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A note on [k, l]-sparse graphs

Zsolt Fekete? and László Szegő??

Abstract

In this note we provide a Henneberg-type constructive characterization the-
orem of [k, l]-sparse graphs, that is, the graphs for which the number of induced
edges in any subset X of nodes is at most k|X| − l. We consider the case
0 ≤ l ≤ k.

1 Introduction
Constructive characterization theorems play an important role in the theory of com-
binatorial rigidity. Constructions serve as useful inductive tools for proving theorems.
Tay characterized rigidity of several structures using construction theorems: bar-and-
body structures [11], (n − 2, 2)-frameworks and identified body-and-hinge structures
[9]. A deep result of Tibor Jordán and Bill Jackson [5] was a constructive character-
ization theorem concerning a connectivity and sparsity conditions (see also [1]) and
this was the key of the characterization of global rigidity in the plane.

We will consider graphs satisfying sparsity condition arose in Whiteley’s investiga-
tion of rigidity on surfaces [13]. We give a constructive characterization theorem of
these graphs.

In this paper we consider undirected graphs and we allow parallel edges and loops.
Let G = (V, E) be a graph. If u, v ∈ V and e ∈ E, then e = uv denotes that edge e
has end-nodes u and v (there may be other edges parallel to e).

For a subset X ⊆ V , γG(X) denotes the number of induced edges in X, i.e. γG(X) :=
|{e ∈ E : e = uv where u, v ∈ X}|. If v ∈ V , then γG(v) := γG({v}) is the number of
loops on v. If X, Y ⊆ V , then dG(X, Y ) := |{e ∈ E : e = uv where u ∈ X − Y, v ∈
Y −X}|. dG(X) := dG(X, V −X). For a node v ∈ V , dG(v) will denote the degree of
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v, that is, dG(v) := dG({v}, V − {v}) + 2γG(v) (note that a loop contributes 2 to the
degree). We omit the index G if it is clear from the context.

Let l, k be integers and l ≤ k. We say that a graph G = (V, E) is [k, l]-sparse in Z
(∅ 6= Z ⊆ V ) if γ(X) ≤ k|X| − l holds for every ∅ 6= X ⊆ Z. If k + 1 ≤ l ≤ 2k − 1,
then we say that a graph G = (V, E) is [k, l]-sparse in Z (∅ 6= Z ⊆ V ) if G is loopless
and γ(X) ≤ k|X|− l holds for every X ⊆ Z, |X| ≥ 2. We say that a graph G = (V, E)
is [k, l]-sparse if |E| = k|V | − l and G is [k, l]-sparse in V . Remark that if l < k, then
there can be (at most k − l) loops incident to any node in a [k, l]-sparse graph.

Nash-Williams [7] proved the following theorem concerning coverings by trees.

Theorem 1.1 (Nash-Williams). A graph G = (V, E) is the union of k edge-disjoint
forests if and only if G is [k, k]-sparse in V .

A consequence of this theorem that a graph is [k, k]-sparse if and only if its edge-set
is a disjoint union of k spanning trees. An undirected graph is called k-tree-connected
if it contains k edge-disjoint spanning trees. Remark that a graph is minimally k-tree-
connected if and only if it is [k, k]-sparse.

Frank in [2] by observing that a combination of a theorem of Mader and a theorem
of Tutte gives rise to the following characterization. (For a direct proof, see Tay [10]).

Theorem 1.2. An undirected graph G = (V, E) is k-tree-connected if and only if G
can be built from a single node by the following three operations:

1. add a new edge,

2. add a new node z and k new edges ending at z,

3. pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

Two variants of the notion of k-tree-connectivity were considered by Frank and
Szegő in [3]. One of them is the following: a loopless graph G (with at least 2 nodes)
is called nearly k-tree-connected if G is not k-tree-connected but adding any new edge
to G results in a k-tree-connected graph. It is easy to see that a graph is nearly
k-tree-connected if and only if it is [k, k + 1]-sparse.

