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A note on the degree prescribed factor problem

Jácint Szabó?

Abstract

The degree prescribed factor problem is to decide if a graph has a sub-
graph satisfying given degree prescriptions at each vertex. Lovász, and later
Cornuéjols, gave structural descriptions on this problem in case the prescrip-
tions have no two consecutive gaps. We state the Edmonds-Gallai-type struc-
ture theorem of Cornuéjols which is only implicit in his paper. In these results
the difficulty of checking the property of criticality is near to the original prob-
lem. By extending a result of Loebl, we prove that a degree prescription can
be reduced to the edge and factor-critical graph packing problem by a ‘gadget’
if and only if all of its gaps have the same parity. With this gadget technique
it is possible to obtain a description of the critical components. Finally, we
prove two matroidal results. First, the up hulls of the distance vectors of all
subgraphs form a contra-polymatroid. Second, we prove that the vertex sets
coverable by subgraphs F satisfying the degree prescriptions for all v ∈ V (F )
form a matroid, in case 1 is contained in all prescriptions.

Keywords: degree prescribed factor problem

1 Introduction

The H-factor problem is the following. Let G be an undirected graph and let Hv ⊆ N

be a degree prescription for each v ∈ V (G). For a subgraph F of G define δF (v) =
dist(degF (v), Hv) where dist(I, J) = min{|i − j| : i ∈ I, j ∈ J} for I, J ⊆ N. Let
δF =

∑
{δF (v) : v ∈ V (G)}. The minimum δF among the subgraphs F is denoted

by δH(G). A subgraph F is called H-optimal if δF = δH(G) and it is an H-factor
if δF = 0, i.e. if degF (v) ∈ Hv for all v ∈ V (G). The H-factor problem is to decide
if there exists an H-factor of G, or in general, to determine the value of δH(G).
Throughout we assume that Hv 6= ∅.

Lovász [18, 19] gave a structural description for the H-factor problem in case Hv

has no two consecutive gaps for all v ∈ V (G). An integer h is called a gap of H ⊆ N if
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Section 2. The Edmonds-Gallai decomposition of Cornuéjols 2

h /∈ H but H contains an element less than h and an element greater than h. Lovász
[19] showed that the problem is NP-complete without this restriction. However, the
issue of polynomiality remained open. Later, Cornuéjols [3] gave two polynomial
algorithms. It is implicit in Cornuéjols [3] that one of these algorithms implies an
Edmonds-Gallai-type structure theorem for the H-factor problem, which is very close
to the structure theorem of Lovász’. We state this result of Cornuéjols in Section 2,
point out the relation with the structure theorem of Lovász, and as an application we
deduce an Edmonds-Gallai-type theorem for the (1, f)-odd factor problem, i.e. when
Hv = {1, 3, 5, . . . , f(v)} for an odd value function f : V (G) → N.

Section 3 extends the work of Loebl [14] by classifying those degree prescriptions
which can be reduced by a gadget to the edge and factor-critical graph packing prob-
lem of Cornuéjols, Hartvigsen and Pulleyblank [4, 5]. Loebl considered reductions to
the edge and triangle packing problem. However, if we allow any factor-critical graphs
not just triangles then many new representable prescriptions arise. Namely, a pre-
scription H can be represented if and only if all of its gaps have the same parity. Note
that this condition implies that H has no two consecutive gaps. In some way, these
prescriptions form the broadest class of the degree prescribed factor problem where
parity reasons can be used. Applying this gadget technique, we then characterize the
critical components.

Finally, in Section 4 we concern with matroidal properties of the H-factor problem.
We prove in three ways that the up-hulls of the vectors δF ∈ N

V (G) with component
δF (v) for v ∈ V (G) form a contra-polymatroid. Another matroidal result is the
following.

Definition 1.1. A subgraph F of G is called an H-subgraph if degF (v) ∈ Hv for all
v ∈ V (F ). Let M consist of those subsets of vertices of G which can be covered by
H-subgraphs.

We prove that M is a matroid in case 1 ∈ Hv and Hv has no two consecutive gaps
for all v ∈ V (G).

In this paper the size of a graph G denotes |V (G)| and c(G) denotes the number of
connected components of G.

2 The Edmonds-Gallai decomposition of Cornué-

jols

Cornuéjols [3] gave two polynomial algorithms for the H-factor problem, in the case
when Hv contains no two consecutive gaps for all v ∈ V (G). One of these is an
Edmonds-type alternating forest algorithm, which implies an Edmonds-Gallai-type
structure theorem for the H-factor problem. The existence of such a structure theorem
is mentioned in Cornuéjols [3] but it is not stated explicitly. Lovász [19] also described
a decomposition for the H-factor problem, which is very close to that of Cornuéjols’.
We briefly point out the connection of these two versions in this section. We consider
in details only the formulation of Cornuéjols.
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Definition 2.1. For v ∈ V (G) let l(v) = min Hv, u(v) = max Hv and H↓
v =

{0, 1, . . . , u(v)}.

Wlog. we assume that 0 ≤ l(v) ≤ u(v) ≤ degG(v) for all v ∈ V (G).

Definition 2.2. [3] A graph G with |V (G)| ≥ 2 is called H-critical if G does not have
an H-factor but for all v ∈ V (G) there exists a subgraph K of G with the property
that degK(v) + 1 ∈ Hv and degK(w) ∈ Hw for all vertices w 6= v. Call G non-trivial
and define val(G) = 1. Moreover, G is H-critical if V (G) = {v} and l(v) ≥ 1. In this
case G is said to be trivial and let val(G) = l(v).

