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On the Rank Function of the 3-Dimensional
Rigidity Matroid

Bill Jackson? and Tibor Jordán??

Abstract

It is an open problem to find a good characterization for independence or,
more generally, the rank function in the d-dimensional rigidity matroid of a
graph when d ≥ 3. In this paper we give a brief survey of existing lower and
upper bounds on the rank of the 3-dimensional rigidity matroid of a graph and
introduce a new upper bound, which may lead to the desired good characteri-
zation.

1 Introduction

The theory of rigidity and flexibility of frameworks has a wide range of applications
in applied geometry. It has been applied in statics [18], in molecular conformation
problems [4], and in computer aided design [11]. More recent applications include
localization problems of sensor networks [1] and formations of autonomous agents [6].

In this paper we focus on rigidity problems of 3-dimensional generic frameworks
and consider one of the main unsolved problems in combinatorial rigidity: the char-
acterization of rigid graphs in 3-space. First we give a brief survey of existing lower
and upper bounds on the rank of the 3-dimensional rigidity matroid of a graph and
then introduce a new upper bound, which may lead to the desired characterization.

A framework (G, p) in d-space is a simple graph G = (V, E) and a map p : V → Rd.
The rigidity matrix of the framework is a matrix R(G, p) of size |E| × d|V | with
rows indexed by E and sets of d consecutive columns indexed by V . For each edge
e = vivj ∈ E, the entries in the row e and in the d columns vi and vj contain the d
coordinates of p(vi) − p(vj) and p(vj) − p(vi), respectively. The remaining entries in
row e are zeros. See [27, 29] for more details. The rigidity matrix of (G, p) defines
the rigidity matroid of (G, p) on the ground set E by linear independence of rows
of the rigidity matrix. A framework (G, p) is generic if the set of coordinates of the
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Section 1. Introduction 2

points p(v), v ∈ V , is algebraically independent over the rationals. Any two generic
frameworks (G, p) and (G, p′) have the same rigidity matroid. We call this the d-
dimensional rigidity matroid Rd(G) = (E, rd) of the graph G. We denote the rank
of Rd(G) by rd(G). The following fundamental result gives our first upper bound for
rd(G).

Lemma 1.1. [27, Lemma 11.1.3] Let (G, p) be a framework in Rd. Then
rankR(G, p) ≤ S(n, d), where n = |V (G)| and

S(n, d) =

{
nd−

(
d+1
2

)
if n ≥ d + 2(

n
2

)
if n ≤ d + 1.

We say that a graph G = (V, E) is rigid in Rd if rd(G) = S(n, d). (This definition is
motivated by the fact that if G is rigid and (G, p) is a generic framework on G, then
every continuous deformation of (G, p) which preserves the edge lengths ||p(u)−p(v)||
for all uv ∈ E, must preserve the distances ||p(w)−p(x)|| for all w, x ∈ V , see [27].) We
say that G is M -independent, M -dependent or an M -circuit in Rd if E is independent,
dependent or a circuit, respectively, in Rd(G). For X ⊆ V , let EG(X) denote the set,
and iG(X) the number, of edges in G[X], that is, in the subgraph induced by X in
G. We use E(X) or i(X) when the graph G is clear from the context. A cover of G is
a collection X of pairwise incomparable subsets of V , each of size at least two, such
that ∪X∈XE(X) = E. Lemma 1.1 implies the following necessary condition for G to
be M -independent.

Lemma 1.2. If G = (V, E) is M-independent in Rd then i(X) ≤ |X|d−
(

d+1
2

)
for all

X ⊆ V with |X| ≥ d + 2.

Note that, since G is simple, we automatically have i(X) ≤ S(|X|, d) =
(|X|

2

)
when

|X| ≤ d + 1. Lemma 1.1 also gives the following stronger upper bound on rd(G).

Lemma 1.3. If G = (V, E) is a graph then

rd(G) ≤ min
X

∑
X∈X

S(|X|, d)

where the minimum is taken over all covers X of G.

