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realizations of graphs

Bill Jackson?, Tibor Jordán??, and Zoltán Szabadka? ? ?

Abstract

A 2-dimensional framework (G, p) is a graph G = (V,E) together with a
map p : V → R2. We view (G, p) as a straight line realization of G in R2. Two
realizations of G are equivalent if the corresponding edges in the two frameworks
have the same length. A pair of vertices {u, v} is globally linked in G if the
distance between the points corresponding to u and v is the same in all pairs
of equivalent generic realizations of G. The graph G is globally rigid if all of its
pairs of vertices are globally linked. We extend the characterization of globally
rigid graphs given by the first two authors [12] by characterizing globally linked
pairs in M -connected graphs, an important family of rigid graphs. As a by
product we simplify the proof of a result of Connelly [5] which is a key step in
the characterization of globally rigid graphs. We also determine the number of
distinct realizations of an M -connected graph, each of which is equivalent to
a given generic realization. Bounds on this number for minimally rigid graphs
were obtained by Borcea and Streinu in [3].

1 Introduction

We shall consider finite graphs without loops, multiple edges or isolated vertices. A
d-dimensional framework is a pair (G, p), where G = (V, E) is a graph and p is a map
from V to Rd. We consider the framework to be a straight line realization of G in
Rd. Two frameworks (G, p) and (G, q) are equivalent if ||p(u)− p(v)|| = ||q(u)− q(v)||
holds for all pairs u, v with uv ∈ E, where ||.|| denotes the Euclidean norm in Rd.
Frameworks (G, p), (G, q) are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all
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pairs u, v with u, v ∈ V . This is the same as saying that (G, q) can be obtained from
(G, p) by an isometry of Rd.

We say that (G, p) is globally rigid if every framework which is equivalent to (G, p)
is congruent to (G, p). The framework (G, p) is rigid if there exists an ε > 0 such
that if (G, q) is equivalent to (G, p) and ||p(u) − q(u)|| < ε for all v ∈ V then (G, q)
is congruent to (G, p). Intuitively, this means that if we think of a d-dimensional
framework (G, p) as a collection of bars and joints where points correspond to joints
and each edge to a rigid bar joining its end-points, then the framework is rigid if it has
no non-trivial continuous deformations (see also [7],[18, Section 3.2]). It seems to be a
hard problem to decide if a given framework is rigid or globally rigid. Indeed Saxe [16]
has shown that it is NP-hard to decide if even a 1-dimensional framework is globally
rigid. These problems become more tractable, however, if we assume that there are
no algebraic dependencies between the coordinates of the points of the framework.

A framework (G, p) is said to be generic if the set containing the coordinates of all
its points is algebraically independent over the rationals. It is known [18] that rigidity
of frameworks in Rd is a generic property, that is, the rigidity of (G, p) depends only
on the graph G and not the particular realization p, if (G, p) is generic. We say that
the graph G is rigid in Rd if every (or equivalently, if some) generic realization of G
in Rd is rigid.

The problem of characterizing when a graph is rigid in Rd has been solved for
d = 1, 2. A graph is rigid in R if and only if it is connected. The characterization of
rigid graphs in R2 is a result of Lovász and Yemini [14].

A similar situation holds for global rigidity: the problem of characterizing when
a generic framework is globally rigid in Rd has also been solved for d = 1, 2. A 1-
dimensional generic framework (G, p) is globally rigid if and only if either G is the
complete graph on two vertices or G is 2-connected. The characterization for d = 2
follows from the following results. We say that G is redundantly rigid in Rd if G − e
is rigid in Rd for all edges e of G.

Theorem 1.1. [10] Let (G, p) be a generic framework in Rd. If (G, p) is globally rigid
then either G is a complete graph with at most d+1 vertices, or G is (d+1)-connected
and redundantly rigid in Rd.

The Henneberg 1-extension operation [11] (on edge xy and vertex w) deletes an
edge xy from a graph G and adds a new vertex z and new edges zx, zy, zw for some
vertex w ∈ V (G) − {x, y}. A key step in proving that the necessary conditions for
global rigidity in Theorem 1.1 are also sufficient when d = 2, is the following result of
Connelly, see [5, Proof of Corollary 1.7].

Theorem 1.2. [5] Suppose that G can be obtained from K4 by a sequence of 1-
extensions and edge additions. Then every generic realization of G in in R2 is globally
rigid.

The following recent result gives an inductive contstruction for 3-connected redun-
dantly rigid graphs.

Theorem 1.3. [12, Theorem 6.15] Let G be a 3-connected redundantly rigid graph.
Then G can be obtained from K4 by a sequence of 1-extensions and edge additions.
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Figure 1: A realization (G, p) of a rigid graph G. The pair {u, v} is globally linked in
(G, p).

By observing that complete graphs are globally rigid, we obtain a complete char-
acterization for globally rigid generic frameworks in R2.

Theorem 1.4. [5, 12] Let (G, p) be a 2-dimensional generic framework. Then (G, p)
is globally rigid if and only if either G is a complete graph on two or three vertices,
or G is 3-connected and redundantly rigid in R2.

It follows that global rigidity of frameworks in Rd is a generic property when d =
1, 2. It is not known whether this remains true for any d ≥ 3. Following Connelly [4],
we say that a graph G is globally rigid in Rd if every (or equivalently when 1 ≤ d ≤ 2,
if some) generic realization of G in Rd is globally rigid. We refer the reader to [9, 18]
for a detailed survey of the rigidity of d-dimensional frameworks.

In this paper we will consider properties of 2-dimensional generic frameworks which
are weaker than global rigidity. We assume henceforth that d = 2, unless specified
otherwise. A pair of vertices {u, v} in a framework (G, p) is globally linked in (G, p) if,
in all equivalent frameworks (G, q), we have ||p(u)− p(v)|| = ||q(u)− q(v)||. The pair
{u, v} is globally linked in G if it is globally linked in all generic frameworks (G, p).
Thus G is globally rigid if and only if all pairs of vertices of G are globally linked.
Unlike global rigidity, however, ‘global linkedness’ is not a generic property in R2 .
Figures 1 and 2 give an example of a pair of vertices in a rigid graph G which is
globally linked in one generic realization, but not in another. 1

We first show that global linkedness is preserved by the 1-extension operation. More
precisely we show that if {u, v} is globally linked in G = (V, E), w, x, y ∈ V , xy ∈ E,
and G− xy is rigid, then {u, v} is globally linked in the graph obtained from G by a
1-extension on edge xy and vertex w. By using Theorem 1.1, we deduce that global
rigidity is preserved by the 1-extension operation. This immediately gives Theorem 1.2
and hence simplifies the proof of Theorem 1.4. (Connelly deduces Theorem 1.2 from
a sufficient condition for the global rigidity of a d-dimensional framework in terms of
the rank of its ‘stress matrix’, [5, Theorem 1.5]. His proof of this sufficient condition
uses powerful results from geometry, differential topology, and the elimination theory
of semi-algebraic sets.)