Definition 2.3. [3] Gsub is the graph what we get from G after subdividing each edge
e = uv with two new vertices eu and ev (resulting in three new edges ueu, euev and
evv). Let the set of these new vertices be VE and the degree prescription on the new
vertices be {1}.

It is easy to see that δH(G) = δH(Gsub). An ingenious idea of Cornuéjols is that
his Edmonds-type algorithm should work on the subdivided graph Gsub. Thus the
Edmonds-Gallai-type theorem, implicit in [3], considers the H-factor problem on Gsub.
We need to state this result for a slightly more general class of graphs.

Definition 2.4. A simple graph S is called subdivided if it is an induced subgraph of
a graph of form Gsub. Let SV = V (S) ∩ V (G) and SE = V (S) ∩ VE.

Theorem 2.5. (Cornuéjols) Let S be a subdivided graph. Let D ⊆ V (S) consist of
vertices v with the property that there exists an H-optimal subgraph F of S such that
degF (v) ∈ H↓

v \Hv. Let A be the set of neighbors of D in S and let C = V (S)−(D∪A).
Let val(D) denote the sum of the values of the H-critical components of S[D]. Then

1. the components of S[D] are H-critical,

2. δH(S) = val(D) − u(A),

3.
∑

{val(K) : K is a component of S[D] adjacent to A′} ≥ u(A′) + 1 for all ∅ 6=
A′ ⊆ A,

4. for all H-optimal subgraphs F of S there is no edge of F between A and C and
F [C] is an H-factor of S[C].

For sake of completeness, we briefly describe without proof the relation of Thm. 2.5
with the decomposition formulated by Lovász. This is defined on the original graph
G. It consists of four vertex sets.

CL = {v ∈ V (G) : degF (v) ∈ Hv for all H-optimal subgraphs F of G},

AL = {v ∈ V (G) \ CL : degF (v) ≥ u(v) for all H-optimal subgraphs F of G},

BL = {v ∈ V (G) \ CL : degF (v) ≤ l(v) for all H-optimal subgraphs F of G},

and finally
DL = V (G) − (AL ∪ BL ∪ CL).
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Let V (Gsub) = D ∪̇A ∪̇C be the decomposition of Thm. 2.5. The relation is as
follows. AL = V (G) ∩ A, CL = V (G) ∩ C,

BL = {v ∈ V (G) : {v} is a trivial component of Gsub[D]} and

DL = {v ∈ V (G) : v is contained in a non-trivial component of Gsub[D]}.

Note that if a vertex v ∈ A ∩ VE is adjacent only to non-trivial components of
Gsub[D] then it is adjacent to exactly two such components by Thm. 2.5, 3. On the
other hand, it can be proved that if e = xy is a cut edge of a component of G[DL] then
exactly one of ex and ey belongs to A. So the maximal 2-edge connected subgraphs
of the components of G[DL] correspond to non-trivial components of Gsub[D]. We do
not go into details. Observe that with the help of the subdivision of the edges of G it
is possible to encode the two sets BL and DL in one set D.

Another characterization of the decomposition of Thm. 2.5 is that

C = {v ∈ V (Gsub) : degF (v) ∈ Hv for all H-optimal subgraphs F},

A = {v ∈ V (Gsub) \ C : degF (v) ≥ u(v) for all H-optimal subgraphs F}, and

D = V (Gsub) − (C ∪ A).

Thm. 2.5 immediately implies a Berge-type theorem for the H-factor problem in
subdivided graphs S. Note that ≥ is trivial.

Theorem 2.6. (Cornuéjols) [3]

δH(S) = max
A⊆V (S)

val(S − A) − u(A).

Here val(S −A) denotes the sum of the values of the H-critical components of S −A.

As an application of Thm. 2.5 we deduce an Edmonds-Gallai-type structure theorem
for the (1, f)-odd factor problem. This was introduced by Amahashi [1] who gave a
Tutte-type existence theorem for the H-factor problem in case Hv = {1, 3, 5, . . . , 2k +
1} for some k ∈ N for all v ∈ V (G). Let f : V (G) → N be a function with odd values.
For the case when Hv = {1, 3, 5, . . . , f(v)}, a Tutte-type theorem was proved by Cui
and Kano [6], and a Berge-type minimax formula by Kano and Katona [12]. These
are generalized by the next theorem.

Theorem 2.7. Let Hv = {1, 3, 5, . . . , f(v)} for all v ∈ V (G). Let Df ⊆ V (G)
consist of those vertices v for which there exists an H-optimal subgraph F of G with
degF (v) ∈ {0, 2, 4, . . . , f(v) − 1}. Let Af be the set of neighbors of Df in G and let
Cf = V (G) − (Df ∪ Af ). Then

1. the components of G[Df ] have odd size,

2. δH(G) = c(Df ) − f(Af ),

3. |{K : K is a component of G[Df ] adjacent to A′}| ≥ f(A′) + 1 for all ∅ 6= A′ ⊆
Af ,
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4. for all H-optimal subgraphs F of G there is no edge of F between Af and Cf

and F [Cf ] is an H-factor of G[Cf ].

Proof. Let V (Gsub) = D ∪̇A ∪̇C be the Edmonds-Gallai decomposition of Gsub by
Thm. 2.5. An H-optimal subgraph F of G with degF (v) ∈ {0, 2, 4, . . . , f(v)−1} gives
an H-optimal subgraph Fsub of Gsub with degFsub

(v) ∈ H↓
v \Hv. So Df ⊆ D∩V (G). On

the other hand, if there exists an H-optimal subgraph Fsub of Gsub with degFsub
(v) ∈

H↓
v \ Hv for some v ∈ V (G) then we can choose it to have degFsub

(w) = 1 for all
w ∈ VE. So in fact, Df = D ∩ V (G). By parity reasons, the H-critical components of
Gsub[D] have odd size. A vertex in VE∩A is adjacent to two components of Gsub[D] by
Thm. 2.5, 3. Thus the components of Gsub[D∪ (VE ∩A)] have odd size, too. It is clear
that the components of G[Df ] are obtained from the components of Gsub[D∪(VE∩A)]
by contracting each edge of type xex. This proves 1. Properties 2., 3. and 4. follow
from the related properties of Thm. 2.5.