The converse of Lemma 1.2 also holds for d = 1, 2. The case d = 1 follows from the
fact that the 1-dimensional rigidity matroid of G is the same as the cycle matroid of
G, see [9, Theorem 2.1.1]. The case d = 2 is a result of Laman [16]. Similarly, the
inequality given in Lemma 1.3 holds with equality when d = 1, 2, and leads to a good
characterization of the rank function. The case d = 2 is a result of Lovász and Yemini
[17]. Neither of these statements hold for d ≥ 3. Indeed, it remains an open problem
to find a good characterization for independence or, more generally, the rank function
in the d-dimensional rigidity matroid of a graph when d ≥ 3.

We shall give a brief survey of existing lower and upper bounds on the rank of the
3-dimensional rigidity matroid of a graph and introduce a new upper bound, which
may lead to the desired good characterization.
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Section 2. Lower bounds on the rank function 3

2 Lower bounds on the rank function

We may certify a lower bound on rd(G) by providing a d-dimensional framework
(G, p) whose rigidity matrix has sufficiently high rank. A lemma of Schwartz [20]
implies that there is always such a matrix with small enough entries. This shows that
d-dimensional rigidity is in NP. It also gives rise to a randomized polynomial time
algorithm for computing rd(G).

It would be useful to also have combinatorial methods to verify lower bounds
on rd(G). This could be accomplished by obtaining conditions which imply M -
independence, since rd(G) ≥ k if and only if G has an M -independent subgraph
with k edges. Sufficient conditions for M -independence will also be relevant in the
next section since our new upper bound for r3(G) requires us to be able to verify
M -independence.

When d = 2, there are two different combinatorial characterizations of M -
independence. We will describe these characterizations and give some partial ex-
tensions for the case when d = 3.

2.1 Laman type conditions

As mentioned in the Introduction, M -independence for d = 2 is characterized by the
following result of Laman.

Theorem 2.1. [16] A graph G = (V, E) is M-independent in R2 if and only if
i(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 4.

The following example shows that the necessary condition for M -independence
given in Lemma 1.2 is not sufficient when d = 3. We will refer to this condition
henceforth as the Laman condition.

Example 1 Let G be the graph obtained from two disjoint K5’s by identifying an
edge uv, and then deleting uv. Then i(X) ≤ 3|X| − 6 for all X ⊆ V with |X| ≥ 5
but, as we shall see later, r3(G) = 17 < |E(G)|. Thus G is not M -independent in R3.
(This example is often referred to in the literature as the ‘double banana’.)

We next show that we may obtain a sufficient condition for M -independence in R3

by strengthening the Laman condition.

Theorem 2.2. [12] Let G = (V, E) be a graph. If

i(X) ≤ 1

2
(5|X| − 7) (1)

for all X ⊆ V with |X| ≥ 5 then G is M-independent in R3.

We believe that the multiplicative constant, 5/2, in the upper bound on i(X) given
in Theorem 2.2 can be weakened to 3. The double banana shows that there exist
graphs G = (V, E) with i(X) ≤ 3|X| − 6 for all X ⊆ V with |X| ≥ 5, which are
M -dependent in R3. We also have M -dependent examples satisfying i(X) ≤ 3|X|−7,
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X1 X2

v

u

Figure 1: The ‘double banana’ graph of Example 1. A cover {X1, X2} is indicated by
the dashed curves.

but we know of no M -dependent graphs satisfying i(X) ≤ 3|X| − 8 for all X ⊆ V ,
|X| ≥ 5.

We close this subsection by describing two families of graphs for which the Laman
condition is both necessary and sufficient for M -independence in R3.

Theorem 2.3. [12] Let G be a connected graph of maximum degree at most five
and minimum degree at most four. Then G is M-independent in R3 if and only if
i(X) ≤ 3|X| − 6 for all X ⊆ V with |X| ≥ 5.