1Note that if d = 1 then global linkedness is a generic property: {u, v} is globally linked in G if
and only if G has two openly disjoint uv-paths.
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Figure 2: Two equivalent realizations of the rigid graph G of Figure 1, which show
that the pair {u, v} is not globally linked in G.

In the remainder of the paper we consider the following problems for a generic
realization (G, p) of a graph G = (V, E).

(a) Given {u, v} ⊂ V , when is {u, v} globally linked in (G, p)?

(b) Given v ∈ V and U ⊂ V , when is v uniquely localizable with respect to U ,
that is to say, when is it true that every realization (G, q) which is equivalent to
(G, p) and satisfies p(u) = q(u) for all u ∈ U , must also satisfy p(v) = q(v)?

(c) Given {u, v} ⊂ V , when is {u, v} globally loose in G, that is to say, when is it
true that for all generic realizations (G, p), there exists an equivalent realization
(G, q) which satisfies ||p(u)− p(v)|| 6= ||q(u)− q(v)||?

(d) How many different realizations of G are there which are each equivalent to
(G, p)?

We use our result on 1-extensions to solve each of these problems for M -connected
graphs, an important family of rigid graphs. Our results imply that the answer to
each of the problems described in (a), (b) and (d) is generic when G is M -connected,
in the sense that the answer is the same for all generic realizations of G.

2 The rigidity matroid

The rigidity matroid of a graph G is a matroid defined on the set of edges of G which
reflects the rigidity properties of all generic realizations of G. We will need basic
definitions and results on this matroid to define M -connected graphs and characterize
global linkedness in these graphs.

Let (G, p) be a realization of a graph G = (V, E). The rigidity matrix of the
framework (G, p) is the matrix R(G, p) of size |E|×2|V |, where, for each edge vivj ∈ E,
in the row corresponding to vivj, the entries in the two columns corresponding to
vertices i and j contain the two coordinates of (p(vi) − p(vj)) and (p(vj) − p(vi)),
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respectively, and the remaining entries are zeros. See [18] for more details. The rigidity
matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set E by linear
independence of rows of the rigidity matrix. Any two generic frameworks (G, p) and
(G, p′) have the same rigidity matroid. We call this the rigidity matroidR(G) = (E, r)
of the graph G. We denote the rank ofR(G) by r(G). Gluck characterized rigid graphs
in terms of their rank.

Theorem 2.1. [7] Let G = (V, E) be a graph. Then G is rigid if and only if r(G) =
2|V | − 3.

We say that a graph G = (V, E) is M -independent if E is independent in R(G).
Knowing when subgraphs of G are M -independent allows us to determine the rank of
G. This can be accomplished using the following characterization of M -independent
graphs due to Laman. For X ⊆ V , let EG(X) denote the set, and iG(X) the number,
of edges in G[X], that is, in the subgraph induced by X in G.

Theorem 2.2. [13] A graph G = (V, E) is M-independent if and only if iG(X) ≤
2|X| − 3 for all X ⊆ V with |X| ≥ 2.

A graph G = (V, E) is minimally rigid if G is rigid, but G − e is not rigid for all
e ∈ E. Theorems 2.1 and 2.2 imply that G is minimally rigid if and only if G is
M -independent and |E| = 2|V | − 3. Note that, if G is rigid, then the edge sets of the
minimally rigid spanning subgraphs of G form the bases in the rigidity matroid of G.

A pair of vertices {u, v} in a framework (G, p) is linked in (G, p) if there exists an
ε > 0 such that, if (G, q) is equivalent to (G, p) and ||p(w)− q(w)|| < ε for all w ∈ V ,
then we have ||p(u)− p(v)|| = ||q(u)− q(v)||. Using Theorems 2.1 and 2.2, it can be
seen that this is a generic property and that {u, v} is linked in a generic framework
(G, p) if and only if G has a rigid subgraph H with {u, v} ⊆ V (H).

A compact characterization of all linked pairs can be deduced as follows. We define
a rigid component of G to be a maximal rigid subgraph of G. It is well-known (see
e.g. [12, Corollary 2.14]), that any two rigid components of G intersect in at most one
vertex and hence that the edge sets of the rigid components of G partition the edges
of G. Thus {u, v} is linked in a generic framework (G, p) if and only if {u, v} ⊆ V (H)
for some rigid component H of G. Note that the rigid components of a graph can be
determined in polynomial time, see for example [1].

3 Generic points and quasi-generic frameworks

In this section we prove some preliminary results on generic frameworks which we
will use in our proof that 1-extensions preserve global linkedness. A point x ∈ Rn is
generic if its components form an algebraically independent set over Q.

Lemma 3.1. Let f : Rn → Rm by f(x) = (f1(x), f2(x), . . . , fm(x)), where
fi(x) is a polynomial with integer coefficients for all 1 ≤ i ≤ m. Suppose that
maxx∈Rn{rank df |x} = m. If p is a generic point in Rn, then f(p) is a generic
point in Rm.
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Proof: Since p is generic, we have rank df |p = m. Relabelling if neces-
sary, we may suppose that the first m columns of df |p are linearly indepen-
dent. Let p = (p1, p2, . . . , pn). Define f ′ : Rm → Rm by f ′(x1, x2, . . . , xm) =
f(x1, x2, . . . , xm, pm+1, . . . , pn). Let p′ = (p1, p2, . . . , pm). Then f ′(p′) = f(p) and
rank df ′|p′ = m.

Let f ′(p′) = (β1, β2, . . . , βm). Suppose that g(β1, β2, . . . , βm) = 0 for some
polynomial g with integer coefficients. Then g(f1(p), f2(p), . . . , fm(p)) = 0. Since
p is generic, we must have g(f ′(x)) = 0 for all x ∈ Rm. By the inverse function
theorem f ′ maps a sufficiently small open neighbourhood U of p′ diffeomorphically
onto f ′(U). Thus g(y) = g(f ′(x)) = 0 for all y ∈ f ′(U). Since g is a polynomial map
and f ′(U) is an open subset of Rm, we have g ≡ 0. Hence f ′(p′) = f(p) is generic. •

Given a point p ∈ Rn we use Q(p) to denote the field extension of Q by the
coordinates of p. Given fields K ⊆ L with L a finitely generated field extension of
K, the transcendence degree of L over K, td[L : K], is the size of a largest subset
of L which is algebraically independent over K, see [17, Section 18.1]. (It follows
from the Steinitz exchange axiom, see [17, Lemma 18.4] and [15, Section 6.7], that
this definition gives rise to a matroid on L, where the rank of a subset S of L is
td[K(S) : K].) We use K̃ to denote the algebraic closure of K. Note that each
element of K̃ is a loop in the above mentioned matroid and hence td[K̃ : K] = 0.

Lemma 3.2. Let f : Rn → Rn by f(x) = (f1(x), f2(x), . . . , fn(x)), where fi(x) is a
polynomial with integer coefficients for all 1 ≤ i ≤ n. Suppose that f(p) is a generic
point in Rn. Let L = Q(p) and K = Q(f(p)). Then K̃ = L̃.

