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A note on |k, []-sparse graphs

Zsolt Fekete* and Laszlo Szeg6™

Abstract

In this note we provide a Henneberg-type constructive characterization the-
orem of [k, []-sparse graphs, that is, the graphs for which the number of induced
edges in any subset X of nodes is at most k|X| — . We consider the case
0<I<E.

1 Introduction

Constructive characterization theorems play an important role in the theory of com-
binatorial rigidity. Constructions serve as useful inductive tools for proving theorems.
Tay characterized rigidity of several structures using construction theorems: bar-and-
body structures [11], (n — 2, 2)-frameworks and identified body-and-hinge structures
[9]. A deep result of Tibor Jordan and Bill Jackson [5] was a constructive character-
ization theorem concerning a connectivity and sparsity conditions (see also [I]) and
this was the key of the characterization of global rigidity in the plane.

We will consider graphs satisfying sparsity condition arose in Whiteley’s investiga-
tion of rigidity on surfaces [I3]. We give a constructive characterization theorem of
these graphs.

In this paper we consider undirected graphs and we allow parallel edges and loops.
Let G = (V, E) be a graph. If u,v € V and e € F, then e = uv denotes that edge e
has end-nodes v and v (there may be other edges parallel to e).

For asubset X C V, 74(X) denotes the number of induced edges in X, i.e. y¢(X) =
{e € E : e = uv where u,v € X}|. If v € V, then v5(v) := 7({v}) is the number of
loops on v. If X, Y C V| then dg(X,Y) :=|[{e € EF:e =uv whereu € X —Y,v €
Y — X} da(X) :=dg(X,V —X). For anode v € V, dg(v) will denote the degree of
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v, that is, dg(v) = dg({v},V — {v}) + 27c(v) (note that a loop contributes 2 to the
degree). We omit the index G if it is clear from the context.

Let [, k be integers and | < k. We say that a graph G = (V, E) is [k, l]-sparse in Z
0#£ZCV)if y(X) <k|X|—1holds forevery 0 # X C Z. It k+1 <1 <2k —1,
then we say that a graph G = (V, E) is [k, ]-sparse in Z (0 # Z C V) if G is loopless
and v(X) < k| X|—1{ holds for every X C Z,|X| > 2. We say that a graph G = (V| E)
is [k, l]-sparse if |E| = k|V| —1 and G is [k, []-sparse in V. Remark that if [ < k, then
there can be (at most k — 1) loops incident to any node in a [k, []-sparse graph.

Nash-Williams [7] proved the following theorem concerning coverings by trees.

Theorem 1.1 (Nash-Williams). A graph G = (V, E) is the union of k edge-disjoint
forests if and only if G is [k, k]-sparse in V.

A consequence of this theorem that a graph is [k, k]-sparse if and only if its edge-set
is a disjoint union of k£ spanning trees. An undirected graph is called k-tree-connected
if it contains k edge-disjoint spanning trees. Remark that a graph is minimally k-tree-
connected if and only if it is [k, k]-sparse.

Frank in [2] by observing that a combination of a theorem of Mader and a theorem
of Tutte gives rise to the following characterization. (For a direct proof, see Tay [10]).

Theorem 1.2. An undirected graph G = (V, E) is k-tree-connected if and only if G
can be built from a single node by the following three operations:

1. add a new edge,
2. add a new node z and k new edges ending at z,

3. pinch i (1 <i < k—1) existing edges with a new node z, and add k — i new
edges connecting z with existing nodes.

Two variants of the notion of k-tree-connectivity were considered by Frank and
Szegd in [3]. One of them is the following: a loopless graph G (with at least 2 nodes)
is called nearly k-tree-connected if G is not k-tree-connected but adding any new edge
to G results in a k-tree-connected graph. It is easy to see that a graph is nearly
k-tree-connected if and only if it is [k, & + 1]-sparse.

Let Ké“’l denote the graph on two nodes with & — 1 parallel edges. Based on the
work of Henneberg [4] and Laman [6], Tay and Whiteley gave a proof of the following
theorem in the special case of k =2 in [12].