Observe that if f ≡ 1 then the components of G[Df ] are factor-critical by the
classical Edmonds-Gallai theorem [7, 9, 10]. However, for general f , these components
are only of odd size.

3 The representable prescriptions

Unfortunately, checking H-criticality in Theorems 2.5 and 2.6 is almost as difficult
as the original problem. This applies to the related notion of ‘criticality’ in Lovász’
structure theorem as well. Actually, we can check H-criticality by any algorithm of
Cornuéjols [3]. However, beside an algorithmic proof, we want a nice description of
the H-critical components. Under this we mean checking ‘F -criticality’ in the edge
and factor-critical graph packing problem of Cornuéjols, Hartvigsen and Pulleyblank
[4, 5]. This task is well-solved and amounts to checking factor-criticality and the
existence of perfect matchings. The possibility of producing such characterizations
is available for those prescriptions which can be represented by gadgets, which are
auxiliary graphs reducing the behavior of a prescription to the edge and factor-critical
graph packing problem. Using gadgets offers the theoretical possibility of describing
the H-critical graphs, and hence of deriving exact Tutte-, Berge- and Edmonds-Gallai-
type theorems in the representable cases. In Thm. 3.5 we prove that a prescription can
be represented if and only if all of its gaps have the same parity. These prescriptions
form the broadest class of the degree prescribed factor problem where parity reasons
occur, as it will be justified by Thm. 3.14. It also covers the antifactor problem of
Lovász [17], when Hv = [0, degG(v)] \ {g(v)} for some g : V (G) → N.

We define the edge and factor-critical graph packing problem and cite the related
Edmonds-Gallai-type structure theorem.

Definition 3.1. Let G be an undirected graph and let F consist of factor-critical
subgraphs of G. A subgraph Q of G is called an F-packing if each connected compo-
nent of Q is either isomorphic to K2 or is contained in F . Q is maximum if it covers
a maximum number of vertices and Q is an F-factor if it covers all vertices of G.
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Moreover, let dF be the number of vertices of G missed by a maximum F -packing. G
is F-critical if it has no F -factor, but G − v has one for each v ∈ V (G).

Note that when F = ∅ we get the classical matching problem. Cornuéjols, Hart-
vigsen and Pulleyblank [4, 5] showed that the F -packing problem is polynomial and
they proved an Edmonds-Gallai-type theorem for the F -packing problem. We cite
this result.

Theorem 3.2. (Cornuéjols, Hartvigsen) [4] Let DF ⊆ V (G) consist of those
vertices which can be missed by a maximum F-packing of G. Let AF be the set of
neighbors of DF in G and let CF = V (G) − (DF ∪ AF). Then

1. the components of G[DF ] are F-critical,

2. dF(G) = c(DF) − |AF |,

3. |{K : K is a component of G[DF ] adjacent to A′}| ≥ |A′| + 1 for all ∅ 6= A′ ⊆
AF ,

4. for all maximum F-packings F of G there is no edge of F between AF and CF

and F [CF ] is an F-factor of G[CF ].

We make use of the edge and factor-critical graph packing problem in gadgets as
follows.

Definition 3.3. (T, U,F) is said to be a gadget representing the degree prescription
H ⊆ N if T is a graph, U ⊆ V (T ) and F is a set of factor-critical subgraphs of T with
the property that h ∈ H if and only if there exists an h-element set U ′ ⊆ U such that
T − U ′ has an F -factor.

If Hv has a representing gadget for all v ∈ V (G) then G has an H-factor if and only
if Gaux has an F -factor, where Gaux is the auxiliary graph what we get when replacing
in Gsub each vertex v ∈ V (G) by a gadget representing Hv. Even δH(G) = dF(Gaux)
holds by Thm. 3.9. The exact definition of this auxiliary graph is as follows. Recall
that a subdivided graph is just an induced subgraph of a graph of form Gsub.

Definition 3.4. Let S be a subdivided graph. Suppose (Tv, Uv,Fv) represents Hv for
v ∈ VS. Let Saux be the graph with vertex set

V (Saux) = SE ∪
⋃

v∈SV

V (Tv)

and edge set

E(Saux) = {exey : ex, ey ∈ SE} ∪ {exu : u ∈ Ux, x ∈ SV , ex ∈ SE} ∪
⋃

v∈SV

E(Tv).

Moreover, let F =
⋃

v∈SV
Fv. (Gsub)aux is denoted simply by Gaux.
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It is well known that a parity interval {p, p + 2, . . . , p + 2r} can be represented by
a gadget with F = ∅, see Fig. 2. With the help of these gadgets Cornuéjols [3] was
able to produce a non-Edmonds-type algorithm for the H-factor problem using the
local augmenting property of jump systems. By answering a question of Pulleyblank,
Loebl [14] then proved that a prescription H can be represented by a gadget (T, U,F)
such that F contains only triangles if and only if H is a parity interval or

H = I ∩ {p, p + 2, p + 3, . . . , p + 2r − 2, p + 2r}, r ≥ 1

where I is an interval. However, Thm. 3.5 shows that many new representable pre-
scriptions arise if we allow any factor-critical graphs in F not just triangles. These
new representable prescriptions slightly simplify the above algorithm of Cornuéjols.
Namely, instead of 2|V (G)|+ 1, it is enough only 1 – a bit more involved – search for
a local augmentation. This is because {p, p + 1, p + 3, . . . , p + 2r − 1, p + 2r} ∩ I can
be represented, where I is an interval.