Let Kk−1
2 denote the graph on two nodes with k − 1 parallel edges. Based on the

work of Henneberg [4] and Laman [6], Tay and Whiteley gave a proof of the following
theorem in the special case of k = 2 in [12].

Theorem 1.3 (Frank and Szegő). An undirected graph G = (V, E) is nearly k-tree-
connected if and only if G can be built from Kk−1

2 by applying the following operations:

1. add a new node z and k new edges ending at z so that no k parallel edges can
arise,

2. choose a subset F of i existing edges (1 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.
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In [11] Tay proved for inductive reasons that a node of degree at most 2k − 1
either can be “split off”, or “reduced” to obtain a smaller nearly k-tree-connected
graph. Theorem 1.3 says that there always exists a node which can be “split off”. The
following proposition follows easily from the definition of [k, l]-sparse graphs.

Proposition 1.4. Let k + 1 ≤ l ≤ 3k
2
. If an undirected graph G = (V, E) can be built

up from a single node by applying the following operations, then it is [k, l]-sparse.

(P1) add a new node z and at most k new edges ending at z so that no 2k − l + 1
parallel edges can arise.

(P2) Choose a subset F of i existing edges (1 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no 2k − l + 1 parallel edges in the resulting graph.

Inspiring by Theorem 1.3 we would conjecture that the reverse of the proposition
above is also true for all k and l satisfying k + 1 ≤ l ≤ 3k

2
. But as it was shown in [8],

this is not true if k + k+2
3
≤ l, still we think the following holds.

Conjecture 1.5. Let k + 1 ≤ l < k + k+2
3

. An undirected graph G = (V, E) is [k, l]-
sparse if and only if G can be built from a single node by applying the operations (P1)
and (P2).

In this paper we consider a class of graphs that related to packing of trees and
pseudotrees. A pseudotree is a set of edges which is connected and contains exactly
one cycle. Now we show how they are related to [k, l]-sparse graphs, where 0 ≤ l ≤ k.

The maximal edge-sets on vertex set V not containing a cycle form the base-set
of a matroid which is called the cycle matroid. The maximal edge-sets B on vertex
set V containing at most one cycle in every connected components of (V, B) form the
base-set of a matroid which is called the bicycle matroid. (We note that loops and
parallel edges are allowed and a loop is a cycle of length one and two parallel edges
form a cycle of length two.)

It is easy to check the following.

Claim 1.6. An edge-set F on vertex-set V is independent in the cycle matroid if and
only if (V, F ) is [1, 1]-sparse.

An edge-set F on vertex-set V is independent in the bicycle matroid if and only if
(V, F ) is [1, 0]-sparse.

Whitely [13] proved the following characterization.

Theorem 1.7 (Whiteley). If G = (V, E) is a graph and 0 ≤ l ≤ k, then the
following are equivalent.

1. G is [k, l]-sparse,

2. E is the disjoint union of l bases of the cycle matroid and (k − l) bases of the
bicycle matroid.
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Figure 1: G′ is obtained from G by operation K(k, i, j).

Figure 2: A loopless [2, 0]-sparse graph, which cannot be obtained by a sequence of
loopless [2, 0]-sparse graphs.

We will prove a Henneberg-type construction of [k, l]-sparse graphs for 0 ≤ l ≤ k.
We will use the following operations.

Definition 1.8. Let 0 ≤ j ≤ i ≤ k. K(k, i, j) will denote the following operation.
Choose j edges of G, subdivide each of them by a new node and identify these nodes
to a new node z. Put i− j loops on z and link it with other nodes by k− i new edges.
(This operation results in a graph with k more edges than the original graph and the
new node z has degree (k + i). See Figure 1.)

The graph on one node with l loops will be denoted by Pl. Our main result is the
following theorem.