Theorem 1.3 (Frank and Szegs). An undirected graph G = (V, E) is nearly k-tree-
connected if and only if G can be built from K5~ by applying the following operations:

1. add a new node z and k new edges ending at z so that no k parallel edges can
arise,

2. choose a subset F' of i existing edges (1 < i < k — 1), pinch the elements of F
with a new node z, and add k — 1 new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.
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In [II] Tay proved for inductive reasons that a node of degree at most 2k — 1
either can be “split oft”, or “reduced” to obtain a smaller nearly k-tree-connected
graph. Theorem says that there always exists a node which can be “split oftf”. The
following proposition follows easily from the definition of [k, [|-sparse graphs.

Proposition 1.4. Let k+1 <1< % If an undirected graph G = (V, E) can be built
up from a single node by applying the following operations, then it is [k,(]-sparse.

(P1) add a new node z and at most k new edges ending at z so that no 2k — 1+ 1
parallel edges can arise.

(P2) Choose a subset F' of i existing edges (1 < i < k — 1), pinch the elements of F
with a new node z, and add k — 1 new edges connecting z with other nodes so
that there are no 2k — [ + 1 parallel edges in the resulting graph.

Inspiring by Theorem we would conjecture that the reverse of the proposition
above is also true for all k£ and [ satisfying k+1 <1 < % But as it was shown in [§],
this is not true if k + %52 <, still we think the following holds.

Conjecture 1.5. Let k+ 1 <1 < k+ 2. An undirected graph G = (V, E) is [k,1]-
sparse if and only if G can be built from a single node by applying the operations (P1)
and (P2).

In this paper we consider a class of graphs that related to packing of trees and
pseudotrees. A pseudotree is a set of edges which is connected and contains exactly
one cycle. Now we show how they are related to [k, []-sparse graphs, where 0 <1 < k.

The maximal edge-sets on vertex set V not containing a cycle form the base-set
of a matroid which is called the cycle matroid. The maximal edge-sets B on vertex
set V' containing at most one cycle in every connected components of (V, B) form the
base-set of a matroid which is called the bicycle matroid. (We note that loops and
parallel edges are allowed and a loop is a cycle of length one and two parallel edges
form a cycle of length two.)

It is easy to check the following.

Claim 1.6. An edge-set F' on vertex-set V is independent in the cycle matroid if and
only if (V, F) is [1, 1]-sparse.

An edge-set F' on vertex-set V is independent in the bicycle matroid if and only if
(V,F) is [1,0]-sparse.

Whitely [13] proved the following characterization.

Theorem 1.7 (Whiteley). If G = (V,E) is a graph and 0 < | < k, then the
following are equivalent.

1. G is [k,l]-sparse,

2. E is the disjoint union of | bases of the cycle matroid and (k — 1) bases of the
bicycle matroid.
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Figure 1: G’ is obtained from G by operation K (k,1,j).

Figure 2: A loopless [2,0]-sparse graph, which cannot be obtained by a sequence of
loopless [2, 0]-sparse graphs.

We will prove a Henneberg-type construction of [k, []-sparse graphs for 0 < < k.
We will use the following operations.

Definition 1.8. Let 0 < j < i < k. K(k,i,j) will denote the following operation.
Choose j edges of GG, subdivide each of them by a new node and identify these nodes
to a new node z. Put ¢ — j loops on z and link it with other nodes by k — ¢ new edges.
(This operation results in a graph with & more edges than the original graph and the
new node z has degree (k +1i). See Figure[l])

The graph on one node with [ loops will be denoted by F,. Our main result is the
following theorem.

Theorem 1.9. Let G = (V,E) be a graph and 1 < 1 < k. Then G is a [k,l]-
sparse graph if and only if G can be obtained from Py._; by operations K (k,1,j) where
0<j<i<k—1,i-—j<k—L

Let G = (V, E) be a graph andl = 0. Then G is a [k, []-sparse graph if and only if G
can be constructed from Py_; by operations K (k,i,j) where 0 < j <1 < k,i—j < k—I.

Notice that operations K (k,i,7) for j < i = k must be allowed in case [ = 0 while
the construction works without them in the other cases. We remark that loopless
[k, []-sparse graphs cannot be obtained by operations above via a sequence of loopless
[k, []-sparse graphs. (See Figure [2[for an example.)

In Section 3 we give some further operations which may lead to other characteri-
zations for negative values of [ and for [ > k or alternative characterizations to the
existing ones.
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2 Proof of Theorem 1.9

The if part of Theorem [1.9]is the following.