Note that Thm. 3.5 implies that a representable degree prescription has no two
consecutive gaps.

Theorem 3.5. A degree prescription can be represented by a gadget if and only if all
of its gaps have the same parity.

Proof. Necessity. Suppose (T, U,F) is a gadget representing the degree prescription
H. Let p, q ∈ H, p < q. We prove that

i. {p + 1, p + 2, q − 1} ∩ H 6= ∅ and

ii. {p + 1, q − 1} ∩ H 6= ∅ if p 6≡ q mod 2.

Now i. implies that there are no two consecutive gaps in H, and hence ii. gives that
all gaps have the same parity. Let Qp, Qq be F -factors of T − Up, T − Uq resp.,
with Up, Uq ⊆ U and |Up| = p, |Uq| = q. Let Vp = V (Qp) = V (T ) − Up and define Vq

similarly. Choose Qp, Qq with Vp∩Vq maximal. |Vp| > |Vq| so let v ∈ Vp\Vq. Let P be
a longest alternating path starting at v with edges alternately being K2 components
of Qp and Qq. Note that P cannot end in Vq \Vp because of the maximality of Vp∩Vq.
So three possibilities can occur.

1. If P ends in a factor-critical component of Qp then we can modify Qp to an
F -factor of T − Up − v.

2. If P ends in a factor-critical component of Qq then we can modify Qq to an
F -factor of T − Uq + v.

3. If P ends in u ∈ Vp \Vq then we can modify Qp to an F -factor of T −Up−u−v.

Hence i. is proved. Also ii. is proved if there exists v ∈ Vp \ Vq for which possibility
1. or 2. occurs. Suppose otherwise. The paths of type 3. pair the elements of Vp \ Vq

implying that |Vp \ Vq| is even and is clearly at least 2. Let P be such an alternating
path with end vertices u, v ∈ Vp\Vq and let Pp (resp. Pq) consist of the K2 components
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of P belonging to Qp (resp. Qq). The oddness of q − p implies that |Vq \ Vp| is odd.
For each w ∈ Vq \ Vp let Rw be a longest alternating path starting at w with edges
alternately being K2 components of Qq and Qp. Observe that Rw and P are disjoint.
As above, Rw either ends in a factor-critical component or it ends in Vq \ Vp. Since
|Vq \ Vp| is odd, for at least one vertex w ∈ Vq \ Vp, either

1. Rw ends in a factor-critical component of Qp in which case we can modify
Qp − Pp + Pq to an F -factor of T − Up + w − u − v, or

2. Rw ends in a factor-critical component of Qq in which case we can modify
Qq − Pq + Pp to an F -factor of T − Uq − w + u + v.

Definition 3.6. Assume that all gaps of H have the same parity and that H is not
an interval of length at least 2. Define H-parity to be 0 (resp. 1) if all even (resp. odd)
integers in [l, u] belong to H. Here l = min H and u = max H.

Sufficiency. Let H be a prescription with no gaps of different parity. If H is an
interval {p, p + 1, . . . , p + r} then it is well-known that H can be represented by a
gadget T consisting of p + r isolated vertices, with U = V (T ) and F consisting of
r of these vertices as one vertex factor-critical subgraphs, see Fig. 2. Otherwise let
H0 = {h− l : h ∈ H}. If (T, U,F) is a gadget representing H0 then adding l isolated
vertices to T which belong to U results in a gadget representing H. Hence we may
assume that l = 0. Construct a gadget (T, U,F) in the following way. If u has H-
parity then define n = 2u, otherwise let n = 2u+1. Let U = {yi : 1 ≤ i ≤ u}, V (T ) =
U ∪ {x1, x2, . . . , xn = x0} and let

E(T ) = {xixi+1 : 0 ≤ i ≤ n− 1}∪ {x2ix2i+2 : 0 ≤ i ≤ n/2− 1}∪ {x2i−1yi : 1 ≤ i ≤ u}.

If u− r ∈ H has non H-parity then add the odd circuit x0, x2, . . . , x2r, x2r+1, . . . , xn−1

to F . Observe that an F -packing of T can have at most one factor-critical component
since x0 ∈ V (F ) for all F ∈ F . So it is easy to see that (T, U,F) represents H. See
an example in Fig. 1.

x5

x4
y3

x1

x3

x6

x8 x9 = x0

x7

y2

x2

y1y4

Figure 1: Gadget representing {0, 1, 3, 4}. U = {y1, y2, y3, y4}, F = {x0x2x4x6x8,
x0 . . . x8}.

Of course in some special cases one can give much simpler gadgets, see Fig. 2. All
but the last gadgets of Fig. 2 were already known. Note that the addition of l isolated
vertices to U shifts H upwards l units.
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x2x1

H = {p, p + 1, . . . , p + r}

F = {{x1}, . . . , {xr}}
. . .

xp+r

H = {p, p + 2, . . . , p + 2r}

x1 x2

e2F = ∅
... . ..

xp

e1 er

H = {0, 1, 3, 5, . . . , 2p + 1}
C2p+1F = {C2p+1}

H = {1, 3, 5, . . . , 2p + 1}
F = ∅ C2p+1

x1

e2e1 eq C2r+1

H = {0, 2, . . . , 2p − 2, 2p − 1, . . . , 2p + 2q, 2p + 2q + 2, . . . , 2p + 2q + 2r}, p ≤ r + 1

.
.

.