Theorem 1.9. Let G = (V, E) be a graph and 1 ≤ l ≤ k. Then G is a [k, l]-
sparse graph if and only if G can be obtained from Pk−l by operations K(k, i, j) where
0 ≤ j ≤ i ≤ k − 1, i− j ≤ k − l.

Let G = (V, E) be a graph and l = 0. Then G is a [k, l]-sparse graph if and only if G
can be constructed from Pk−l by operations K(k, i, j) where 0 ≤ j ≤ i ≤ k, i−j ≤ k−l.

Notice that operations K(k, i, j) for j ≤ i = k must be allowed in case l = 0 while
the construction works without them in the other cases. We remark that loopless
[k, l]-sparse graphs cannot be obtained by operations above via a sequence of loopless
[k, l]-sparse graphs. (See Figure 2 for an example.)

In Section 3 we give some further operations which may lead to other characteri-
zations for negative values of l and for l > k or alternative characterizations to the
existing ones.
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2 Proof of Theorem 1.9
The if part of Theorem 1.9 is the following.

Lemma 2.1. Let 0 ≤ l ≤ k. If graph G is obtained from Pk−l by operations K(k, i, j)
where 0 ≤ j ≤ i ≤ k, i− j ≤ k − l, then it is a [k, l]-sparse graph.

Proof. This can be seen directly from the definition.

We will need the following claim, which is a consequence of equality
∑

v∈V d(v) =
2|E| = 2(k|V |− l) and the inequality d(v) = |E|−γ(V −v)+γ(v) ≥ k|V |− l− (k|V −
v| − l) = k.

Claim 2.2. Let G = (V, E) be a [k, l]-sparse graph.

1. If 0 < l ≤ k and |V | ≥ 2, then ∃v ∈ V such that k ≤ d(v) ≤ 2k − 1.

2. If l = 0 and |V | ≥ 2, then ∃v ∈ V such that k ≤ d(v) ≤ 2k.

3. If l < 0 and |V | ≥ 2|l|+ 1, then ∃v ∈ V such that k ≤ d(v) ≤ 2k.

Let e = sv, f = sw ∈ E, v 6= s, w 6= s. Splitting off the pair of edges e and f means
the following: delete e and f and add a new edge g = vw, i.e. we get by splitting off
edges e, f graph Gef = (V, E − e− f + g). We say that the new edge g is a split edge.

The following will give the only if part of Theorem 1.9.

Theorem 2.3. Let 0 ≤ l ≤ k. Let G = (V + s, E) be a [k, l]-sparse graph and
d(s) = k + i, γ(s) = i− j where 0 ≤ j ≤ i ≤ k, i− j ≤ k − l. Then we can split off j
pairs of edges incident to s so that after deleting s the remaining graph is [k, l]-sparse.

Let b(X) = bG(X) := k|X| − l − γG(X). We remark that a graph G = (V, E) is
[k, l]-sparse in V if and only if bG(Z) ≥ 0 for all ∅ 6= Z ⊆ V . If G = (V +s, E) is [k, l]-
sparse in V and e = sv, f = sw ∈ E, then splitting off e and f is called admissible if
Gef is [k, l]-sparse in V . We will frequently use the following simple lemma.

Lemma 2.4. Let G = (V, E) be a graph and X, Y ⊆ V . Then the following hold.

1. γ(X) + γ(Y ) + d(X, Y ) = γ(X ∩ Y ) + γ(X ∪ Y ).

2. b(X) + b(Y ) = b(X ∩ Y ) + b(X ∪ Y ) + d(X, Y ).