Lemma 2.1. Let 0 <1 < k. If graph G is obtained from Py_; by operations K (k,i,j)
where 0 < j <1<k, i—7<k—1, then it is a |k,l]-sparse graph.

Proof. This can be seen directly from the definition. O]

We will need the following claim, which is a consequence of equality ) ., d(v) =
2|E| = 2(k|V| —1) and the inequality d(v) = |E|—v(V —v)+~(v) > k|V|—1— (k|V —
v —1) = k.

Claim 2.2. Let G = (V, E) be a |k, l]-sparse graph.
1. If0 <l <k and |V| > 2, then Jv € V such that k < d(v) < 2k — 1.
2. Ifl=0 and |V| > 2, then Jv € V such that k < d(v) < 2k.
3. Ifl <0 and |V| >2|l]| +1, then Fv € V such that k < d(v) < 2k.

Let e = sv, f = sw € E,v # s,w # s. Splitting off the pair of edges e and f means
the following: delete e and f and add a new edge g = vw, i.e. we get by splitting off
edges e, f graph G% = (V, E — e — f + g). We say that the new edge g is a split edge.

The following will give the only if part of Theorem [I.9]

Theorem 2.3. Let 0 < | < k. Let G = (V + s,E) be a [k,l]-sparse graph and
d(s) =k+i,v(s) =i—j where 0 < j <i<k,i—j<k—1. Then we can split off j
pairs of edges incident to s so that after deleting s the remaining graph is [k, ]-sparse.

Let b(X) = ba(X) := k| X| — | — v¢(X). We remark that a graph G = (V, E) is
[k, l]-sparse in V if and only if bg(Z) > Oforall) # Z CV. It G = (V+s,E) is [k, -
sparse in V and e = sv, f = sw € E, then splitting off e and f is called admissible if
G is [k, []-sparse in V. We will frequently use the following simple lemma.

Lemma 2.4. Let G = (V, E) be a graph and X,Y C V. Then the following hold.
L 4(X)+9(Y)+d(X,Y)=~XNY)+ (X UY).
2. b(X) +b(Y) = b(X NY) +b(X UY) +d(X,Y).

3. Let 1 < k. If G is [k,l]-sparse in V, then b(X) =b(Y) =0, X NY # 0 implies
H(XUY)=0bXNY)=0.

4. Let 1 <2k —1. If G is [k,l]-sparse in V, then b(X) = b(Y) =0,| X NY| > 2
implies (X UY) =b(XNY)=0.

5. If G=(V +s,E) is [k,l]-sparse in V and e = sv, f = sw are edges incident to
s (v,w € V), then G is obtained by an admissible splitting off if and only if
BX CV such that v,w € X and bg(X) = 0.
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Proof. 1. Easy to check that the contribution of each edge is the same to both side.

2. A consequence of 1.

3. We know that b(Z) > 0forall 0 £ Z CV. 0+0=5b6(X)+bY)=bXNY)+
b(XUY)+d(X,Y)>0+0+0, so equality holds.

4. We know that b(Z) > 0 forall Z C V, |Z] > 2. 040 = b(X) +0b(Y) =
HXNY)+b(XUY)+d(X,Y)>0+4+0+0, so equality holds.

5. The claim follows from the fact that a graph G is [k, (]-sparse in V' if and only
if bg(X) >0 forall ) # X CV and

ba(X) if v or w is not in X,

be X ==
ger(X) {bG(X)—l if v,w € X.

]

Proof of Theorem[2.5. Assume on the contrary that we cannot split off j pairs of
edges so that the resulting graph is [k,(]-sparse in V. Split off as many pairs as
possible. We split off say m < j pairs of edges and denote the resulting graph by
G'. Let ey = svq,...,eq = Sv, be the non-loop edges incident to s in G’ where
a=k+i—2(0—j)—2m=k—1i+2j—2m > 2. By Lemma [2.4 we know that for
every v,,v, (1 < v < p < «) there exists an X,, C V such that v,,v, € X,, and
ber(X,,) = 0. Using the second statement of Lemma we get that there exists an
X C V such that v, € X for every v and be(X) = 0. Let X be a maximal set
having these properties.