Proof: Since fi(x) is a polynomial with integer coefficients, we have fi(p) ∈ L for
all 1 ≤ i ≤ n. Thus K ⊆ L. Since f(p) is generic we have
td[K : Q] = n. Since K ⊆ L and L = Q(p) we have td[L : Q] = n. Thus K̃ ⊆ L̃ and
td[K̃ : Q] = n = td[L̃ : Q]. Suppose K̃ 6= L̃, and choose γ ∈ L̃ − K̃. Then γ is not
algebraic over K so S = {γ, f1(p), f2(p), . . . , fn(p)} is algebraically independent over
Q. This contradicts the facts that S ⊆ L̃ and td[L̃ : Q] = n. •

A configuration C is a set {p1, p2, . . . , pn} of points in R2. We say that C is generic
if the point p = (p1, p2, . . . , pn) ∈ R2n is generic. Two configurations C and C ′ are
congruent if there exists an isometry T of R2 such that T (C) = C ′. We say that C is
quasi-generic if C is congruent to a generic configuration, and that C is in standard
position if p1 = (0, 0) and p2 = (0, y2) for some y2 ∈ R.

Let G = (V, E) be a graph and (G, p) be a realization of G. Let V = {v1, v2, . . . , vn}
and E = {e1, e2, . . . , em}. We can view p as a point p = (p(v1), p(v2), . . . , p(vn)) in
R2n. We say that (G, p) is quasi-generic or in standard position if p(V ) is, respectively,
quasi-generic, or in standard position. The rigidity map fG : R2n → Rm is given by
fG(p) = (||e1||2, ||e2||2, . . . , ||em||2), where ||ei|| = ||p(u)− p(v)||, when ei = uv. Note
that the evaluation of the Jacobian of the rigidity map at the point p ∈ R2n, dfG|p,
is twice the rigidity matrix of the framework (G, p).

Lemma 3.3. If (G, p) is a quasi-generic framework and G is M-independent then
fG(p) is generic.
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Proof: Choose a generic framework (G, q) conguent to (G, p). Since G is M -
independent, rank dfG|q = |E|. Hence Lemma 3.1 implies that fG(q) is generic. The
lemma now follows since fG(p) = fG(q). •

Lemma 3.4. Suppose that (G, p) is in standard position, G is minimally rigid and
fG(p) is generic. Let p = (0, 0, 0, y2, x3, y3 . . . , xn, yn), L = Q(p) and K = Q(fG(p)).
Then (y2, x3, y3 . . . , xn, yn) is generic and K̃ = L̃.

Proof: Define f : R2n−3 → R2n−3 by

f(z1, z2, . . . , z2n−3) = fG(0, 0, 0, z1, z2, . . . , z2n−3).

Let p′ = (y2, x3, y3 . . . , xn, yn). Then f(p′) = fG(p) is generic. We have
L = Q(p′) and K = Q(f(p′)). By Lemma 3.2, we have K̃ = L̃. Furthermore,
2n− 3 = td[K̃, Q] = td[L̃, Q]. Thus p′ is a generic point in R2n−3. •

Lemma 3.5. Let C = {p1, p2, . . . , pn} be a configuration. Then C is quasi-generic
if and only if there is an isometry T of R2 such that T (p1) = (0, 0), T (p2) = (0, y2),
T (pi) = (xi, yi) for 3 ≤ i ≤ n, and {y2, x3, y3, . . . , xn, yn} is algebraically independent
over Q.

Proof: Suppose C is quasi-generic. Let G = (V, E) be a minimally rigid graph, V =
{v1, v2, . . . , vn}, and define p : V → R2 by p(vi) = pi for 1 ≤ i ≤ n. Consider the quasi-
generic framework (G, p). By Lemma 3.3, fG(p) is a generic point in R2n−3. Choose
an isometry T of R2 which maps (G, p) to a framework (G, q) such that T (p1) = (0, 0),
T (p2) = (0, y2), T (pi) = (xi, yi) for 3 ≤ i ≤ n. Then q = (0, 0, 0, y2, x3, y3, . . . , xn, yn)
and fG(q) = fG(p). By Lemma 3.4, {y2, x3, y3, . . . , xn, yn} is algebraically independent
over Q.

We next suppose that there is an isometry of R2 which maps C onto C ′ =
{(0, 0), (0, y2), (x3, y3), . . . , (xn, yn)} and {y2, x3, y3, . . . , xn, yn} is algebraically inde-
pendent over Q. Choose θ ∈ R such that {sin θ, y2, x3, y3, . . . , xn, yn} is alge-
braically independent over Q. Let T1 be the isometry of R2 which rotates the
plane through θ radians about the origin. Let T1(C

′) = C1. Then C1 =
{{(0, 0), (s2, t2), (s3, t3), . . . , (sn, tn)} where (s2, t2) = (−y2 sin θ, y2 cos θ) and (si, ti) =
(xi cos θ − yi sin θ, xi sin θ + yi cos θ) for 3 ≤ i ≤ n.

Claim 3.6. {s2, t2, s3, t3, . . . , sn, tn} is algebraically independent over Q.

Proof: Let K = Q(sin θ, y2, x3, y3, . . . , xn, yn), and L = Q(s2, t2, s3, t3, . . . , sn, tn).
We show that K̃ ⊆ L̃. It suffices to show that sin θ, y2, x3, y3, . . . , xn, yn are all
algebraic over L. We have y2

2 = s2
2 + t22 ∈ L so y2 ∈ L̃. Thus sin θ = −s2/y2 ∈ L̃

and cos θ = t2/y2 ∈ L̃. Let `1 = sin θ and `2 = cos θ. For each 3 ≤ i ≤ n,
we have si = `1xi − `2yi and ti = `2xi + `1yi. We can solve these equations to
express xi, yi as rational functions of si, ti, `1, `2. Thus xi, yi ∈ L̃. Hence K̃ ⊆ L̃
and td[L : Q] ≥ td[K : Q] = 2n − 2. Thus {s2, t2, s3, t3, . . . , sn, tn} is algebraically
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independent over Q. •

Choose β, γ ∈ R such that {β, γ, s2, t2, s3, t3, . . . , sn, tn} is algebraically inde-
pendent over Q. Let T2 be the isometry of R2 which translates the plane by
(β, γ). Let T2(C1) = C2. Then C2 = {(w1, z1), (w2, z2), . . . , (wn, zn)} where
(w1, z1) = (β, γ) and (wi, zi) = (si + β, ti + γ) for 2 ≤ i ≤ n. It can easily
be seen that Q(β, γ, s2, t2, s3, t3, . . . , sn, tn) = Q(w1, z1, w2, z2, . . . , wn, zn). Hence
{w1, z1, w2, z2, . . . , wn, zn} is algebraically independent over Q. Thus C ′ is congruent
to the generic configuration C2. Since C is congruent to C ′, it follows that C is
quasi-generic. •

Corollary 3.7. Suppose that (G, p) is a rigid generic framework and that (G, q) is
equivalent to (G, p). Then (G, q) is quasi-generic.