3. Let l ≤ k. If G is [k, l]-sparse in V , then b(X) = b(Y ) = 0, X ∩ Y 6= ∅ implies
b(X ∪ Y ) = b(X ∩ Y ) = 0.

4. Let l ≤ 2k − 1. If G is [k, l]-sparse in V , then b(X) = b(Y ) = 0, |X ∩ Y | ≥ 2
implies b(X ∪ Y ) = b(X ∩ Y ) = 0.

5. If G = (V + s, E) is [k, l]-sparse in V and e = sv, f = sw are edges incident to
s (v, w ∈ V ), then Gef is obtained by an admissible splitting off if and only if
@X ⊆ V such that v, w ∈ X and bG(X) = 0.
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Proof. 1. Easy to check that the contribution of each edge is the same to both side.
2. A consequence of 1.
3. We know that b(Z) ≥ 0 for all ∅ 6= Z ⊆ V . 0 + 0 = b(X) + b(Y ) = b(X ∩ Y ) +

b(X ∪ Y ) + d(X, Y ) ≥ 0 + 0 + 0, so equality holds.
4. We know that b(Z) ≥ 0 for all Z ⊆ V, |Z| ≥ 2. 0 + 0 = b(X) + b(Y ) =

b(X ∩ Y ) + b(X ∪ Y ) + d(X, Y ) ≥ 0 + 0 + 0, so equality holds.
5. The claim follows from the fact that a graph G is [k, l]-sparse in V if and only

if bG(X) ≥ 0 for all ∅ 6= X ⊆ V and

bGef (X) =

{
bG(X) if v or w is not in X,

bG(X)− 1 if v, w ∈ X.

Proof of Theorem 2.3. Assume on the contrary that we cannot split off j pairs of
edges so that the resulting graph is [k, l]-sparse in V . Split off as many pairs as
possible. We split off say m < j pairs of edges and denote the resulting graph by
G′. Let e1 = sv1, . . . , eα = svα be the non-loop edges incident to s in G′ where
α = k + i − 2(i − j) − 2m = k − i + 2j − 2m ≥ 2. By Lemma 2.4 we know that for
every vν , vµ (1 ≤ ν < µ ≤ α) there exists an Xνµ ⊆ V such that vν , vµ ∈ Xνµ and
bG′(Xνµ) = 0. Using the second statement of Lemma 2.4 we get that there exists an
X ⊆ V such that vν ∈ X for every ν and bG′(X) = 0. Let XG′ be a maximal set
having these properties.

Now consider every G′ which can be obtained by splitting off m pairs of edges at s
in G. For each G′ we have a set XG′ . Choose G1 := G′ so that |XG′| is maximal. Let
X := XG1 .

Claim 2.5. There is a split edge e = vw in G1 such that v, w /∈ X.

Proof. Assume on the contrary that for every split edge e = vw, v ∈ X or w ∈ X.
Let β := |{e : e = vw is a split edge and v, w ∈ X}|. bG1(X) = 0 implies bG(X) = β.
bG(X+s) = bG(X)+k−γG(s)−dG(s, X) = bG(X)+k−(i−j)−(k−i+2j−(m−β)) =
β + k− i + j− (k− i + 2j−m + β) = β + k− i + j− k + i− 2j + m− β = m− j < 0.
A contradiction.

Let e = vw be an edge given by the claim. Let G2 := G1−e+sv+sw. We state that
sv, sv1 is an admissible splitting off in G2. Because if v, v1 ∈ Y ⊆ V and bG2(Y ) = 0,
then bG1(Y ) ≤ bG2(Y ) = 0 so bG1(Y ) = 0. But X ∩ Y 6= ∅ (since v1 ∈ X ∩ Y ) hence
bG1(X ∪ Y ) = 0 by Lemma 2.4, which contradicts the maximality of |XG1|.

Let G3 := G2 − sv − sv1 + vv1. We state that sw, sv2 is an admissible splitting off
in G3. Assume on the contrary that w, v2 ∈ Z ⊆ V and bG3(Z) = 0.

If v /∈ Z or v1 /∈ Z, then bG1(Z) ≤ bG2(Z) = bG3(Z) = 0 so bG1(Z) = 0. But
X∩Z 6= ∅ (since v2 ∈ X∩Z) hence bG1(X∪Z) = 0, which contradicts the maximality
of |XG1|.