We believe that Theorem 2.3 remains valid without the hypotheses that G is con-
nected and has minimum degree at most four. Note that one can test, in polynomial
time, whether an arbitrary graph G = (V, E) satisfies i(X) ≤ 3|X| − 6 for all X ⊆ V
with |X| ≥ 5. This can be done as follows. We may suppose that |V | ≥ 5. For a path
T of length two in G let T̄ be a multigraph obtained from T by replacing one of its
edges by two parallel edges. Thus |E(T̄ )| = 3. It is not difficult to check that there is
a set X ⊆ V violating the Laman condition in G if and only if there exists a path T in
G for which the edge set of GT = (V, E ∪E(T̄ )) cannot be partitioned into 3 forests.
There exist efficient algorithms for the forest partition problem, see [19, Chapter 51].
Thus we can test whether G is Laman by trying all possible paths T of length two in
G.

This observation, and the fact that bases in a matroid can be constructed greedily,
give rise to a polynomial algorithm for computing r3(G) when G satisfies the hypothe-
ses of Theorem 2.3. Bereg [2] has given a linear time algorithm which determines r3(G)
when G belongs to this family of graphs.

It follows from Euler’s formula that a planar graph G = (V, E) on at least three
vertices has at most 3|V | − 6 edges, with equality if and only if G is a plane triangu-
lation. Thus planar graphs satisfy the Laman condition. Gluck showed that they are,

EGRES Technical Report No. 2005-09



2.2 Henneberg sequences 5

indeed, M -independent in R3.

Theorem 2.4. [8] Every planar graph is M-independent in R3 and every plane tri-
angulation is rigid in R3.

An important family of graphs for which it is conjectured that the Laman condition
is both necessary and sufficient for M -independence in R3 are squares of graphs (also
called molecular graphs). The square H2 of graph H is the graph obtained from
H by adding a new edge uv for each pair u, v ∈ V (H) for which uv /∈ E(H) but
uw, vw ∈ E(H) for some w ∈ V (H).

Conjecture 2.5. [15] Let H be a graph and G = H2. Then G is M-independent in
R3 if and only if i(X) ≤ 3|X| − 6 for all X ⊆ V with |X| ≥ 5.

For lower (and upper) bounds on the rank of molecular graphs see Franzblau [7].

2.2 Henneberg sequences

The second combinatorial certificate for M -independence in R2 uses Henneberg se-
quences [10]. To describe these sequences we need some terminology. Let G = (V, E)
be a graph and d be a fixed integer. A (0, d)-extension of G is a graph obtained by
choosing a set S of at most d vertices of G, adding a new vertex v and edges from v
to all vertices in S. For 1 ≤ j ≤ d− 1, a (j, d)-extension of G is a graph obtained by
choosing a set X of d+j vertices of G such that i(X) ≥ j, deleting j edges between the
vertices of X, and then adding a new vertex v and edges from v to all vertices in X.
It is known, see [9, Theorem 5.3.1], that if H is M -independent in Rd and v ∈ V with
d(v) = d + j for some 0 ≤ j ≤ d− 1 then H is a (j, d)-extension of an M -independent
graph G. It is also known, see [27, Lemma 11.1.1, Theorem 11.1.7], that (0, d)- and
(1, d)-extensions preserve M -independence in Rd. Thus graphs which can be obtained
from K2 by a sequence of (0, d)- and (1, d)-extensions are M -independent in Rd.

Since a graph G = (V, E) which is M -independent in R2 must contain a vertex of
degree at most three by Lemma 1.2, we may deduce:

Theorem 2.6. [10, 24] A graph G = (V, E) is M-independent in R2 if and only if it
can be obtained from K2 by a sequence of (0, 2)- and (1, 2)-extensions.

Theorem 2.6 implies that we may certify that a graph G is M -independent in R2

by exhibiting a sequence of graphs K2 = G0, G1, . . . , Gm = G such that Gi is obtained
from Gi−1 by a (0, 2)- or (1, 2)-extension for 1 ≤ i ≤ m. We call such a sequence a
2-dimensional Henneberg sequence.