Now consider every GG’ which can be obtained by splitting off m pairs of edges at s
in G. For each G’ we have a set X. Choose G := G’ so that |X¢| is maximal. Let
X = XGl-

Claim 2.5. There is a split edge e = vw in Gy such that v,w ¢ X.

Proof. Assume on the contrary that for every split edge e = vw, v € X or w € X.
Let 8 := |{e: e =vw is a split edge and v,w € X}|. bg, (X) = 0 implies be(X) = S.
ba(X+s) = ba(X)+k—7a(s)—da(s, X) = ba(X)+k—(i—j)— (k—i+2j—(m—p3)) =
B+k—i+j—(k—i+2j—m+p)=0+k—i+j—k+i—2j+m—-3F=m—j<0.
A contradiction. O

Let e = vw be an edge given by the claim. Let Gy := Gy —e+sv+sw. We state that
sv, sv; is an admissible splitting off in G5. Because if v,v; € Y C V and bg,(Y) =0,
then bg, (V) < bg,(Y) = 050 bg,(Y) =0. But X NY # 0 (since v; € X NY) hence
b, (X UY) =0 by Lemma [2.4] which contradicts the maximality of | Xg, |.

Let G3 := G5 — sv — sv; + vv;. We state that sw, sv, is an admissible splitting off
in G3. Assume on the contrary that w,ve € Z C V and bg,(Z) = 0.

If v ¢ Zorwv ¢ Z, then bg,(Z) < bg,(Z) = bg,(Z) = 0 so bg,(Z) = 0. But
XNZ # 0 (since v € XNZ) hence b, (X UZ) = 0, which contradicts the maximality
of |XG1 |

If v,v; € Z, then bg, (Z) = b, (Z) —1 =bg,(Z) =0s0 bg,(Z) =0. But XNZ #0
(since vy € X NZ) hence bg, (X UZ) = 0 but this contradicts the maximality of | X, |.
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We proved that sw, svy is an admissible splitting off in (G3. This contradicts the
maximality of m. O]

Proof of Theorem[I.9 Lemma [2.1] shows the “if” part. To prove the “only if” we
observe that the only [k, []-sparse graph with one node is P;,_;. Let G be an arbitrary
graph on at least two nodes. By Lemma there exists a node s of degree at most
2k —1if I > 0 or a node of degree at most 2k if [ = 0. Theorem states that ¢
is obtained from a graph G’ by an operation K (k,i,j). By induction we know that
G’ can be constructed from P,_;, this implies that G can be constructed from P,_;
too. [

3 Partial results for other [ values

In this section k, [ will be integers and k£ > 1, but [ can be negative. First we remark
that Theorem remains true without assumption [ > 0 (the proof is the same).
Thus for { < 0 the following version of Theorem [1.9] follows (using 3. of Claim [2.2)).

Theorem 3.1. Let G = (V,E) be a graph and |l < 0 < k. Then G is a [k,l]-sparse
graph if and only if G can be obtained from a [k, l]-sparse graph on at most 2|l| vertices
by operations K(k,i,j) where 0 < j<i<k,i—j<k-—I.

In the rest of this section we give three simple operations on [k, []-sparse graphs
which result in smaller [k, (]-sparse graphs, but the inverse operations do not neces-
sarily preserve the property in question.

For a graph G = (V, E) let X C V, then G/X denotes the graph obtained by
identifying the nodes in X into a new single node. That is, we contract X into a new
node and we do not delete the loops arising.

Proposition 3.2. Let | < k. Let G = (V + s+ t,E) be a [k,l]-sparse graph and
v({s,t}) > k. If we delete k loops on z from G/{s,t} where z is the new vertex
obtained by contracting {s,t}, then we get a |k, l]-sparse graph.

Proof. 1t is obvious by the definition of [k, []-sparse graphs. O

Theorem 3.3. Let | <2k —1. If G = (V+s+1t,E) is a [k,]-sparse graph and
v({s,t}) <k, then we can delete k non-loop edges from G /{s,t} incident to z (where
2z is the vertex which is obtained from {s,t}) such that we get a [k,[]-sparse graph.

Proof. We will prove the following claim by induction on j.

Claim 3.4. Let 0 < j < k. We can delete j edges from G incident to s ort such that
Yo (X) < k|X| =1 — j holds for the resulting graph G’ for every s,t € X C V.