.. .

x2

x2p−1

F = {C2r+1}

Figure 2: Some simpler gadgets. U = V (T ) in all cases.

We remark that the necessity part of the above proof can be directly applied to
propellers introduced by Loebl and Poljak [15]. Thus using the more general packing
of a ‘closed propeller family’ [15] does not yield more represented prescriptions.

Now we describe the relation of the F -packing problem of Saux and the H-factor
problem of S. Suppose that Hv can be represented by a gadget for all v ∈ SV . Beyond
the fact that G has an H-factor if and only if Gaux has an F -factor, there is a stronger
relation by Thm. 3.9, namely δH(Gsub) = dF(Gaux). Recall that δH(G) = δH(Gsub)
holds. For the proof of Thm. 3.9 we need the following lemma.

Lemma 3.7. Let Q be an F-packing of a gadget (T, U,F). If Q does not cover
V (T ) − U then there exist vertices x /∈ V (Q) ∪ U and y such that either y /∈ V (Q)
(x = y is allowed) and T [V (Q) + x + y] has an F-factor, or y ∈ U ∩ V (Q) and
T [V (Q) + x − y] has an F-factor.

Proof. Add to F the vertices of U as singleton factor-critical subgraphs, resulting in
F ′. Add the vertices of U −V (Q) as such subgraphs to Q resulting in the F ′-packing
Q′ with V (Q′) = V (Q) ∪ U . An alternating path is a path P starting at some vertex
x /∈ V (Q′) such that every second edge of P is a K2 component of Q′. Our assumption
that H 6= ∅ implies that T has an F ′-factor. Hence Q′ is not a maximum F ′-packing.
So the augmenting path theorem of Cornuéjols and Hartvigsen [4] states that

1. either there exists an alternating path ending at a vertex y /∈ V (Q′),
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2. or there exists an alternating path ending at a factor-critical component K of
Q′,

3. or there exists an even length alternating path P ending at a vertex w ∈ W ⊆
V (T ) such that V (P ) ∩ W = {w}, T [W ] is factor-critical having an F ′-factor
QW and the components of Q′ contained in W form a perfect matching of
T [W − w].

In case 2. if K ∈ F then we can modify Q to an F -packing with vertex set V (Q) + x,
while if K = {y} ∈ F ′ \ F then we can modify Q to an F -packing with vertex set
V (Q)+x+y. This latter modification can be done in case 1. as well. In case 3. modify
Q to an F ′-packing with vertex set V (Q) + x using the F ′-factor QW . If QW is an
F -factor then we are done. Otherwise QW contains a component {y} ∈ F ′ \ F . Now
y ∈ U ∩V (Q) so replacing QW by a perfect matching of T [W ]− y gives an F -packing
with vertex set V (Q) + x − y.

Corollary 3.8. If Q is an F-packing of a gadget (T, U,F) representing the prescrip-
tion H then

dist(|U \ V (Q)|, H) ≤ |V (T ) − (U ∪ V (Q))|.

Proof. If Q does not cover V (T ) \ U then apply the previous lemma and then use
induction.

For sake of a unified treatment, for a vertex v ∈ SE we define Tv to be the singleton
{v}, and let Uv = {v}, Fv = ∅.

Theorem 3.9. δH(S) = dF(Saux).

Proof. δH(S) ≥ dF(Saux): Let F be an H-optimal subgraph of S. By successively
deleting edges we may assume that degF (v) ∈ H↓

v for all v ∈ V (S). Now F gives an
F -packing of Saux in a natural way missing δF vertices.

δH(S) ≤ dF(Saux): Let Q be a maximum F -packing of Saux. For v ∈ SV let Qv

consist of those components of Q which are fully contained in Tv. If we contract each
Tv to vertex v then Q −

⋃
v∈SV

Qv gives a subgraph F of S. Now by Corollary 3.8,
dist(degF (v), Hv) ≤ dist(|Uv \ V (Qv)|, Hv) + |Uv \ V (Q)| ≤ |V (Tv)− (Uv ∪ V (Qv))|+
|Uv \ V (Q)| = |V (Tv) \ V (Q)| for all v ∈ SV . δF (v) ≤ |V (Tv) \ V (Q)| holds for v ∈ VE

as well. Summing up, we get that δF ≤ dF(Saux).

Now we describe the relation of the Edmonds-Gallai decompositions V (S) = D ∪̇A
∪̇C by Thm. 2.5 and V (Saux) = DF ∪̇AF ∪̇CF by Thm. 3.2. To avoid technical
difficulties we assume that the gadgets (T, U,F) used in Saux are clean.

Definition 3.10. A gadget (T, U,F) representing the prescription H is clean if it
satisfies the properties below.

(a) For all vertex sets A′ ⊆ V (T ) the number of those factor-critical components of
T − A′ which are disjoint from Uv is at most |A′| − 1.

(b) |U | = max H.
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(c) If H is an interval of length at least 2 then F contains a singleton factor-critical
graph.

(d) If H is not an interval of length at least 2 then for all U ′ ⊆ U , no F -factor of
T −U ′ has more than 1 component in F . Moreover, if it has exactly 0 (resp. 1)
such component then |U ′| ∈ H has Hv-parity (resp. non Hv-parity).

In the rest of this section (a) – (d) will refer to these properties. Note that the
gadgets constructed in the proof of Thm. 3.5 and that of Fig. 2 are clean. Thus each
degree prescription with gaps of the same parity can be represented by clean gadgets.

Lemma 3.11. D = {v ∈ V (S) : Uv ∩ DF 6= ∅}.