If v, v1 ∈ Z, then bG1(Z) = bG2(Z)− 1 = bG3(Z) = 0 so bG1(Z) = 0. But X ∩Z 6= ∅
(since v2 ∈ X∩Z) hence bG1(X∪Z) = 0 but this contradicts the maximality of |XG1|.
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We proved that sw, sv2 is an admissible splitting off in G3. This contradicts the
maximality of m.

Proof of Theorem 1.9. Lemma 2.1 shows the “if” part. To prove the “only if” we
observe that the only [k, l]-sparse graph with one node is Pk−l. Let G be an arbitrary
graph on at least two nodes. By Lemma 2.2 there exists a node s of degree at most
2k − 1 if l > 0 or a node of degree at most 2k if l = 0. Theorem 2.3 states that G
is obtained from a graph G′ by an operation K(k, i, j). By induction we know that
G′ can be constructed from Pk−l, this implies that G can be constructed from Pk−l

too.

3 Partial results for other l values
In this section k, l will be integers and k ≥ 1, but l can be negative. First we remark
that Theorem 2.3 remains true without assumption l ≥ 0 (the proof is the same).
Thus for l < 0 the following version of Theorem 1.9 follows (using 3. of Claim 2.2).

Theorem 3.1. Let G = (V, E) be a graph and l < 0 < k. Then G is a [k, l]-sparse
graph if and only if G can be obtained from a [k, l]-sparse graph on at most 2|l| vertices
by operations K(k, i, j) where 0 ≤ j ≤ i ≤ k, i− j ≤ k − l.

In the rest of this section we give three simple operations on [k, l]-sparse graphs
which result in smaller [k, l]-sparse graphs, but the inverse operations do not neces-
sarily preserve the property in question.

For a graph G = (V, E) let X ⊆ V , then G/X denotes the graph obtained by
identifying the nodes in X into a new single node. That is, we contract X into a new
node and we do not delete the loops arising.

Proposition 3.2. Let l ≤ k. Let G = (V + s + t, E) be a [k, l]-sparse graph and
γ({s, t}) ≥ k. If we delete k loops on z from G/{s, t} where z is the new vertex
obtained by contracting {s, t}, then we get a [k, l]-sparse graph.

Proof. It is obvious by the definition of [k, l]-sparse graphs.

Theorem 3.3. Let l ≤ 2k − 1. If G = (V + s + t, E) is a [k, l]-sparse graph and
γ({s, t}) ≤ k, then we can delete k non-loop edges from G/{s, t} incident to z (where
z is the vertex which is obtained from {s, t}) such that we get a [k, l]-sparse graph.

Proof. We will prove the following claim by induction on j.

Claim 3.4. Let 0 ≤ j ≤ k. We can delete j edges from G incident to s or t such that
γG′(X) ≤ k|X| − l − j holds for the resulting graph G′ for every s, t ∈ X ⊆ V .

Proof. If j = 0, then it is trivial. Suppose that G′ is obtained by deleting j − 1 edges
from G incident to s or t and γG′(X) ≤ k|X| − l− j + 1 holds for every s, t ∈ X ⊆ V .
We shall prove that we can delete one more edge.

We call a set X tight if s, t ∈ X ⊆ V and γG′(X) = k|X| − l − j + 1. If there
does not exist any tight set, then we can delete any edge. If there exists a tight
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set, then let Pmin be the intersection of tight sets. Pmin is tight by Lemma 2.4. But
γG′(Pmin) = γG′(Pmin − s − t) + γG′({s, t}) + dG′({s, t}, Pmin) = γG(Pmin − s − t) +
γG({s, t}) + dG′({s, t}, Pmin) ≤ k|Pmin| − 2k − l + k + dG′({s, t}, Pmin), so k|Pmin| −
l − j + 1 ≤ k|Pmin| − k − l + dG′({s, t}, Pmin), hence dG′({s, t}, Pmin) ≥ k − j + 1 ≥ 1.
Thus there exists an edge between {s, t} and Pmin. We can delete that.