Proof. 1f j = 0, then it is trivial. Suppose that G’ is obtained by deleting j — 1 edges
from G incident to s or ¢t and e (X) < k| X| —1—j + 1 holds for every s,t € X C V.
We shall prove that we can delete one more edge.

We call a set X tight if s,t € X C V and v (X) = k|X| —1 — 5+ 1. If there
does not exist any tight set, then we can delete any edge. If there exists a tight
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set, then let Py, be the intersection of tight sets. P, is tight by Lemma [2.4] But
Y6/ (Pin) = Y6/ (Puin — 8 — 1) + va ({8, t}) + dar({5,t}, Puin) = 76 (Pnin — 5 — 1) +
va({s,t}) + dar({s,t}, Puin) < k|Puin| — 2k — 1 + k + dg/({s,t}, Puin), S0 k|Puin| —
| —j 41 <k|Pun| —k—14+de({s,t}, Pnin), hence de({s,t}, Poin) > k—j7+1> 1.
Thus there exists an edge between {s,t} and P;,. We can delete that. O

For 7 = k we get the statement. O]

At last after a lemma we give a weaker form of Theorem [2.3, which is true for more
values of £ and [.

Lemma 3.5. Assume | < % and G = (V, E) is [k,l]-sparse. Let X,Y,Z C V. If
b(X)=bY)=0bZ)=0and | XNY|=|XNZ=|YNZ =1, |XNYNZ =0,
then (X UY UZ) =0 and | = 2.

Proof. 0 < b(XUYUZ)=kXUYUZ|-l—v(XUYUZ) <Ek(X|+|Y|+|Z]-3)—
L=y(X) =y (Y)=(Z) = k[ X[l =7(X) +E]Y [l =v(Y)+k]Y |-l —~(Y) =3k +2I
b(X)+0b(Y)+b(Z)—3k+2l=20—3k <0.
Theorem 3.6. Let | < 2. Let G = (V + s,E) be a [k,l]-sparse graph and d(s) =
k+i,vy(s) =i—j where0 < j <i < k,i—j <I. Then there exist a j-element edge-set
F on the neighbors of s such that (G — s) + F' is a |k, l]-sparse graph.

Proof. Let N C V denote the set of the neighbors of s. If N C X C V| then
v(s) =i —7,d(s) = k+iand y(X 4+ s) < k|X + s| — [ implies that bg(X) > j.
(16(X) = 16(X +5) —1a(s) — da(s, X) < K(|X|+1)—1— (i) — (da(s)—2(i—)) =
EIX|+k—1l—i+j—(k+i—2i+2j) =kl X|—-1—-7.)

We prove the following claim by induction on v.

1

Claim 3.7. For every 0 < v < j there exists a v-element edge-set F,, on N such that
(G —s)+ F, is [k,l]-sparse in V.

Proof. If v = 0, then it is trivial. Suppose that there is a (v — 1)-element edge-set
F,_1, such that vy p,_, (X) < k|X|—1for all ) # X C V. Now we prove that we can
add one more edge.

Suppose on the contrary that for every uv € E, u,v € N there exists an X, such
that u,v € Xy Yorr,_, (Xw) = k| Xw| — 1, ie. bgir,_,(Xuw) = 0. We claim that
there exist a set X, such that N C X C V and bgip, ,(X) = 0. If [N| = 1, then
X := Xy (where N = {u}) is appropriate. If |N| > 2, then let u,w € N,u # w and
let X C V be a maximal set satisfying X,, C X and bg,r, ,(X)=0. We claim that
N C X. Suppose that v € N — X. If | X, N X| > 2 or | X,,, N X| > 2, then X cannot
be maximal by Lemma . If [ Xpu N Xyw| > 2, then boip, , (Xpw U Xyw) = 0 and
|(XpuUXpw) N X| = [{u,w}| = 2 implies bgip, | (Xpu U Xy UX) = 0, this contradicts
the maximality of X.

But then we have |X,, N X| = | Xy N X| = | Xy N Xyw| = 1 and by Lemma
boir, o (Xouw U Xy U X) = 0 contradicting the maximality of X.

Now we have 0 = bgip, ,(X) =ba(X) — (v —1) > be(X) — (j — 1) contradicting
the remark at the beginning of the proof, which said bg(X) > j. O

For [ = j we get the statement. O]
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