Proof. If v ∈ D then there exists an H-optimal subgraph F of S with degF (v) ∈
H↓

v \ Hv. By deleting appropriate edges we may assume that degF (u) ∈ H↓
u for all

vertices u ∈ V (S) keeping the property that degF (v) /∈ Hv. By Thm. 3.9, such a
subgraph F gives a maximum F -packing F ′ of Saux in a natural way. Uv 6⊆ V (F ′)
hence Uv ∩ DF 6= ∅.

On the other hand, let Q be a maximum F -packing of Saux with Uv 6⊆ V (Q). For
each w ∈ SV do the following. If Q does not cover V (Tw) − Uw then apply Lemma
3.7 to (Tw, Uw,Fw) and to the Fw-packing Qw consisting of the components of Q
contained fully in V (Tw). Q is maximum so there exist vertices x /∈ V (Qw) ∪ Uw and
y ∈ Uw such that either y ∈ V (Q)\V (Qw) and Tw[V (Qw)+x+y] has an Fw-factor or
y ∈ V (Qw) and Tw[V (Qw)+x−y] has an Fw-factor. In the first case delete from Q the
K2-component with edge ewy ∈ E(Q). Iterating this, we achieve that the maximum
F -packing Q covers V (Tw)−Uw for all w ∈ SV keeping the property that Uv 6⊆ V (Q).
Contracting for each w ∈ SV the vertex set V (Tw) to w we get an H-optimal subgraph
F of S by Thm. 3.9 with degF (v) ∈ H↓

v \ Hv.

The relation of the two decompositions is as follows. Assume that Uv ∩DF 6= ∅ for
some v ∈ SV . Note that if ev /∈ DF then ev ∈ AF for each adjacent vertex ev ∈ SE of
v.

• If ev ∈ DF for an adjacent vertex ev then Thm. 3.2 together with (a) imply that
AF ∩ Uv = ∅. Hence Uv ⊆ DF and thus V (Tv) ⊆ DF by (a). (In case S = Gsub,
such a vertex of V (G) belongs to DL in the decomposition of Lovász.)

• Otherwise ev ∈ AF for all adjacent vertices e. It is easy to prove that XF ∩
V (Tv) = XFv

holds (X = D,A,C) for the Edmonds-Gallai decomposition
V (Tv) = DFv

∪̇AFv
∪̇CFv

of Thm. 3.2. Hence c(DFv
) − |AFv

| ≤ l(v) by the
definition of the gadgets. The reverse direction is implied by Corollary 3.8 so
c(DFv

)− |AFv
| = l(v) holds. (If S = Gsub then these vertices of V (G) belong to

BL in the Lovász decomposition.)

If Uv ∩ DF = ∅ for v ∈ SV then we have two cases.

• If ev ∈ DF for an adjacent vertex ev then Uv ⊆ AF . Note that |Uv| = u(v) by
(b). Hence Tv −Uv has an Fv-factor so V (Tv)−Uv ⊆ CF . (A∩ V (G) is just AL

if S = Gsub.)
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• Otherwise ev /∈ DF for all adjacent vertices ev so clearly V (Tv) ⊆ CF by (a).
(These vertices are in CL.)

Using these considerations, Thm. 2.5 follows from Thm. 3.2 in case Hv can be
represented for each v ∈ SV . We also get a characterization of the H-critical graphs.
It is enough to characterize those which are non-trivial.

Lemma 3.12. Let S be a subdivided graph. Assume that all gaps of Hv have the same
parity and that (Tv, Uv,Fv) are clean for all v ∈ SV . Then S is H-critical if and only
Saux is F-critical.

Proof. Observe that S is H-critical if and only if D = V (S) by Thm. 2.5. Similarly,
Saux is F -critical if and only if DF = V (Saux) by Thm. 3.2. Using this observation, if
S is H-critical then (a) together with Lemma 3.11 imply that Saux is F -critical. The
other direction is trivial by Lemma 3.11.

We use a result of Cornuéjols, Hartvigsen and Pulleyblank [5].

Lemma 3.13. [5] A graph G is F-critical if and only if it is factor-critical and does
not have a subgraph K ∈ F such that G − K has a perfect matching.

So if S is H-critical then Saux is factor-critical and hence |V (Saux)| is odd. Observe
that if Hv is an interval of length at least 2 for some v ∈ SV then Saux cannot be
F -critical by (c). Otherwise (b) and (d) together imply that |V (Tv)| has Hv-parity.
Thus the sum of the Hv-parities is odd in every H-critical graph in the representable
cases. Lemma 3.13 can be translated to H-critical graphs as follows.

Theorem 3.14. Let S be a subdivided graph. Assume that all gaps of Hv have the
same parity for all v ∈ SV and that |V (S)| ≥ 2. Then S is H-critical if and only if

1. Hv is not an interval of length at least 2 for all v ∈ SV ,

2. for each v ∈ SV , S has a subgraph F such that degF (v) /∈ Hv has non Hv-parity,
degF (v) + 1 ∈ Hv and degF (w) ∈ Hw has Hw-parity for all w 6= v, and

3. for each v ∈ V (S) and d ∈ Hv with non Hv-parity it holds that S has no H-factor
F such that degF (v) = d and degF (w) has Hw-parity for all w 6= v.

Proof. Construct Saux using clean gadgets. We already observed that by (c), S cannot
be H-critical if Hv is an interval of length at least 2 for some v ∈ SV . By Lemmas
3.12 and 3.13, S is H-critical if and only if Saux is factor-critical and there exists no
K ∈ F such that Saux − K has a perfect matching. Provided that 1. holds, the first
condition is equivalent to 2. by (a) and (d), and the second is equivalent to 3. by
(d).
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4 Matroidal results

This section contains two matroidal results on the H-factor problem, Thm. 4.2 and
Thm. 4.8. We give three proofs for the first one.