Proof: Let H be a minimally rigid spanning subgraph of G. Choose isometries of
R2 which map (H, p) and (H, q) to two frameworks (H, p′) and (H, q′) in standard
position. By Lemma 3.3, fH(p) is generic. Thus fH(q′) = fH(p′) = fH(p) is
generic. By Lemmas 3.4 and 3.5, (H, q′) is quasi-generic. Hence (H, q) and (G, q) are
quasi-generic. •

4 1-extensions and globally linked pairs

Let (G, p) be a framework and u, v ∈ V . Recall that {u, v} is globally linked in (G, p)
if, in all equivalent frameworks (G, q), we have ||p(u)−p(v)|| = ||q(u)−q(v)||. The pair
{u, v} is globally linked in G if it is globally linked in all generic frameworks (G, p).
Note that Corollary 3.7 implies that a pair of vertices {u, v} in a rigid graph G is
globally linked if and only if we have ||p(u)− p(v)|| = ||q(u)− q(v)|| for all equivalent
pairs of quasi-generic frameworks (G, p) and (G, q). For v ∈ V (G) let NG(v) denote
the set of vertices adjacent to vertex v in graph G.

Lemma 4.1. Let G be a graph, and v ∈ V (G) with NG(v) = {u, w, t}. If G − v is
rigid then {u, w} is globally linked in G.

Proof: Let (G, p∗) and (G, q∗) be equivalent quasi-generic frameworks. By Lemma
3.5, (G, p∗) is congruent to a framework (G, p), where p = (0, 0, 0, p4, p5, . . . , p2n),
p(u) = (0, 0), p(w) = (0, p4), p(t) = (p5, p6), p(v) = (p2n−1, p2n), and {p4, p5, . . . , p2n}
is algebraically independent over Q. Similarly (G, q∗) is congruent to a framework
(G, q), where q(u) = (0, 0), q(w) = (0, q4), q(t) = (q5, q6), and q(v) = (q2n−1, q2n).
Then

||p∗(u)− p∗(w)||2 − ||q∗(u)− q∗(w)||2 = ||p(u)− p(w)||2 − ||q(u)− q(w)||2 = p2
4 − q2

4.

Hence it will suffice to show that p2
4 − q2

4 = 0. By symmetry we may suppose that
p2

4 − q2
4 ≥ 0.
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Section 4. 1-extensions and globally linked pairs 9

Let p′ = p|V −v and q′ = q|V −v. Consider the equivalent quasi-generic frameworks
(G−v, p′) and (G−v, q′). Applying Lemmas 3.3 and 3.4 to a minimally rigid spanning
subgraph of G− v, we have K̃ = L̃ where K = Q(p′) and L = Q(q′). Thus q4, q5, q6 ∈
K̃. Since (G, q) is equivalent to (G, p), we have the following equations.

q2
2n−1 + q2

2n = p2
2n−1 + p2

2n (1)

(q2n−1 − q4)
2 + q2

2n = (p2n−1 − p4)
2 + p2

2n (2)

(q2n−1 − q5)
2 + (q2n − q6)

2 = (p2n−1 − p5)
2 + (p2n − p6)

2 (3)

Using equations (1) and (2) and the fact that q′ is generic (and hence q4 6= 0) we get
that

q2n−1 =
q2
4 − p2

4 + 2p2n−1p4

2q4

. (4)

Similarly, using equations (1), (3), and (4) we get that

q2n =
q2
5 + q2

6 − p2
5 − p2

6 + 2p2n−1p5 + 2p2np6 − q5(
q2
4−p2

4+2p2n−1p4

q4
)

2q6

. (5)

¿From equation (1) we know that 4q2
4q

2
6(q

2
2n−1 + q2

2n− p2
2n−1− p2

2n) = 0. Using (4) and
(5) to substitute for q2n−1 and q2n, we obtain

a11p
2
2n−1 + a22p

2
2n + a12p2n−1p2n + a1p2n−1 + a2p2n + a0 = 0,

where a11, a22, a12, a1, a2, a0 ∈ K̃. This means, that there is a polynomial

f = a11z
2
1 + a22z

2
2 + a12z1z2 + a1z1 + a2z2 + a0 ∈ K̃[z1, z2]

such that f(p2n−1, p2n) = 0. Since {p4, p5, . . . , p2n} is algebraically independent over
Q, {p2n−1, p2n} is algebraically independent over K̃. Thus f ≡ 0. In particular

a11 = 4q2
6(p

2
4 − q2

4) + 4(p4q5 − q4p5)
2 = 0.

Since p2
4 − q2

4 ≥ 0 we must have p2
4 − q2

4 = 0. •

Theorem 4.2. Let G = (V, E) be a graph, x, y, v ∈ V , NG(v) = {u, w, t}, uw 6∈ E
and H = G− v + uw. Suppose that H − uw is rigid and that {x, y} is globally linked
in H. Then {x, y} is globally linked in G.

Proof: Suppose (G, p) is a generic framework and that (G, q) is equivalent to (G, p).
Let p′ = p|V −v and q′ = q|V −v. Since G − v = H − uw is rigid, Lemma 4.1 implies
that {u, w} is globally linked in G. Thus

||p′(u)− p′(w)|| = ||p(u)− p(w)|| = ||q(u)− q(w)|| = ||q′(u)− q′(w)||.

Hence (H, p′) and (H, q′) are equivalent. Since {x, y} is globally linked in H, we have

||p(x)− p(y)|| = ||p′(x)− p′(y)|| = ||q′(x)− q′(y)|| = ||q(x)− q(y)||.

Thus {x, y} is globally linked in G. •
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Section 5. Globally linked pairs in M -connected graphs 10

Corollary 4.3. Suppose that H is globally rigid with |V (H)| ≥ 4 and G is obtained
from H by a 1-extension. Then G is globally rigid.

Proof: Let H = G − v + uw. Since H is globally rigid, H − e is rigid for all edges
e of H by Theorem 1.1. Hence H − uw is rigid. Theorem 4.2 and the fact that H
is globally rigid now imply that all pairs {x, y} ⊆ V − v are globally linked in G.
Suppose (G, p) is a generic framework and that (G, q) is equivalent to (G, p). Let
p′ = p|V −v and q′ = q|V −v. Since all pairs {x, y} ⊆ V − v are globally linked in
G, (G − v, p′) is congruent to (G − v, q′). Since (G, p) is generic and v has three
neighbours in G, this congruence extends to a congruence between (G, p) and (G, q). •

Corollary 4.3 immediately implies Theorem 1.2, which, as mentioned in the Intro-
duction, is a key step in the characterization of globally rigid graphs.