Lemma 1.2 implies that every graph which is M -independent in R3 must contain
a vertex of degree at most five. Thus, an analogous result to Theorem 2.6 in R3

would follow if we could show that (2, 3)-extensions preserve M -independence in R3.
Unfortunately, this is not true in general. It may be true, however, if we put more
restrictions on the (2, 3)-extension.
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Conjecture 2.7. [24] Let G = (V, E) be a graph which is M-independent in R3, and
X ⊆ V with with |X| = 5. Let H be obtained from G by adding a new vertex v
adjacent to each vertex of X. Then H is M-independent in R3 if either
(a) G ∪ {e, f} is M-independent in R3 for edges e = x1x2 and f = x3x4 where
x1, x2, x3, x4 are distinct vertices in X and e, f 6∈ E, or
(b) G∪ {e, f} and G∪ {e′, f ′} are both M-independent in R3 for two pairs of distinct
edges e = x1x2, f = x2x3, and e′ = x′1x

′
2, f ′ = x′2x

′
3, where x1, x2, x3, x

′
1, x

′
2, x

′
3 are

vertices in X, x2 6= x′2, and e, f, e′f ′ 6∈ E.

If true, Conjecture 2.7 may be a useful tool for proving results on rigidity in R3.
It is not clear, however, that it would provide a polynomial length certificate for M -
independence in R3. The problem is that to verify condition (b) in the conjecture we
have to consider two graphs. This could give rise to an exponential number of graphs
in the certificate.

We close this section by describing another operation which preserves M -
independence in R3. Let G = (V, E) be a graph, v ∈ V , and vu1, vu2, ..., vuk ∈ E. The
vertex splitting operation on two edges at v deletes the edges vuj, vuj+1, ..., vuk for some
j ≥ 3 and adds a new vertex v′ and new edges v′v, v′u1, v

′u2,v
′uj, v′uj+1, ..., v

′uk. The
vertex splitting operation on three edges at v deletes the edges vuj, vuj+1, ..., vuk for
some j ≥ 4 and adds a new vertex v′ and new edges v′u1, v

′u2,v
′u3, v

′uj, v′uj+1, ..., v
′uk.

Theorem 2.8. [25] Let G be a graph which is M-independent in R3. Let H be
obtained from G by a vertex splitting operation (on two or three edges) at some vertex
v. Then G′ is M-independent in R3.

One application of Theorem 2.8 is a quick proof for Theorem 2.4, see [26].

3 Upper bounds on the rank function

Let G be a graph. We saw in the last section that we can verify a lower bound for
rd(G) by determining the rank of the rigidity matrix of a suitable framework (G, p).
To show that our lower bound is (near) optimal, we need to be able to obtain a good
upper bound on rd(G). Our first such upper bound is given by Lemma 1.3. As noted
in the Introduction, Lovász and Yemini showed that this upper bound is tight when
d = 2.

Theorem 3.1. [17] If G = (V, E) is a graph then

r2(G) = min
X

∑
X∈X

(2|X| − 3)

where the minimum is taken over all covers X of G.

The double banana graph of Example 1 shows that Lemma 1.3 need not be tight
when d = 3.

Henceforth we will be concerned entirely with the 3-dimensional rigidity matroid of
a graph. To simplify terminology we will suppress reference to the dimension and say
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3.1 2-thin covers 7

for example that G is rigid to mean G is rigid in R3. We denote the function S(n, 3)
given in Lemma 1.1 by f(n). Thus f(2) = 1 and f(n) = 3n− 6 for n ≥ 3.

We can use Theorem 2.3 to show that Lemma 1.3 becomes tight when d = 3, if we
restrict the degrees of the vertices.

Theorem 3.2. [12] Let G be a connected graph of maximum degree at most five and
minimum degree at most four. Then r3(G) = minX

∑
X∈X f(|X|) where the minimum

is taken over all covers X of G.

We can obtain upper bounds on r3(G) for general graphs, which are stronger than
that given by Lemma 1.3, by considering special kinds of covers.

