
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS
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On Kuhn’s Hungarian Method – A tribute from
Hungary

András Frank?

Harold W. Kuhn, in his celebrated paper entitled The Hungarian Method for the as-
signment problem, [Naval Research Logistic Quarterly, 2 (1955), pp. 83-97] described
an algorithm for constructing a maximum weight perfect matching in a bipartite
graph. In his delightful reminescences [18], Kuhn explained how the works (from
1931) of two Hungarian mathematicians, D. Kőnig and E. Egerváry, had contributed
to the invention of his algorithm, the reason why he named it the Hungarian Method.
(For citations from Kuhn’s account as well as for other invaluable historical notes on
the subject, see A. Schrijver’s monumental book [20].)

In this note I wish to pay tribute to Professor H.W. Kuhn by exhibiting the ex-
act ralationship between his Hungarian Method and the achievements of Kőnig and
Egerváry, and by outlining the fundamental influence of his algorithm on Combina-
torial Optimization where it became the prototype of a great number of algorithms
in areas such as network flows, matroids, and matching theory. And finally, as a
Hungarian, I would also like to illustrate that not only did Kuhn make use of ideas of
Hungarian mathematicians, but his extremely elegant method has had a great impact
on the work of a next generation of Hungarian researchers.

1 Relationships

A little technicality: though both Egerváry and Kuhn used matrix terminology, here
I follow Kőnig by working with the equivalent bipartite graph formulation.

Let us start with a quotation from Kuhn’s paper [17]: ‘One interesting aspect of
the algorithm is the fact that it is latent in the work of D. König and E. Egerváry
that predates the birth of linear programming by more than 15 years (hence the name
of Hungarian Method)’. But what is the exact relationship of the algorithm arising
from Egerváry’s proof technique and Kuhn’s method? In a paper [11], written in
Hungarian, I exhibited in detail the achievements of Kőnig and Egerváry and Kuhn.
The following section is an outline of some observations from [11].
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1.1 Kőnig’s theorem and proof method

The starting point is Kőnig’s matching theorem.

Theorem 1.1 (Kőnig). In a bipartite graph G = (S, T ; E), the maximum cardinality
ν = ν(G) of a matching is equal to the minimum number τ = τ(G) of nodes covering
all the edges.

It is useful to restate the theorem in an equivalent form.

Theorem 1.2. In a bipartite graph G = (S, T ; E), the minimum number µ = µ(G, S)
of elements of S exposed by a matching is equal to the maximum of the deficit h(X)
over the subsets of S where h(X) := |X|−|Γ(X)| and Γ(X) denotes the set of elements
of T having a neighbour in X. In particular, there is a matching covering S if and
only if |Γ(X)| ≥ |X| holds for every subset X ⊆ S.

The outline (in modern terms) of Kőnig’s constructive proof for the non-trivial
ν ≥ τ direction is as follows. By starting with any matching M , orient the edges in
M from T to S and all other edges from S to T . Let RS and RT denote the set of
nodes of S and of T , respectively, exposed by M . Let Z denote the set of nodes of
the resulting directed graph which can be reached from RS by a directed path. If
RT ∩Z 6= ∅, then we have a path P from RS to RT that alternates in M and then the
symmetric difference of M and P is a matching M ′ with |M ′| = |M |+1. (Technically,
one must simply reorient the edges of P in order to obtain the digraph corresponding
to M ′). If RT ∩ Z = ∅, then L := (T ∩ Z) ∪ (S − Z) is a set of nodes covering all
edges and |M | = |L|. In the alternative version of Kőnig’s theorem above, Z ∩ S is a
subset of S with maximum deficiency.

The following observation will be useful in estimating the efficiency of Egerváry’s
method. We call a subset X ⊆ S deficient if h(X) > 0. Let F := {X ⊆ S :
h(X) = µ(G, S)}, that is, F denotes the family of the subsets of S with maximum
deficit. The members of F are called max-deficient sets. It can be shown that F is
closed under union and intersection. Therefore, if F is not empty, there is a unique
smallest max-deficient set, and in the constructive proof of Kőnig’s theorem above,
the max-deficient set Z ∩ S, provided by the algorithm, itself is this unique smallest
set.

1.2 Egerváry’s theorem and proof method

In 1931 Egerváry [6] extended Kőnig’s results to weighted bipartite matchings. His
fundamental min-max result is as follows.

Theorem 1.3. Let G = (S, T ; E) be a complete bipartite graph with |S| = |T | and let
c : E → Z+ be a nonnegative integer-valued weight function. The maximum weight
of a perfect matching of G is equal to the minimum weight of a nonnegative, integer-
valued, weighted-covering of c where a weighted-covering is a function π : S ∪ T → R
for which π(u) + π(v) ≥ c(uv) for every edge uv ∈ E and the weight of π is defined
to be

∑
[π(v) : v ∈ S ∪ T ].
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This theorem seems to be the first appearence of the linear programming duality
theorem for the case when the constraint matrix is the incidence matrix of a bipartite
graph. The outline of Egerváry’s proof is as follows. Let π be a nonnegative integer-
valued weighted-covering of c with minimum weight. If there is a perfect matching M
in the subgraph Gπ of tight edges, where an edge uv is called tight if π(u) + π(v) =
c(uv), then M is a maximum weight perfect matching of G whose weigth is equal to
the weight of π.