5 Globally linked pairs in M-connected graphs

Given a graph G = (V, E), a subgraph H = (W, C) is said to be an M-circuit in G if
C is a circuit (i.e. a minimal dependent set) in R(G). In particular, G is an M-circuit
if E is a circuit in R(G). Using Theorem 2.2 we may deduce that G is an M -circuit
if and only if |E| = 2|V | − 2 and G− e is minimally rigid for all e ∈ E. Recall that a
graph G is redundantly rigid if G− e is rigid for all e ∈ E. Note also that a graph G
is redundantly rigid if and only if G is rigid and each edge of G belongs to a circuit
in R(G) i.e. an M -circuit of G.

Any two maximal redundantly rigid subgraphs of a graph G = (V, E) can have
at most one vertex in common, and hence are edge-disjoint (see [12]). Defining a
redundantly rigid component of G to be either a maximal redundantly rigid subgraph
of G, or a subgraph induced by an edge which belongs to no M -circuit of G, we deduce
that the redundantly rigid components of G partition E. Since each redundantly rigid
component is rigid, this partition is a refinement of the partition of E given by the
rigid components of G. Note that the redundantly rigid components of G are induced
subgraphs of G.

Given a matroid M = (E, I), we define a relation on E by saying that e, f ∈ E are
related if e = f or if there is a circuit C in M with e, f ∈ C. It is well-known that
this is an equivalence relation. The equivalence classes are called the components of
M. If M has at least two elements and only one component then M is said to be
connected.

We say that a graph G = (V, E) is M-connected if R(G) is connected. Thus M -
circuits are special M -connected graphs. Another example is the complete bipartite
graph K3,m, which is M -connected for all m ≥ 4. The M-components of G are the
subgraphs of G induced by the components of R(G). Note that the M -components of
G are induced subgraphs. For more examples and basic properties of M -circuits and
M -connected graphs see [1, 12]. In this paper we shall need the following lemmas.

We say that a graph G is nearly 3-connected if G can be made 3-connected by adding
at most one new edge. We need the following result on M -connected graphs. The
first part appears as [12, Lemma 3.1]. The second part was proved in [12, Theorem
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Section 5. Globally linked pairs in M -connected graphs 11

3.2] for redundantly rigid graphs. The same proof goes through under the weaker
hypothesis that each edge of G is in an M -circuit.

Theorem 5.1. [12] (a) If G is M-connected then G is redundantly rigid.
(b) If G is nearly 3-connected and each edge of G is in an M-circuit then G is M-
connected.

Note that Theorems 1.4 and 5.1 imply that globally rigid graphs are M -connected
and 3-connected M -connected graphs are globally rigid.

Given two graphs H1 = (V1, E1) and H2 = (V2, E2) with V1 ∩ V2 = ∅ and two
designated edges u1v1 ∈ E1 and u2v2 ∈ E2, the 2-sum of H1 and H2 (along the edge
pair u1v1, u2v2) is the graph obtained from H1−u1v1 and H2−u2v2 by identifying u1

with u2 and v1 with v2, see Figure 3. We denote a 2-sum of H1 and H2 by H1 ⊕2 H2.

Lemma 5.2. Suppose G1 and G2 are graphs and G = G1 ⊕2 G2.
(a) [1, Lemma 4.1] If G1 and G2 are M-circuits then G is an M-circuit.
(b) [12, Lemma 3.3] If G1 and G2 are M-connected then G is M-connected.

A j-separation of a graph H = (V, E) is a pair (H1, H2) of edge-disjoint subgraphs of
H each with at least j + 1 vertices such that H = H1 ∪H2 and |V (H1)∩ V (H2)| = j.
Note that H is 3-connected if and only if H has at least 4 vertices and has no j-
separation for all 0 ≤ j ≤ 2. If (H1, H2) is a 2-separation of H, then we say that
V (H1) ∩ V (H2) is a 2-separator of H.

Let G = (V, E) be a 2-connected graph and suppose that (H1, H2) is a 2-separation
of G with V (H1) ∩ V (H2) = {u, v}. For 1 ≤ i ≤ 2, let H ′

i = Hi + uv if uv 6∈ E(Hi)
and otherwise put H ′

i = Hi. We say that H ′
1, H

′
2 are the cleavage graphs obtained by

cleaving G along {u, v}.

Lemma 5.3. Suppose G is a 2-connected graph and G1 and G2 are cleavage graphs
obtained by cleaving G along a 2-separator {u, v}.
(a) [1, Lemmas 2.4(c), 4.2] If G is an M-circuit then uv 6∈ E(G), and G1 and G2 are
both M-circuits.
(b) [12, Lemma 3.4] If G is M-connected then G1 and G2 are also M-connected.

We can use Theorem 4.2 to characterize globally linked pairs in M -connected
graphs. First we need some preliminary lemmas, illustrated by Figure 3.

Lemma 5.4. Let G1, G2 be M-circuits such that G1 is 3-connected. Let G = G1⊕2G2,
where the pair of identified vertices is {x, y}. Then {x, y} is globally linked in G.

Proof: We will use induction on |V (G1)|. Suppose that the 2-sum was obtained
along the edges xi, yi ∈ E(Gi), 1 ≤ i ≤ 2. If G1 = K4, with V (G1) = {v, t, x1, y1},
then G − v = G2 − x2y2 + t + {tx2, ty2}. Since G2 is redundantly rigid by Lemma
5.1(a), G2 − x2y2, and hence also G − v, are rigid. By Lemma 4.1, {x, y} is globally
linked in G. Thus we may suppose that |V (G1)| ≥ 5.

By [1, Theorem 5.9] there is v ∈ V (G1)−{x1, y1}, with N(v) = {u, w, t}, such that
Gv

1 = G− v + uw is a 3-connected M -circuit. Let H = Gv
1 ⊕2 G2 be the 2-sum along

the edge pair x1y1, x2y2. Then H is an M -circuit by Lemma 5.2(a), and hence, by
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y

x u

v

Figure 3: An M -circuit G obtained from a ‘wheel’ on six vertices and two copies of
K4 by taking 2-sums. The identified pairs of vertices, {u, v} and {x, y}, are globally
linked in G.

induction, {x, y} is globally linked in H. Since H is an M -circuit, H − uw is rigid.
Hence by Theorem 4.2, {x, y} is globally linked in G. •

Corollary 5.5. Let G be an M-circuit and {u, v} be a 2-separator of G. Then {u, v}
is globally linked in G.

Proof: We will use induction on |V (G)|. Since G is an M -circuit and is not
3-connected, we can choose a 2-separator {x, y} in G and express G as G = G1⊕2 G2,
where the pair of identified vertices is {x, y}. Suppose that this 2-sum was obtained
along the edges xi, yi ∈ E(Gi), 1 ≤ i ≤ 2. By Lemma 5.3(a), xy /∈ E(G) and G1, G2

are M -circuits. By choosing {x, y} so that G1 is minimal, we may also ensure that
G1 is 3-connected. By Lemma 5.4, {x, y} is globally linked in G. Thus we may
suppose that {u, v} 6= {x, y}. Since G1 is 3-connected, {u, v} is a 2-separator of G2.
By induction, {u, v} is globally linked in G2. Since {x, y} is globally linked in G and
(G2 − x2y2) ⊆ G, it follows that {u, v} is also globally linked in G. •

Let H = (V, E) be a graph and x, y ∈ V . We shall use κH(x, y) to denote the
maximum number of pairwise openly disjoint xy-paths in H. If xy /∈ E then, by
Menger’s theorem, κH(x, y) is equal to the size of a smallest set S ⊆ V (H) − {x, y}
for which there is no xy-path in H − S.