3.1 2-thin covers

Let G be a graph. A cover X = {X1, X2, . . . , Xm} of G is t-thin if |Xi ∩ Xj| ≤ t
for all 1 ≤ i < j ≤ m. It is known that Theorems 3.1 and 3.2 remain true if we
add the condition that the minimum is taken over all 1-thin covers X . In addition,
a cover X of G which minimizes

∑
x∈X f(|X|) and has as few elements as possible

is 1-thin. (If X1, X2 ∈ X and |X1 ∩ X2| ≥ 2 then we can replace X by X ′ =
(X − {X1, X2}) ∪ {X1 ∪X2}.) Thus the upper bound on r3(G) given by Lemma 1.3
remains the same if we add the condition that the minimum is taken over all 1-thin
covers. We shall see, in Corollary 3.6 below, that 2-thin covers can be used to improve
this upper bound.

Let X = {X1, X2, . . . , Xm} be a 2-thin cover of G. Let H(X ) be the set of all
pairs of vertices uv such that Xi ∩ Xj = {u, v} for some 1 ≤ i < j ≤ m. For each
uv ∈ H(X ) let d(uv) be the number of sets Xi in X such that {u, v} ⊆ Xi and put

val(X ) =
∑
X∈X

f(|X|)−
∑

uv∈H(X )

(d(uv)− 1).

In 1983, Dress, Drieding and Haegi [5, equation (39)], [23, Conjecture 3] conjectured
that

r3(G) = min
X
{val(X )}, (2)

where the minimum is taken over all 2-thin covers X of G. This conjecture would
have provided a good characterization for r3(G). It was recently disproved in [13] by
showing that minX{val(X )} can be negative and hence will not give an upper bound
for r3(G) in general.

At a conference on rigidity held in Montreal in 1987, Dress conjectured that equality
is obtained in (2) for the special 2-thin cover defined as follows. For u, v ∈ V , the
edge uv is an implied edge of G if uv 6∈ E and r3(G + uv) = r3(G). The closure Ĝ of
G is the graph obtained by adding all the implied edges to G. A rigid cluster of G is
a set of vertices which induce a maximal complete subgraph of Ĝ. It is not difficult
to see that any two rigid clusters of G intersect in at most two vertices. Thus the set
of rigid clusters of G is a 2-thin cover of G.

EGRES Technical Report No. 2005-09



3.2 Independent 2-thin covers 8

Conjecture 3.3. (see [3],[9, Conjecture 5.6.1], and [21, Conjecture 2.3]) Let G =
(V, E) be a graph and C be the set of rigid clusters of G. Then

r3(G) = val(C). (3)

This conjecture is still open. Note, however, that even if Conjecture 3.3 was shown
to be true, it would not provide a good characterization for the rank function.

We have verified Conjecture 3.3 for a special family of graphs of low degree.

Theorem 3.4. [13] Let G be a 3-edge-connected graph of maximum degree at most
five and minimum degree at most four. Let C be the set of rigid clusters of G. Then
r3(G) = val(C).

It is conceivable that Conjecture 3.3 is true because of the special intersection prop-
erties of rigid clusters. If so, then it may be possible to resurrect the first conjecture
of Dress et al. by only considering 2-thin covers whose intersection properties reflect
those of rigid clusters.

3.2 Independent 2-thin covers

We say that a 2-thin cover X of a graph G = (V, E) is independent if the graph
(V, H(X )) is M -independent. The following lemma will imply that independent 2-
thin covers can be used to give an upper bound on r3(G).

Lemma 3.5. Let G = (V, E) be a graph, and X be an independent 2-thin cover of G.
Let G1 = G ∪H(X ). Then

r3(G) ≤
∑

Xi∈X

r3(G1[Xi])−
∑

uv∈H(X )

(d(uv)− 1).