Definition 4.1. For v ∈ V (G) let ev ∈ N
V (G) be the unit vector of coordinate v. For

a subgraph F of G let δF ∈ N
V (G) be the vector with component δF (v) for v ∈ V (G).

P ⊆ N
V is a base polyhedron if for all a, b ∈ P and v ∈ V with a(v) > b(v) there

exists u ∈ V such that a(u) < b(u) and a − ev + eu ∈ P . The up-hull of a base
polyhedron (i.e. P + N

V (G)) is called a contra-polymatroid.

Observe that a(V ) is constant for the elements a of a base polyhedron. Usually base
polyhedrons and contra-polymatroids are integer polyhedra, defined to be exactly the
convex hull of the sets defined above. We used this definition because we are interested
only in the integer points of these polyhedra.

Theorem 4.2. C = {δF + N
V (G) : F is a subgraph of G} is a contra-polymatroid.

Proof. 1. It is enough to prove that if a, b ∈ C and v ∈ V (G) with a(v) > b(v) then
either a− ev ∈ C or there exists u ∈ V (G) such that a(u) < b(u) and a− ev + eu ∈ C.
We prove this by induction on |E(Fa)4E(Fb)| where Fa, Fb are subgraphs such that
δFa ≤ a, δFb ≤ b. If δFa < a(v) then we are done, so suppose equality. Thus δFb(v) <
δFa(v) so there exists an edge e = vu ∈ E(Fa)4E(Fb) such that δF ′

(v) < δFa(v)
holds with the notation F ′ = Fa4e. If δF ′

(u) ≤ a(u) or δF ′

(u) = a(u) + 1 ≤ b(u)
then F ′ shows that we are done. Otherwise δF ′

(u) > b(u). Now |E(F ′)4E(Fb)| <
|E(Fa)4E(Fb)| so the statement holds for δF ′

and b by our induction hypothesis.
Apply it to u ∈ V (G).

In the next two proofs it is enough to show that PH(G) := {δF : F is an H-optimal
subgraph of G} is a base polyhedron by Lemma 4.3.

Lemma 4.3. For any subgraph F of G there exists an H-optimal subgraph F0 of G
such that δF0 ≤ δF .

Proof. The H-optimal subgraph F0 minimizing E(F )4E(F0) will do. Otherwise
δF0(v) > δF (v) for some v ∈ V (G) so there exists an edge e = vu ∈ E(F )4E(F0)
such that δF04e(v) < δF0(v) holds. But then F04e contradicts to the choice of F0.

We need some preliminaries. Jump systems were introduced by Bouchet and Cun-
ningham [2]. They are closely related to the H-factor problem, which is related to
the fact that the degree sequences of all subgraphs of a graph is a jump system, see
Proposition 4.5.

Definition 4.4. [2] For a, b ∈ Z
V we say that a′ is a step from a to b if either a′ = a+ev

and a(v) < b(v) or a′ = a − ev and a(v) > b(v), for some v ∈ V . J ⊆ Z
V is a jump

system if for all a, b ∈ J and a′ step from a to b, either a′ ∈ J or some step from a′ to
b is contained in J .

If Ji ⊆ Z
Vi are jump systems for i = 1, 2 then let J1 ∧ J2 = {a1 ∧ a2 ∈ Z

V14V2 : a1 ∈
J1, a2 ∈ J2, a1|V1∩V2

= a2|V1∩V2
} where (a1 ∧ a2)j = ai

j if j ∈ Vi for i = 1, 2. If V1 and
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V2 are disjoint then J1 × J2 = J1 ∧ J2 is called the direct sum of J1, J2. For J ⊆ Z
V

and c ∈ {−1, 0, 1}V let Jc consist of the elements of J minimizing cost function c. J
has constant sum if a(V ) = b(V ) for all a, b ∈ J .

Proposition 4.5. [2] If J ⊆ Z
V , J1 ⊆ Z

V1 , J2 ⊆ Z
V2 are jump systems and c ∈

{−1, 0, 1}V then J1 ∧ J2 and Jc are jump systems. A constant sum jump system is a
base polyhedron. The degree sequences of all subgraphs of a graph G is a jump system,
denoted by JG.

This proposition will be used throughout in the next two proofs.

Proof. 2. (of Thm. 4.2) Note that it is enough to prove that PH(Gsub) is a base
polyhedron since PH(G) = {a|V (G) : a ∈ PH(Gsub), a(v) = 0 for all v ∈ VE}. It
follows from Thm. 2.5 that a(v) = 0 for a ∈ PH(Gsub), v ∈ C so we can assume that
C = ∅. Shrink all non-trivial components of Gsub[D] and delete the edges induced
by A resulting in the bipartite graph B. For a ∈ N

V (B) let a′(v) = a(v) − u(v) if
v ∈ A, a′(v) = l(v) − a(v) if {v} is a trivial component of Gsub[D] and a′(v) = a(v)
otherwise. Let J ′ = {a′ ≥ 0 : a ∈ JB} which is clearly a jump system. For a non-
trivial component K of Gsub[D] define a jump system JK = {eK , ev : v ∈ V (K)} on
ground set {K} ∪ V (K). Let JD = ×{JK : K is a non-trivial component of Gsub[D]},
JD is a jump system again. Using Thm. 2.5, 1., 2., 3. it is not hard to see that
J ′∧JD = {δF : F is an H-optimal subgraph of Gsub}. Thus J ′ ∧JD has constant sum
so it is a base polyhedron.

Proof. 3. (of Thm. 4.2) We use some results of Lovász [19]. For the definitions of
AL, BL, CL and DL, see page 3.