Lemma 5.6. Let (G, p) be a generic framework, x, y ∈ V (G), xy /∈ E(G), and
suppose that κG(x, y) ≤ 2. Then {x, y} is not globally linked in (G, p).

Proof: Since there do not exist three pairwise openly disjoint xy-paths in G,
it follows from Menger’s theorem that there exists u, v ∈ V (G) such that x and
y belong to different components of G − {u, v}. Let H be the component of
G − {u, v} which contains x. Construct (G, q) from (G, p) by reflecting p(V (H))
in the line through p(u), p(v). Then (G, p) is equivalent to (G, q). Furthermore
||p(x) − p(y)|| 6= ||q(x) − q(y)||, since p(y) = q(y) and, since (G, p) is generic, p(y)
does not lie on the line through p(u), p(v). Thus {x, y} is not globally linked in
(G, p). •

Theorem 5.7. Let G = (V, E) be an M-connected graph and x, y ∈ V . Then {x, y}
is globally linked in G if and only if κG(x, y) ≥ 3.
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Proof: We first prove necessity. Suppose that {x, y} is globally linked. If xy /∈ E then
the existence of three openly disjoint xy-paths follows from Lemma 5.6. If xy ∈ E
then, since G is M -connected, G− xy is rigid by Theorem 5.1(a). Since rigid graphs
are 2-connected, we have two openly disjoint xy-paths in G−xy. Thus we have three
openly disjoint xy-paths in G.

We next prove sufficiency. Suppose that there exist three pairwise openly disjoint
xy-paths in G. We will use induction on |V (G)| to show that {x, y} is globally
linked in G. If G is 3-connected then G is globally rigid by Theorems 1.4 and 5.1(a),
and hence {x, y} is globally linked in G. Thus we may suppose that G − {u, v}
is disconnected for some u, v ∈ V . Choose two vertices w, z belonging to different
components of G − {u, v}. Since G is M -connected, there exists an M -circuit H in
G with w, x ∈ V (H). Then {u, v} is a 2-separator of H. By Corollary 5.5, {u, v} is
globally linked in H. Thus {u, v} is globally linked in G.

Let G1, G2 be the cleavage graphs obtained by cleaving G along the 2-separator
{u, v}. The graphs G1, G2 are both M -connected by Lemma 5.3(b). Using the
fact that there are three pairwise openly disjoint xy-paths in G, and relabelling if
necessary, we have x, y ∈ V (G1). It is easy to see that there are three pairwise
openly disjoint xy-paths in G1. By induction {x, y} is globally linked in G1. Since
{u, v} is globally linked in G and (G1−u1v1) ⊆ G, {x, y} is also globally linked in G. •

Theorem 5.7 has the following immediate corollary.

Corollary 5.8. Let G = (V, E) be a graph and x, y ∈ V . If either xy ∈ E, or there
is an M-component H of G with {x, y} ⊂ V (H) and κH(x, y) ≥ 3, then {x, y} is
globally linked in G.

We conjecture that the converse is also true.

Conjecture 5.9. The pair {x, y} is globally linked in a graph G = (V, E) if and
only if either xy ∈ E or there is an M-component H of G with {x, y} ⊆ V (H) and
κH(x, y) ≥ 3.

We shall verify Conjecture 5.9 for minimally rigid graphs that can be obtained
from an edge by iteratively adding vertices of degree two. The Henneberg 0-extension
operation on vertices x, y in a graph G adds a new vertex z and new edges xz, yz to
G.

Lemma 5.10. If {u, v} is not globally linked in H and G is a 0-extension of H then
{u, v} is not globally linked in G.

Proof: Since {u, v} is not globally linked in H, there exists a generic framework
(H, p), and an equivalent framework (H, q), such that ||p(u)− p(v)|| 6= ||q(u)− q(v)||.
Let G be obtained from H by adding vertex w and edges wx, wy. Let α1, α2 be two
real numbers such that the set containing α1, α2, and the edge lengths in fH(p)
is algebraically independent over Q, and such that α1 + α2 is large enough and
α1 − α2 is small enough. (Note that fH(p) is generic by Lemma 3.3.) Now we
may choose a pair of points rp, rq in R2 such that ||rp − p(x)|| = α1 = ||rq − q(x)||
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and ||rp − p(y)|| = α2 = ||rq − q(y)||. Thus extending (H, p) by p(w) = rp

and (H, q) by q(w) = rq gives a pair of equivalent frameworks on G such that
||p(u) − p(v)|| 6= ||q(u) − q(v)|| holds. Note that (the extended) p is generic by
Lemmas 3.4 and 3.5. •

Henneberg [11] showed that every minimally rigid graph can be obtained from K2

by recursively performing 0-extensions and 1-extensions. We say that G is 2-simple if
G can be obtained from K2 by recursively performing just 0-extensions. For example,
the graph of Figure 1 is 2-simple. Note that all M -components (and all redundantly
rigid components) in a minimally rigid graph are isomorphic to K2. Thus to prove
Conjecture 5.9 for minimally rigid graphs G we have to show that the only globally
linked pairs in G are the pairs of adjacent vertices.

Theorem 5.11. Let G = (V, E) be a 2-simple graph and suppose that uv /∈ E. Then
{u, v} is not globally linked.

Proof: The proof is by induction on |V |. The theorem is trivially true for |V | ≤ 3,
so we may assume that |V | ≥ 4 and that the theorem holds for all 2-simple graphs
with at most |V | − 1 vertices. Since G is 2-simple, it has a vertex w of degree two. If
w ∈ {u, v} then κG(u, v) = 2 and hence {u, v} is not globally linked by Lemma 5.6.
So suppose w 6= u, v and consider H = G−w. H is also 2-simple and uv /∈ E(H). By
induction this implies that {u, v} is not globally linked in H. Since G is a 0-extension
of H, the theorem follows from Lemma 5.10. •

In order to extend Theorem 5.11 to all minimally rigid graphs, it would suffice to
find an analogous result to Lemma 5.10 for 1-extensions.

We have attempted to prove Conjecture 5.9 by considering two other conjectures
on globally linked pairs which together are equivalent to Conjecture 5.9.

Conjecture 5.12. Suppose that {x, y} is a globally linked pair in a graph G. Then
there is a redundantly rigid component R of G with {x, y} ⊆ V (R).