Proof: We may suppose that H = H(X ) ⊆ E and hence G = G1. For each Xi ∈ X
let Si be the set of edges of H which join two vertices of Xi. Since X is independent,
(Xi, Si) is an M -independent subgraph of G[Xi] and hence Si can be extended to a
basis Bi for the rigidity matroid of G[Xi]. Let S = ∪Xi∈XBi. Then S spans E since,
if e ∈ E then e ∈ E(Xi) for some Xi ∈ X and hence e is spanned by Bi ⊆ S. Thus
r3(G) ≤ |S|. Furthermore, |Bi| = r3(G[Xi]) for all Xi ∈ X . Since S covers each
uv ∈ S −H exactly once and covers each uv ∈ H exactly d(uv) times, we have

|S| =
∑

Xi∈X

|Bi| −
∑
uv∈H

(d(uv)− 1) ≤
∑

Xi∈X

r3(G[Xi])−
∑

uv∈H(X )

(d(uv)− 1),

as claimed. •

Corollary 3.6. [13, Lemma 3.4] Let G be a graph, and X be an independent 2-thin
cover of G. Then r3(G) ≤ val(X ).
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x1

y1

Figure 2: The graph of Example 2.

Proof: Let G1 = G ∪ H(X ). Since r3(G1[Xi]) ≤ f(|Xi|) we may apply Lemma 3.5
to deduce that r3(G) ≤ r3(G1) ≤ val(X ). •

We can use Corollary 3.6 to determine the rank of the double banana graph G of
Example 1. Taking X = {X1, X2} to be the independent cover of G consisting of the
vertex sets of the two K5’s we have H(X ) = {uv} and r3(G) ≤ f(5) + f(5) − 1 =
9 + 9 − 1 = 17. See Figure 1. On the other hand, for all edges e we can use a
Henneberg sequence of 0- and 1-extensions to deduce that G − e is M -independent.
Thus r3(G) = |E(G)| − 1 = 17. It follows that G is a 2-connected non-rigid M -
circuit. (Non-rigid M -circuits do not exist in 2-dimensions. Their existence in 3-
dimensions makes the problem of characterizing independence in the 3-dimensional
rigidity matroid significantly more difficult.)

The following example due to Tay [22] is perhaps more interesting.

Example 2 Let G = G1 ∪G2 ∪ . . . ∪G7, where V (Gi) ∩ V (Gi+1) = {xi, yi}, E(Gi) ∩
E(Gi+1) = ∅, Gi = K5 − {xi−1yi−1, xiyi} and subscripts are read modulo seven. Let
H = G+x1y1 and let X be the independent 2-thin cover of H obtained by taking the
vertex sets V (Gi), 1 ≤ i ≤ 7. Then Corollary 3.6 gives r3(H) ≤ val(X ) = 7× 9− 7 =
56 = |E(H)| − 1. It can be seen that H − e is M -independent for all e ∈ E(H). Thus
H is an M -circuit. Since r3(H) = 56 = 3|V (H)|−7, H is an example of a 4-connected
non-rigid M -circuit.

We have recently shown in [14] that the ‘Molecular Conjecture’, due to Tay and
Whiteley, see [23, 27, 28], would imply that Corollary 3.6 is tight for squares of graphs
(and that it would also imply Conjecture 2.5). This family is important since it is
used to model the rigidity properties of molecules. Biologists and physicists have
developed heuristic algorithms for computing the 3-dimensional rank of the square of
a graph, see for example [15]. If the Molecular Conjecture is true, then Corollary 3.6
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3.3 Iterated 2-thin covers 10

could be used as part of a certificate of correctness for these algorithms.
The next example, again due to Tay [22], shows that Corollary 3.6 is not tight for

all graphs.

Example 3 Let G0 = (V0, E0) be a complete graph on five vertices with V0 = {vi :
1 ≤ i ≤ 5}. For 1 ≤ i < j ≤ 5 let Gi,j = (Vi,j, Ei,j) be a complete graph on five
vertices with Vi,j ∩ V0 = {vi, vj} and Ei,j ∩ E0 = {vivj} for 1 ≤ i < j ≤ 5. Let

G =

(
G0 ∪ (

⋃
1≤i<j≤5

Gi,j)

)
− E0.

We will see later that r3(G) ≤ |E(G)|−1 = 89. On the other hand, minX val(X ) over
all independent 2-thin covers X of G is 90. (Note that the rigid cluster cover of G,
C = {V0} ∪ {Vi,j : 1 ≤ i < j ≤ 5} has value 89, but we cannot use it and Corollary
3.6 to deduce that r3(G) ≤ 89 because C is not an independent cover.)