If there is no perfect matching in Gπ, then Kőnig’s theorem implies that there is
a deficient set X ⊆ S in Gπ. Increase the π-value of each node in ΓGπ(X) by 1 and
decrease the π-value of each node in X by 1. This way one obtains another weighted-
covering π′ of c whose weight is smaller than that of π. In case π′ has negative (that is,
−1) values, increase the π′-values on the elements of S by 1 and decrease the π′-values
on the elements of T by 1. Since G is complete bipartite and c ≥ 0, the resulting
π′′ is a nonnegative weighted-cover of c whose weight is smaller than that of π, in a
contradiction with the minimum choice of π.

Egerváry noted that his theorem easily extends to rational weights (in the sense that
the integrality of the weighted-covering is not required anymore), and, by continuity
arguments, the theorem holds for real weight functions as well.

Egerváry, in his paper, did not speak on algorithms at all. But his proof above can
easily be turned into an algorithm since it finds, starting with an arbitrary weighted-
covering π, either a better weighted-covering or else a maximum weight perfect match-
ing. A natural observation is that the revision of the current potential, as described in
the proof above, may be done by min{π(u) + π(v)− c(uv) : u ∈ X, v ∈ T − ΓGπ(X)},
a value possibly larger than 1. Perhaps it is not unfair to call the algorithm described
this way Egerváry’s algorithm. This is clearly finite for integer or rational c. A.
Jüttner [15], however, observed that Egerváry’s algorithm in this generic form is not
polynomial for integer-valued c and not necessarily finite for real-valued c, even if
max-deficient sets are used throughout the run of the algorithm for the revision of
the current π. It should be noted, however, that by appropriately specifying the
choice of the deficient sets used for revising the current π, the algorithm can be made
strongly polynommial. Namely, this is the case if the unique smallest max-deficient
set is used throughout. This was proved in [11] directly but I am almost sure that
a proof had appeared earlier in the literature. As mentioned above, the deficient set
found by Kőnig’s algorithm is the unique smallest max-deficient set. Therefore, the
specific version of Egerváry’s algorithm, when the deficient set found by Kőnig’s alter-
nating path technique, rather than just taking an arbitrary deficient set, is strongly
polynomial.

This situation is analogous to the well-known case of maximum flows: for integer or
rational capacities the max-flow min-cut algorithm of L.R. Ford and D.R. Fulkerson
is finite though not polynomial, while for real capacities it is not even finite. On
the other hand, if a shortest augmenting path is used at every augmentation step,
which is actually automatic when breadth-first-search is applied to find an augmenting
path, then the algorithm is strongly polynomial, as was proved by J. Edmonds and
R.M. Karp [5] and by E.A. Dinits [1]. We stress however that in the maximum
weight matching problem as well as in the maximum flow problem the proof of strong
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polynomiality is not at all trivial and certainly needs some work.

1.3 Kuhn’s Hungarian Method

In light of Egerváry’s proof technique, let us see the novelty of Kuhn’s Hungarian
Method. Egerváry used Kőnig’s theorem as a black box or subroutine, and therefore
the algorithm read off from his proof is not polynomial. The striking advantage of
Kuhn’s algorithm is that it is strongly polynomial, moreover this immediately follows
from the description of the algorithm. The main idea of Kuhn’s algorithm is that
the two separate parts in Egerváry’s proof (computing a deficient set and revising the
current π) are combined into one.

In a general step, Kuhn’s algorithm also has a weighted-covering π and considers
the subgraph Gπ of tight edges (on node set S ∪ T ). Let M be a matching in Gπ.
Orient the elements of M from T to S while all other edges of Gπ from S to T . Let
RS ⊆ S and RT ⊆ T denote the set of nodes exposed by M in S and in T , respectively.
Let Z denote the set of nodes reachable in the resulting digraph from RS by a directed
path (that can be computed by a breadth-first search, for example).

If RT ∩ Z is non-empty, then we have obtained a path P consisting of tight edges
that alternates in M . The symmetric difference of P and M is a matching M ′ of Gπ

consisting of one more edge than M does. The procedure is then iterated with this
M ′. If RT ∩Z is empty, then revise π as follows. Let ∆ := min{π(u) + π(v)− c(uv) :
u ∈ Z ∩S, v ∈ T −Z}. Decrease (increase, respectively) the π-value of the elements of
S ∩Z (of T ∩Z, resp.) by ∆. The resulting π′ is also a weighted-covering. Construct
the subgraph of Gπ′ and iterate the procedure with π′ and with the unchanged M .