Conjecture 5.13. Let G be a graph. Suppose that there is a redundantly rigid com-
ponent R of G with {x, y} ⊆ V (R) and {x, y} is globally linked in G. Then {x, y} is
globally linked in R.

It follows from Theorem 5.1(a) that Conjecture 5.9 implies both Conjectures 5.12
and 5.13.

The ‘if’ direction of Conjecture 5.9 follows from Corollary 5.8. We shall prove that
the ‘only if’ direction follows from Conjectures 5.12 and 5.13.

Proof: (of the ‘only if’ part of Conjecture 5.9 by assuming Conjectures
5.12 and 5.13 are true.) Suppose that {x, y} is globally linked in G = (V, E).
We use induction on |V | to show that either xy ∈ E or there is an M -component H
of G with {x, y} ⊆ V (H) and κH(x, y) ≥ 3. Since the statement is trivially true if
|V | ≤ 3, we may assume that |V | ≥ 4 and that xy /∈ E. It follows from the truth
of Conjectures 5.12 and 5.13 that there is a redundantly rigid component R of G
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with {x, y} ⊆ V (R) and such that {x, y} is globally linked in R. This implies that
κR(x, y) ≥ 3 by Lemma 5.6. If R is 3-connected then R is M -connected by Theorem
5.1(b), and we are done by choosing H = R.

Now suppose that there is a 2-separator {u, v} of R and let R1, R2 be the cleavage
graphs obtained by cleaving R along {u, v}. Since κR(x, y) ≥ 3, we may assume,
without loss of generality, that x, y ∈ V (R1). Let us also suppose that the 2-separator
has been chosen so that R2 is inclusionwise minimal. This implies that R2 is 3-
connected. (Note that |V (R2)| ≥ 4, since R is redundantly rigid.)

Claim 5.14. There is an M-circuit C in R2 with uv ∈ E(C).

Proof: Since R is redundantly rigid, every edge e ∈ E(R) belongs to an M -circuit
Ce. Each M -circuit C ′ is a 2-connected subgraph of R. This fact and Lemma 5.3(a)
imply that, if Ce 6⊆ R2 for some e ∈ E(R2) − uv, then the claim will follow by
choosing C = (Ce ∩ R2) + uv. Thus we may suppose that Ce ⊂ R2 − uv for all
e ∈ E(R2) − uv. Since R2 is 3-connected, Theorem 5.1(b) implies that R2 − uv is
M -connected, and hence rigid. Thus there is an M -circuit C in R2 with uv ∈ E(C). •

Since {x, y} is globally linked in R, {u, v} is a 2-seperation of R and uv ∈ E(R1),
it follows that {x, y} is globally linked in R1. By induction, there is an M -connected
subgraph H ′ of R1 with x, y ∈ V (H ′) and κH′(x, y) ≥ 3. If uv /∈ E(H ′) then let H
be an M -component of G containing H ′. Thus we may suppose that uv ∈ E(H ′).
By Lemma 5.2(b), H ′′ = H ′ ⊕2 C is an M -connected subgraph of G containing x, y
with κH′′(x, y) ≥ 3. The conjecture now follows by choosing an M -component H of
G containing H ′′. •

We close this section by noting that the M -components, and hence also the maximal
globally rigid subgraphs, of a graph G = (V, E) can be found in polynomial time, see
[2] for details. Theorem 5.7 implies that one can identify even larger globally linked
sets of vertices in G. A globally rigid cluster of G is a maximal subset of V in which
all pairs of vertices are globally linked in G. By Theorem 5.8, the vertex sets of the
‘cleavage units’ (c.f. [12, Section 3]) of the M -components of G are globally linked sets
in G. The truth of Conjecture 5.9 would imply that the vertex sets of these cleavage
units are precisely the globally rigid clusters of G. For example, the maximal globally
rigid subgraphs of the graph G in Figure 3 are the six copies of K3 and the remaining
four copies of K2. On the other hand, G has three cleavage units, the copy of the
wheel on six vertices and the two copies of K4. The globally rigid clusters of G are
precisely the vertex sets of these three cleavage units.

6 Uniquely localizable vertices

The theory of globally rigid graphs can be applied in localization problems of sensor
networks, see for example [6]. In this section we consider another generalization
of global rigidity, unique localizability, which also has direct applications in sensor
network localization, see [8].
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Let (G, p) be a generic framework with a designated set P ⊆ V (G) of vertices.
We say that a vertex v ∈ V (G) is uniquely localizable in (G, p) with respect to P if
whenever (G, q) is equivalent to (G, p) and p(b) = q(b) for all vertices b ∈ P , then
we also have p(v) = q(v). We can think of P as the set of pinned vertices (or anchor
nodes in a sensor network). Vertices in P are clearly uniquely localizable. It is easy
to observe that if v ∈ V −P is uniquely localizable then |P | ≥ 3 and there exist three
openly disjoint paths from v to P (c.f. Lemma 5.6). Note that unique localizablity is
not a generic property. If we pin the set P = {u, x, y} in the graph of Figure 1 then
the unique localizablity of v with respect to P depends on the lengths of the edges
incident with w.

We call a vertex v uniquely localizable in graph G, with respect to P ⊆ V (G), if v
is uniquely localizable with respect to P in all generic frameworks (G, p). For a graph
G and a set P ⊆ V (G) let G + K(P ) denote the graph obtained from G by adding
all edges bb′ for which bb′ /∈ E and b, b′ ∈ P . The following lemma is easy to prove.

Lemma 6.1. Let G = (V, E) be a graph, P ⊆ V and v ∈ V − P . Then v is uniquely
localizable in G with respect to P if and only if |P | ≥ 3 and {v, b} is globally linked in
G + K(P ) for all (or equivalently, for at least three) vertices b ∈ P .

Lemma 6.1 and Theorem 5.7 imply the following characterization of uniquely lo-
calizable vertices when G + K(P ) is M -connected.

Corollary 6.2. Let G = (V, E) be a graph, P ⊆ V and v ∈ V − P . Suppose that
G+K(P )is M-connected. Then v is uniquely localizable in G with respect to P if and
only if |P | ≥ 3 and κ(v, b) ≥ 3 for all b ∈ P .

Similarly, Lemma 6.1 and Conjecture 5.9 would imply the following characterization
of uniquely localizable vertices in an arbitrary graph.

Conjecture 6.3. Let G = (V, E) be a graph, P ⊆ V and v ∈ V − P . Then v is
uniquely localizable in G with respect to P if and only if |P | ≥ 3 and there is an
M-component H of G + K(P ) with P + v ⊆ V (H) and κH(v, b) ≥ 3 for all b ∈ P .

7 Globally loose pairs

We say that a pair of vertices {u, v} is globally loose in a graph G if for every generic
framework (G, p) there exists an equivalent framework (G, q) such that ||p(u)−p(v)|| 6=
||q(u)− q(v)||. It follows from Lemma 5.6 and Theorem 5.7 that if G is M -connected
then each pair {u, v} is either globally linked or globally loose in G, and that {u, v}
is globally loose if and only if κG(u, v) = 2. On the other hand, the pair {u, v} in the
rigid graph given in Figure 1 is neither globally linked nor globally loose.