3.3 Iterated 2-thin covers

We may strengthen Corollary 3.6 by applying Lemma 3.5 iteratively.
An iterated 2-thin cover T = (T : G0, G1, . . . , Gm) of a graph G = (V, E) of

depth m is a rooted tree T whose nodes are subsets of V , and a sequence of graphs
G0 ⊆ G1 ⊆ . . . ⊆ Gm, with the following properties.

(i) The root of T is V and G0 = G.

(ii) Each leaf of T is at distance m from the root.

(iii) For 1 ≤ i ≤ m the set of nodes of T at level i, Xi, is a 2-thin cover of Gi−1 and
Gi = Gi−1 ∪H(Xi).
(iv) For each node W at level i of T , 0 ≤ i ≤ m − 1, the set of children of W is an
independent 2-thin cover XW of Gi[W ].

Note that the graphs G0, G1, . . . , Gm are uniquely determined by the graph G and
the labelled tree T .

Let T = (T : G0, G1, . . . , Gm) be an iterated 2-thin cover of a graph G = (V, E).
For 1 ≤ j ≤ m, let

Fj = {XW : W ∈ Xj−1}

be the family of covers corresponding to the sets of children of each node at level j−1
in T . For X ∈ Fj, let

γ(X ) =
∑

(u,v)∈H(X )

(d(u, v)− 1).

Put
γj =

∑
X∈Fj

γ(X ),

and

γ(T ) =
m∑

j=0

γj.
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3.3 Iterated 2-thin covers 11

Let
val(T ) =

∑
X∈Xm

f(|X|)− γ(T ).

Lemma 3.7. Let G be a graph. Then r3(G) ≤ min{val(T )} where the minimum is
taken over all iterated 2-thin covers T of G.

Proof: Let T = (T : G0, G1, . . . , Gm) be an iterated 2-thin cover of G. We prove the
lemma by induction on m. If m = 0 then val(T ) = f(|V (G)|) ≥ r3(G) by Lemma
1.2. So suppose m ≥ 1. Since X1 is an independent 2-thin cover of G0, Lemma 3.5
implies that

r3(G) ≤ r3(G1) ≤
∑

W∈X1

r3(G1[W ])− γ(X1). (4)

For each W ∈ X1 let TW be the subtree of T rooted at W , and let XW
i be the set of

nodes of TW at level j, 0 ≤ j ≤ m− 1. Let T W be the iterated 2-thin cover of G1[W ]
determined by TW . Then T W has depth m− 1. By induction, we have

r3(G1[W ]) ≤ val(T W ).

Furthermore γ(T ) = γ(X1) +
∑

W∈X1
γ(T W ) and∑

X∈Xm

f(|X|) =
∑

W∈X1

∑
Y ∈XW

m−1

f(|Y |).

This implies that the lemma holds for G. •

We illustrate this lemma by considering the graph G = (V, E) of Example 3. Let
T be the iterated 2-thin cover of depth 2 defined as follows. Put X0 = {V } and
G0 = G. Let X1 = {Vi,j : 1 ≤ i < j ≤ 5, (i, j) 6= (1, 2)} ∪ {W} where W = V0 ∪ V1,2

and G1 = G0 ∪ {{vivj : 1 ≤ i < j ≤ 5, (i, j) 6= (1, 2)}. Let XW = {V0, V1,2} and
X Vi,j = {Vi,j} for the remaining nodes on level one. Then∑

X∈X2

f(|X|)− γ(T ) = 99− 10 = 89.

Hence r3(G) ≤ 89.
We know of no examples for which strict inequality holds in Lemma 3.7. This leads

us to:

Conjecture 3.8. Let G be a graph. Then

r3(G) = min{val(T )}

where the minimum is taken over all iterated 2-thin covers T of G.