For j = k we get the statement.

At last after a lemma we give a weaker form of Theorem 2.3, which is true for more
values of k and l.

Lemma 3.5. Assume l ≤ 3k
2

and G = (V, E) is [k, l]-sparse. Let X, Y, Z ⊆ V . If
b(X) = b(Y ) = b(Z) = 0 and |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1, |X ∩ Y ∩ Z| = 0,
then b(X ∪ Y ∪ Z) = 0 and l = 3k

2
.

Proof. 0 ≤ b(X ∪Y ∪Z) = k|X ∪Y ∪Z|− l−γ(X ∪Y ∪Z) ≤ k(|X|+ |Y |+ |Z|−3)−
l−γ(X)−γ(Y )−γ(Z) = k|X|−l−γ(X)+k|Y |−l−γ(Y )+k|Y |−l−γ(Y )−3k+2l =
b(X) + b(Y ) + b(Z)− 3k + 2l = 2l − 3k ≤ 0.

Theorem 3.6. Let l ≤ 3k
2
. Let G = (V + s, E) be a [k, l]-sparse graph and d(s) =

k+ i, γ(s) = i−j where 0 ≤ j ≤ i ≤ k, i−j ≤ l. Then there exist a j-element edge-set
F on the neighbors of s such that (G− s) + F is a [k, l]-sparse graph.

Proof. Let N ⊆ V denote the set of the neighbors of s. If N ⊆ X ⊆ V , then
γ(s) = i − j, d(s) = k + i and γ(X + s) ≤ k|X + s| − l implies that bG(X) ≥ j.
(γG(X) = γG(X +s)−γG(s)−dG(s, X) ≤ k(|X|+1)− l−(i−j)−(dG(s)−2(i−j)) =
k|X|+ k − l − i + j − (k + i− 2i + 2j) = k|X| − l − j.)

We prove the following claim by induction on ν.

Claim 3.7. For every 0 ≤ ν ≤ j there exists a ν-element edge-set Fν on N such that
(G− s) + Fν is [k, l]-sparse in V .

Proof. If ν = 0, then it is trivial. Suppose that there is a (ν − 1)-element edge-set
Fν−1, such that γG+Fν−1(X) ≤ k|X| − l for all ∅ 6= X ⊆ V . Now we prove that we can
add one more edge.

Suppose on the contrary that for every uv ∈ E, u, v ∈ N there exists an Xuv such
that u, v ∈ Xuv: γG+Fν−1(Xuv) = k|Xuv| − l, i.e. bG+Fν−1(Xuv) = 0. We claim that
there exist a set X, such that N ⊆ X ⊆ V and bG+Fν−1(X) = 0. If |N | = 1, then
X := Xuu (where N = {u}) is appropriate. If |N | ≥ 2, then let u, w ∈ N, u 6= w and
let X ⊆ V be a maximal set satisfying Xuw ⊆ X and bG+Fν−1(X) = 0. We claim that
N ⊆ X. Suppose that v ∈ N −X. If |Xvu ∩X| ≥ 2 or |Xvw ∩X| ≥ 2, then X cannot
be maximal by Lemma 2.4. If |Xvu ∩ Xvw| ≥ 2, then bG+Fν−1(Xvu ∪ Xvw) = 0 and
|(Xvu∪Xvw)∩X| = |{u, w}| = 2 implies bG+Fν−1(Xvu∪Xvw∪X) = 0, this contradicts
the maximality of X.

But then we have |Xvu ∩ X| = |Xvw ∩ X| = |Xvu ∩ Xvw| = 1 and by Lemma 3.5
bG+Fν−1(Xvu ∪Xvw ∪X) = 0 contradicting the maximality of X.

Now we have 0 = bG+Fν−1(X) = bG(X) − (ν − 1) ≥ bG(X) − (j − 1) contradicting
the remark at the beginning of the proof, which said bG(X) ≥ j.

For l = j we get the statement.
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