We shall obtain a sufficient condition for a pair {u, v} to be globally loose in a graph
G. An edge e of a globally rigid graph H is critical if H − e is not globally rigid.

Theorem 7.1. Let G = (V, E) be a graph and u, v ∈ V . Suppose that uv /∈ E, and
that G has a globally rigid supergraph H in which uv is a critical edge. Then {u, v}
is globally loose in G.
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Proof: Let (G, p) be a generic framework and let H be a globally rigid supergraph
of G in which uv is critical. Since uv is critical in H, it follows that (H −uv, p) is not
globally rigid. Thus there is an equivalent, but not congruent realization (H − uv, q).
Clearly, ||p(u) − p(v)|| 6= ||q(u) − q(v)|| must hold. Now G is a subgraph of H − uv,
and hence the framework (G, q) verifies that {u, v} is globally loose in G. •

We call a minimally rigid graph G special if every proper rigid subgraph H of G
is complete (and hence is a complete graph on two or three vertices). The graphs
K3,3 and the prism are both special, as well as all graphs which can be obtained
from K3,3 by the following operation: replace two incident edges ab, bc by six edges
aa′, a′b, bc′, c′c, ac′, a′c, where a′, c′ are new vertices. Thus this family is infinite. It is
easy to show that special graphs are 3-connected. It follows from the definition that
if G is special and uv /∈ E(G) then G+uv is a 3-connected M -circuit. Thus G+uv is
globally rigid by Lemma 5.1(a) and Theorem 1.4, and uv is critical in G + uv. Hence
Theorem 7.1 implies that each pair of vertices in a special graph is either globally
linked or globally loose:

Theorem 7.2. Let G be special and suppose that u, v ∈ V . Then {u, v} is globally
loose in G if and only if uv /∈ E.

Theorem 7.2 implies that Conjeture 5.9 holds for special graphs.

8 The number of equivalent realizations

The following folklore result is known to hold in Rd. We include a proof for the
2-dimensional case for the sake of completeness.

Theorem 8.1. Suppose that (G, p) is a rigid generic framework. Then the number
of distinct congruence classes of frameworks which are equivalent to (G, p) is finite.

Proof: Let D =
∑

uv∈E ||p(u) − p(v)|| and B = {x ∈ R2n : ||x|| ≤ D}, where
n = |V |. By Lemma 3.5 and Corollary 3.7, we can choose a representative (G, qi) for
each congruence class, such that (G, qi) is in standard position. Since G is connected,
qi ∈ B.

Suppose that there are infinitely many distinct congruence classes of (G, p). Since
B is compact, we may choose a sequence of representatives (G, qi) converging to a
limit (G, q). Then (G, q) is equivalent to (G, p) and hence, by Corollary 3.7, (G, q) is
quasi-generic. This contradicts the fact that (G, p), and hence (G, q), is rigid since
the frameworks (G, qi) are pairwise non-congruent. •

Given a rigid generic framework (G, p), let h(G, p) denote the number of distinct
congruence classes of frameworks which are equivalent to (G, p). Given a rigid graph
G, let h(G) = max{h(G, p)}, where the maximum is taken over all generic frameworks
(G, p). The graph of Figure 1 shows that h(G, p) need not be the same for all generic
realizations (G, p) of a rigid graph G.
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Borcea and Streinu [3] investigated the number of realizations of minimally rigid
frameworks (G, p) with generic edge lengths. (Note that, by Lemmas 3.4 and 3.5, the
edge lengths of (G, p) are generic if and only if there is a generic realization (G, q) with
the same edge lengths as (G, p).) They counted the number of realizations up to rigid
motions i.e. combinations of translations and rotations of the plane. This number is
twice as large as h(G, p) since reflections of the plane are not allowed. Their results
imply that h(G) ≤ 4n for all rigid graphs G. They also construct an infinite family of
generic minimally rigid frameworks (G, p) for which h(G, p) has order 12

n
3 ∼ (2.28)n.

We shall determine the exact value of h(G, p) for all generic realizations (G, p) of
an M -connected graph G = (V, E). For u, v ∈ V , let b(u, v) denote the number of
components of G− {u, v} and put c(G) =

∑
u,v∈V (b(u, v)− 1).

Theorem 8.2. Let G be an M-connected graph. Then h(G, p) = 2c(G) for all generic
realizations (G, p) of G.

Proof: Choose a generic framework (G, p). We use induction on c(G). If c(G) = 0
then G is 3-connected. It follows from Lemma 5.1(a) and Theorem 1.4 that G is
globally rigid, and hence h(G, p) = 1 = 2c(G). Hence we may assume that there exists
a 2-separation (G1, G2) in G with V (G1)∩V (G2) = {u, v}. Let G1 and G2 denote the
cleavage graphs obtained by cleaving G along {u, v}. Note that uv ∈ E(Gi) and by,
Lemma 5.3(b), Gi is M -connected, for 1 ≤ i ≤ 2. Choosing the 2-separation so that
G1 is minimal, we also have that G1 is 3-connected (c.f. [1, Lemma 2.8]) and, by [12,
Lemma 3.6], c(G2) = c(G)− 1.

By Theorem 5.7, {u, v} is globally linked in G. Since G1 is globally rigid by
Theorem 1.4, each congruence class of (G, p) contains a unique framework (G, q)
with p(x) = q(x) for all x ∈ V (G1). Letting p′ = p|V (G2) and q′ = q|V (G2), we
may deduce that the number of distinct congruence classes of (G, p) is equal to the
number of distinct frameworks (G2, q

′) which are equivalent to (G2, p
′) and satisfy

q′(u) = p′(u) and q′(v) = p′(v). The number of such frameworks is 2h(G2, p
′), since

each congruence class of (G2, p
′) contains exactly two such frameworks (which can

be obtained from each other by a reflection in the line through p′(u), p′(v)). By
induction h(G2, p

′) = 2c(G)−1. Thus h(G, p) = 2c(G). •

It follows from the proof of the above theorem that, if (G, p) is a generic realization
of an M -connected graph G, then we can obtain a representative of each distinct
congruence class of frameworks which are equivalent to (G, p) by iteratively applying
the following operation to (G, p): choose a 2-separation {u, v} of G and reflect some,
but not all, of the components of G−{u, v} in the line through the points p(u), p(v).

Theorem 8.2 implies that h(G, p) is the same for all generic realizations of an M -
connected graph G. Note that this statement becomes false if we replace the hypoth-
esis that G is M -connected by the weaker hypothesis that G is redundantly rigid. An
example is the redundantly rigid graph G obtained from the graph in Figure 1 by
replacing each edge by a copy of K4.

Theorem 8.2 also implies that h(G) ≤ 2
n−2

2
−1 for all M -connected graphs G. A

family of graphs attaining this bound is a collection of K4’s joined along a common
edge.
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