It can be seen that Conjecture 3.8 is equivalent to the following partial converse of
Lemma 3.5.
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Conjecture 3.9. Let G = (V, E) be a graph. Suppose G is not rigid in R3. Then
there exists an independent 2-thin cover X of G such that |X | ≥ 2 and

r3(G) =
∑

Xi∈X

r3(G1[Xi])−
∑

uv∈H(X )

(d(uv)− 1),

where G1 = G ∪H(X ).

To see that Conjectures 3.8 and 3.9 are equivalent we proceed as follows.

(a) We first assume that Conjecture 3.8 is true. Let T = (G : G1, G2, . . . , Gm) be an
iterated 2-thin cover of G such that r3(G) = val(T ). Then equality must hold for T
throughout the proof of Lemma 3.7. In particular, equality must hold in (4). Thus
X1 is an independent 2-thin cover of G with

r3(G) =
∑

W∈X1

r3(G1[W ])−
∑

uv∈H(X1)

(d(uv)− 1).

Hence Conjecture 3.9 holds for G.

(b) We next assume that Conjecture 3.9 is true. Suppose that Conjecture 3.8 is false
and let G = (V, E) be a counterexample with |V | as small as possible. Let X1 be an
independent 2-thin cover of G with

r3(G) =
∑

Xi∈X1

r3(G1[Xi])−
∑

uv∈H(X1)

(d(uv)− 1).

Since the sets in X1 are incomparable and |X1| ≥ 2, we have |Xi| < |V | for all Xi ∈ X1.
Thus we may apply Conjecture 3.8 to G1[Xi] to obtain an iterated 2-thin cover Ti of
G1[Xi] with r3(G1[Xi]) = val(Ti) for each Xi ∈ X1. Let T be the iterated 2-thin cover
of G with rooted tree T , which has V at its root, X1 at its first level, and in which
the subtree of T rooted at Xi is the rooted tree Ti of Ti for each Xi ∈ X1. Then
r3(G) = val(T ). Hence Conjecture 3.8 holds for G.

We close this section by showing that Conjecture 3.8, or equivalently, Conjecture
3.9, would give a Co-NP characterization for the rank function of R3(G).

Lemma 3.10. Let G be a graph on n ≥ 3 vertices and let T = (T : G0, G1, . . . , Gm)
be an iterated 2-thin cover of G. Then:
(a) the number of subsets at level i in T containing a fixed pair of vertices is at most
n− 2;
(b) there exists an iterated 2-thin cover T ′ of G of depth at most n − 2 on at most
(n− 2)(n− 2)

(
n
2

)
nodes such that val(T ′) ≤ val(T ).

Proof: Part (a) follows from the fact that the subsets at any given level of T are a
2-thin cover of a graph on n vertices.

To prove (b), choose an iterated 2-thin cover T ′ = (T ′ : G′
0, G

′
1, . . . , G

′
p) of G such

that val(T ′) ≤ val(T ), p is as small as possible, and subject to this condition, the
number of nodes of T ′ is as large as possible. Suppose there exists a node Wi on level
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i in T ′ such that Wi has exactly one child Wi+1 on level i + 1 and then at least two
children on level i + 2. Construct T ′′ from T ′ by contracting the edge WiWi+1 and
adding a new leaf to each leaf in the subtree rooted at Wi+1. Let T ′′ be the iterated 2-
thin cover of G determined by T ′′. Then val(T ′′) = val(T ′), depth(T ′′) = depth(T ′),
and T ′′ has more nodes than T ′, a contradiction. If each node on level m − 1 of T ′

has exactly one child then we may construct an iterated 2-thin cover of G, T ′′, with
val(T ′′) = val(T ′) and depth(T ′′) = p − 1 by deleting the leaves of T ′. Hence X ′

m−1

has a node W with at least two children. Each node on the path in T ′ from the root to
W has at least two children. Hence each node is a proper subset of its parent. It fol-
lows that p ≤ n−2. The upper bound on the number of nodes now follows from (a). •

Lemma 3.10(b) implies that Conjecture 3.8 would give a good characterization for
r3(G). This follows from the polynomial upper bound on the size of the tree in the
iterated 2-thin cover of G and the fact that the M -independence of a graph can be
certified in polynomial time.
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