Definition 4.6. For v ∈ V (G) let IH(v) = {degF (v) : F is an H-optimal subgraph of
G}. [IH(v)] denotes the minimal interval containing IH(v).

Lemma 4.7. [19] If v ∈ DL then every second element of [IH(v)] is not contained in
Hv.

For v ∈ CL define Jv = {(i, 0) : i ∈ Hv}, for v ∈ AL let Jv = {(i, i − u(v)) : i ≥
u(v)}, and for v ∈ BL let Jv = {(i, l(v) − i) : i ≤ l(v)}. Finally, for v ∈ DL define
Jv = {(i, 0) : i ∈ [IH(v)] ∩ Hv} ∪ {(i, 1) : i ∈ [IH(v)] \ Hv}. Observe that Jv is a jump
system for all v ∈ V (G). Let J ′ = ×{Jv : v ∈ V (G)} and J = J ′ ∧ JG. It is clear that
if c ∈ N

V (G) is the constant 1 vector then Jc = {δF : F is an H-optimal subgraph of
G}. Jc has constant sum and thus a base polyhedron.

We remark that Thm. 4.2 holds for all jump systems with ground set V , namely,
if J ⊆ N

V is a jump system and Hv ⊆ N for all v ∈ V then {δa + N
V : a ∈ J} is a

contra-polymatroid, where δa(v) = dist(Hv, a(v)).
The dual of the matroid of the next theorem is contained in PH(G). Recall that F

is an H-subgraph if degF (v) ∈ Hv for all v ∈ V (F ).

Theorem 4.8. Suppose 1 ∈ Hv and Hv has no two consecutive gaps for all v ∈ V (G).
Let M consist of those vertex sets which can be covered by H-subgraphs. Then M is
a matroid.
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Proof.

Lemma 4.9. If X, Y ∈ M, X\Y 6= ∅ and Y is maximal in M then for all x ∈ X\Y
there exists a vertex y ∈ Y \ X such that Y + x − y ∈ M.

Proof. Assume the statement fails for X and Y and let FX and FY be H-subgraphs
with X ⊆ V (FX) and Y = V (FY ). For an edge set P define the subgraph FP with
vertex set Y + x and edge set E(FY )4P . An edge set P ⊆ E(FX)4E(FY ) is called
augmenting if V (P ) ⊆ Y + x and FP satisfies the degree prescription at every vertex
of Y +x except for at most one vertex v. ∅ is augmenting so choose P to be a maximal
augmenting edge set. Note that degFP

(v) /∈ Hv since then FP would contradict the
maximality of Y .

Suppose that there exists an edge e ∈ E(FX)4E(FY ) incident with v which is not
in P . If we can choose e ∈ E(FY ) \ E(FX) then P + e is augmenting, since 1 ∈ Hv

and hence degFP
(v) − 1 ∈ Hv. Otherwise all edges of E(FY ) \ E(FX) incident to v

are in P , so let e = uv ∈ E(FX) \ E(FY ) not in P . Now degFP
(v) < degFX

(v) ∈ Hv

implying that degFP
(v) + 1 ∈ Hv. If u /∈ X + v then FP+e would be an H-subgraph

with vertex set Y + u + v due to 1 ∈ Hu, a contradiction. Hence u ∈ X + v and P + e
is augmenting.

If all edges of e ∈ E(FX)4E(FY ) incident with v are in P then degFX
(v) =

degFP
(v) /∈ Hv so v /∈ X and degFP

(v) = 0. So we are done by choosing y = v.

This lemma yields that the maximal elements of M are maximum, too. Indeed,
assume the contrary, and let U, W be maximal elements of M with |W | < |U |.
Choose them with |U ∩ W | maximum. The lemma gives that there exist u ∈ U \ W
and w ∈ W \U such that W ′ = W +u−w ∈ M. W ′ is not maximal by our choice so
let W ′′ be a maximal set containing W ′. W is maximal so w /∈ W ′′ but |W | < |W ′′|.
Applying the lemma with X = W, Y = W ′′ and x = w gives a set of M strictly
containing W , a contradiction.

So we only have to check the base axioms which are immediately implied by Lemma
4.9.

We mention that proof 2. of Thm. 4.2 can be modified to prove Thm. 4.8. (J ′

should be replaced by {a ∈ J ′ : av = 0 ∀ v ∈ A} and JK by {eK , ev : K − v has an H-
factor}. Thus the dual of M is a matroid.) Actually, it is easy to see that Thm. 4.8
is also true if {0, 1} ∩ Hv 6= ∅ for all v ∈ V (G). Otherwise M is not necessarily a
matroid: subdivide each edge of K4 with one vertex and let the prescription is {2} on
all vertices.

The already known special cases of Thm. 4.8 is the matching case by Edmonds and
Fulkerson [8] (let H ≡ {1}), the packing by a sequential set of stars by Las Vergnas
[13] (Hv = {1, 2, . . . , u(v)}) and the (1, f)-odd subgraph case proved by Kano and
Katona [12] (Hv = {1, 3, 5, . . . , f(v)}).

Thm. 4.8 gives some support for the following conjecture of Loebl and Poljak [16].
If K is a set of graphs then a subgraph F of G is called a K-packing if each connected
component of F is isomorphic to a member of K. They conjecture that if K2 ∈ K then
determining the maximum size of a K-packing is polynomial if and only if the vertex
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sets coverable by K-packings form a matroid. Note that 1 ∈ Hv stands for K2 ∈ K
and that the maximum size of an H-subgraph is |V (G)|−δH(G) in case 1 ∈ Hv, hence
it is polynomial.

An application of Thm. 4.8 is that the ‘superstar packing’ is matroidal, see [11].

The author would like to thank András Sebő for helpful discussions.
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