For (6), again, we begin with the easier part, using only submodularity and induc-

tion:

rM/Z(C(T )) + rM/Z(C(T − {1, 2})) =

rM/Z(C(T − {1}) ∩ C(T − {2})) + rM/Z(C(T − {1}) ∪ C(T − {2})) ≤
rM/Z(C(T − {1})) + rM/Z(C(T − {2})) =(

|U | −
∑

i∈T−{1}
|Ui|+ |T | − 3

)
+

(
|U | −

∑
i∈T−{2}

|Ui|+ |T | − 3

)
.

By rM/Z(C(T − {1, 2})) = |U | −
∑

i∈T−{1,2} |Ui|+ |T | − 4, this yields

rM/Z(C(T )) = |U | −
∑
i∈T

|Ui|+ |T | − 2.
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For the reverse inequality, we apply Claim 4.5 for F1 = C(T −{2, 3}), F2 = C(T −
{1, 3}) and F3 = C(T − {1, 2}). Then

rM/Z(C(T )) = rM/Z(C(T − {2, 3}) ∩ C(T − {1, 3}) ∩ C(T − {1, 2})) ≥
3∑

i=1

rM/Z(C(T − i)) + rM/Z(C(T − [3]))−
∑

{i,j}∈([3]
2 )

rM/Z(C(T − {i, j}) =

3∑
i=1

(
|U | −

∑
k∈T−i

|Uk|+ |T | − 3
)

+

(
|U | −

∑
k∈T−[3]

|Uk|+ |T | − 5

)
−

∑
{i,j}∈([3]

2 )

(
|U | −

∑
k∈T−{i,j}

|Uk|+ |T | − 4

)
=

|U | −
∑
i∈T

|Ui|+ |T | − 2.

Proof of Theorem 1.2. Let Z ⊆ E and let U be a non-trivial (i.e. d ≥ 3) double circuit
of M/Z with principal partition U = U1∪̇U2∪̇ . . . ∪̇Ud. Using the above notations,
and by applying (6) to T = [d],

rM/Z(C([d])) = |U | −
∑
t∈[d]

|Ut|+ |[d]| − 2 = d− 2 > 0.

Proof of Theorem 1.4. For X ⊆ V with |X| ≤ c we have b(X) = 0, hence suppose
next |X| = c + 1. Then b(X) = k(c + 1) − (ck + d) = k − d, and the condition that
each hyperedge of size c + 1 is present with multiplicity k − d gives the proof.

Suppose now that |X| ≥ c + 2, and let X ⊆
(

V
> l

k

)
, Y ⊆ E s.t. Y ∪

⋃
W∈X E[W ] ⊇

E[X], rM(E[X]) = |Y | +
∑

W∈X b(W ). Let us choose X and Y s.t. |Y | is minimal
and to minimize |X | with the above primary conditions. If Y contains a hyperedge e
of size c + 1, then it contains all the k − d parallel copies of e. By removing e and its
copies from Y and adding e to X , we get a new Y and X contradicting the extreme
choice.

Suppose that for each X ′ ⊆ X, |X ′| = c + 2, there exists X ′ ⊆ W ′ ∈ X . If
|X| = c + 2, then we are done. If |X| ≥ c + 3, then there exists X ′, X ′′ ⊆ X,
|X ′| = |X ′′| = c + 2, |X ′ ∩ X ′′| = c + 1, X ′ ⊆ W ′ ∈ X and X ′′ ⊆ W ′′ ∈ X . Then
k|W ′| − l + k|W ′′| − l > k|W ′ ∪W ′′| − l, hence we could replace X by X −W ′−W ′′ +
{W ′ ∪W ′′}.

Thus there exists an X ′ having no such W ′. But the hyperedges of size c + 1
contained in X ′ are covered by X i.e. for each i ∈ X ′ there exists Wi ∈ X , i /∈ Wi,
X ′ − i ⊆ Wi. Then setting W =

⋃
i∈X′ Wi, |W | =

∑
i∈X′ |Wi| − c(c + 2). If d ≤ ck

c+1
,

then
∑

i∈X′(k|Wi| − l) ≥ k|W | − l, thus we could remove each Wi from X and insert
W , contradicting the extreme choice of Y and X . If d > ck

c+1
, then X ′ is in E with
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multiplicity cd + d − ck, and X does not cover these elements, they are included in
Y . In this case,

∑
i∈X′(k|Wi| − l) + cd + d− ck ≥ k|W | − l, we could remove each Wi

from X , insert W , and remove X ′ and its parallel copies from Y , which yields again
a contradiction.

5 Open Questions

The first polynomial matroid matching algorithm to solve problems which are not
known to be reduced to the matroid intersection and to the matching problem of
graphs was presented to linear matroids by Lovász [10]. Later, Dress and Lovász [3]
noticed that pursuing the layout of this algorithm might yield a polynomial algorithm
for the class of matroids having the DCP, provided that we are able to perform some
algorithmic manipulations which handle flats and double circuits.

We have to notice that in a certain crucial point, this algorithm heavily relies on
modularity. At the meantime, the author does not know how to extend Lovász’
algorithm to this more general case.

In proving the DCP for full graphic and full transversal matroids, Dress and Lovász
[3] put an intermediate step, they proved that these matroids have the weak series
reduction property, and that matroids having weak series reduction property have the
DCP.

The set S is said to be in series in U if S is a circuit of M/(U − S). The matroid
M is said to have the weak series reduction property if for all S ⊆ U ⊆ E s.t. S is
in series in U and spM(U − S) is connected, there is an element β ∈ E s.t. for each
U ⊆ S, S ∪ T is a circuit if and only if {β} ∪ T is a circuit.

For filling the gap in the hierarchy of matroid classes, Tan [13] proved that matroids
having weak series reduction property are pseudomodular. We give an example for a
(k, l)-matroids with (2) that does not have the weak series reduction property. There-
fore, we have to put the question weather (k, l)-matroids with (2) are pseudomodular
or not.

Let, k = 2 and l = 3, V = {x, y, u, v, z}, E =
(

V
2

)
, i.e. M is a 2-dimensional rigidity

matroid on 5 vertices. Let S = {xy, xu, xv} and U = S ∪
({y,u,v,z}

2

)
. Then, S is a

circuit of M/(U − S) and spM(U − S) is connected. Setting T1 =
({y,u,v,z}

2

)
− {uv}

and T2 =
({y,u,v,z}

2

)
− {uy}, we can see that S ∪ T1 and S ∪ T2 are circuits. The only

βi ∈ E s.t. {βi} ∪ Ti are a circuits, β1 = uv and β2 = uy. Thus, there is no β ∈ E
which satisfies the requirement of the weak series reduction property.
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