The wonderful thing is that Kuhn’s algorithm can be seen with no effort to be
strongly polynomial. Indeed, observe first that there may be at most |S| cases of
matching augmentation. Second, in a phase when the current matching M is un-
changed, the set of nodes reachable from RS in Gπ is properly included in the set of
nodes reachable from RS in Gπ′ . Hence, this situation may occur at most |S| times,
that is, after at most |S| consecutive changes of the weighted-covering, a matching
augmentation must follow. Since a breadth-first-search needs O(|E|) steps, the overall
complexity of Kuhn’s Hungarian Method may be bounded by O(|E||S|2).

At that time, complexity consideration was not an issue beyond finiteness and
therefore it is not surprising that Kuhn was content with proving the finiteness of
his algorithm. We stress that the foregoing proof of strong polynomiality is basically
automatic.

2 Influence

The main merit of Kuhn’s Hungarian Method is that in the past half a century it
has became the starting point of a fast developing area of efficient combinatorial al-
gorithms, now called Combinatorial Optimization. Its seminal ideas, developed orig-
inally for the weighted bipartite matching problem (that is, the assignment problem)
have been applied by L.R. Ford and D.R. Fulkerson to the transportation problem
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and, more generally, to minimum cost flows, as well (see, in [7]). In all of these cases,
as A.J. Hoffman and J.B. Kruskal [14] discovered, the integrality of the optimal so-
lutions is due to the total unimodularity of the underlying constraint matrix: the
incidence matrix of a bipartite graph or a digraph. In 1965, J. Edmonds [2] was
able to generalize the approach of the Hungarian Method to non-bipartite matchings,
as well, a much more complex situation where the constraint matrix is not totally
unimodular. Edmonds’ weighted matroid intersection algorithm [3] was another fun-
damental breakthrough of similar vein where the spirit of the Hungarian Method was
used and extended.

Harold Kuhn could use ideas of Hungarian mathematicians. A next generation of
Hungarian researchers, in turn, highly profited from his method and achieved impor-
tant results in Combinatorial Optimization. For example, É. Tardos [22] was the first
to construct a strongly polynomial algorithm for the minimum cost circulation prob-
lem. A. Sebő [21] found fundamental structural results on edge-weighted undirected
graphs with no negative cycles. L. Lovász’s deep theory on matroid parity [19] was
also affected by the Hungarian Method.

Finally, I would like to make some personal remarks. The Hungarian Method caught
my heart and imagination very early. I have been teaching it in regular courses
for decades, and I am still fascinated at every occasion by its clean elegance and
beauty. The method has had a great impact on my research, too. For example,
[9] describes a weighted matroid intersection algorithm that may be considered as a
straight extension of the original algorithm of Kuhn because, instead of working with
dual variables assigned to subsets of the ground-set, as earlier matroid intersection
algorithms did, it uses only node-numbers, just as Kuhn’s algorithm does. The same
idea could be carried over in [10] to submodular flows, a wonderfully general and
flexible framework, due to J. Edmonds and R. Giles [4]. The theoretical and practical
efficiency and the wide range of applicability of the Hungarian Method are only one
side of its far-reaching effect. Another one is that the method is an effective proof
technique. For example, the version of Kuhn’s Hungarian Method developed by Ford
and Fulkerson (see, in [7]) for solving the min-cost flow problem could be used in
[8] to prove a common generalization of a theorem of C. Greene [12] and a theorem
of C. Greene and D. Kleitman [13] on maximum chain and antichain families of a
partially ordered set. These theorems are deep generalizations of Dilworth’s classical
chain-covering theorem. Based on ideas of the Hungarian Method, one can compute a
maximum cardinality subset of a poset that is the union of k chains (or k antichains).

In 2001, encouraged by these precedents, young and senior researchers in Budapest,
the city of Kőnig and Egerváry, felt obliged to establish the Egerváry Research
Group, supported by the Hungarian Academy of Sciences. (For its homepage, see
‘http://www.cs.elte.hu/egres’). Our main goal has been to work on combinatorial al-
gorithms and structures in the spirit of Kuhn’s Hungarian Method and of the min-max
theorems of Kőnig and Egerváry.

EGRES Technical Report No. 2004-14



References 6

References

[1] E.A. Dinits, Algoritm resheniya zadachi o maksimal’nom potoke v seti so step-
penoi ostenkoi [Russian], Doklady Akademii Nauk SSSR, 194 (1970) 754-757.
[English translation: Algorithm for solution on a problem on maximum flow
in a network with power estimation, Soviet Mathematics Doclady, 11 (1970)
1277-1280.

[2] J. Edmonds, Maximum matching and a polyhedron with 0− 1 vertices, Journal
of Research of the National Bureau of Standards, (B) 69 (1965), 125-130.

[3] J. Edmonds, Matroid intersection, Annals of Discrete Mathematics, 4 (1979)
39-49.

[4] J. Edmonds and R. Giles, A min-max relation for submodular functions on
graphs, Annals of Discrete Mathematics, 1 (1977) 185-204.

[5] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency
for network flow problems, J. ACM, 19 (1972) 248-264.
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