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Abstract

Recently Bárász, Becker and Frank gave a strongly polynomial time algo-

rithm that solves the Directed Source Location Problem which is the following:

given a directed graph D = (V,A) and positive integers k and l, �nd a mini-

mum cardinality set R ⊆ V such that contracting R into a single node r results

in graph which is (k, l)-edge-connected with respect to the root node r. They

introduce the notion of solid sets and observe that the union of two intersecting

solid sets is also solid. The bottleneck operation of their algorithm is the step

of determining the hypergraph

H = {X : X is a maximal s-avoiding solid set for some s ∈ V }.

It is easy to see that H has at most n(n − 1) elements. The motivation of the

present work was to prove that one can give a better bound on |H|. Namely we

prove here that |H| ≤ 2(n− 1).

1 Introduction and preliminaries

The motivation of discrete location problems comes from the application: one looks
for an optimal placement of some facilities (warehouses, telecommunication centers,
computer servers) in a network so as to satisfy certain customer demands. Typically
it is the distance or the bandwidth that matters in de�ning the constraints and the
objective functions. For an annotated bibliography of the topic, see the work of M.
Labbe and F.V. Louveoux [3]. Source location is a new type of location problems
where the �ow-amount or connectivity rather than the distance between facilities
and customers is taken into consideration. Source location may serve as a useful
optimization framework for designing fault-tolerant telecommunication networks. For
example, imagine such a network in which a subset R of nodes is considered a suitable
source-set if there are k edge-disjoint paths from R to every node not in R and the
objective is to compute a smallest source-set.
There are several versions of source location problems according to the connectivity

type used in the constraints. Ito et al. [2] considered and analyzed the source location
problem in directed graphs constrained with edge-connectivity or maximum �ow-
amounts. Their paper is a good overview of other models and results, as well, and
it is the starting point of [1]. They proved a min-max theorem for the minimum
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cardinality of a subset R of nodes of an edge-capacitated digraph D = (V,A) so that,
for every node v ∈ V −R, the maximum �ow-amount from R to v is at least k and from
v to R is at least l. Based on this, they described an algorithm for computing such a
minimum size set R. The running time of the algorithm depends polynomially on the
size of D and exponentially on k and l. Throughout we will refer to this problem as
the Flow-constrained Directed Source Location (FDSL) problem. For sake of simpler
notation and explanation, we typically work with the uncapacitated case (when the
capacity function is identically one). In this case the maximum �ow-amount from s
to t is equal to the maximum number of edge-disjoint paths from s to t. We will refer
to this special case as the Directed Source Location Problem (or DSL for short).
Bárász, Becker and Frank in [1] describe an algorithm for solving the FDSL problem

which has a running time polynomial in the size of D, k and l. The motivation of
the present work was to improve the bound of the size of a hypergraph that has to be
determined in this algorithm: this might help to reduce the time complexity of the
algorithm.

1.1 Preliminaries

If V is a �nite set and X, Y are subsets of V then we say that X and Y are intersect-
ing if the sets X − Y, Y −X and X ∩ Y are all nonempty. If furthermore X ∪ Y 6= V
then X and Y are said to be crossing. We call a subset X-avoiding if it is disjoint
from X. If X = {x} is a singleton then we omit the braces and write x-avoiding.
Sets X and Y are said to be nesting if X ⊆ Y or Y ⊆ X.
Let D = (V,A) be a digraph and X ⊆ V a set of nodes. In D the in-degree %(X) =

%D(X) denotes the number of edges entering X while the out-degree δD(X) = δ(X)
is the number of edges leaving X.
A digraph is called (k, l)-edge-connected with respect to a root node r if there are

k edge-disjoint directed paths from r to every other node and there are l edge-disjoint
directed paths from every node to r. It follows immediately from the directed edge-
version of Menger's theorem that there are k edge-disjoint paths from r to v for every
v ∈ V (that is, D is (k, 0)-edge-connected) if and only if the in-degree of all nonempty
subsets of V − r is at least k, and an analogous characterization holds for (0, l)-edge-
connectivity. Therefore (k, l)-edge-connectivity of a digraph is equivalent to requiring
that the in-degree and out-degree of all nonempty subsets of V − r is at least k and
l, respectively. When k = l, this notion is equivalent to the k-edge-connectivity of D,
while the case l = 0 corresponds to the rooted k-edge-connectivity of D.
A hypergraph H = (V, E) is said to admit the Helly property or to be of Helly-

type if any subset of pairwise intersecting hyperedges has a nonempty intersection.
It will not cause any confusion to identify a hypergraph with its edge-set.

The Directed Source Location Problem is the following:

Problem 1.1. Given a directed graph D = (V,A) and positive integers k and l. Find
the minimum cardinality set R ⊆ V such that contracting R into a single node r in
the graph D results in graph which is (k, l)-edge-connected with respect to the root
node r.
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Bárász, Becker and Frank in [1] gave a strongly polynomial time algorithm that
solves this problem. They introduce the following notions:

De�nition: A nonempty set X ⊆ V is called in-solid if %(Y ) > %(X) for every
Y ( X nonempty subset. A nonempty set X ⊆ V is called out-solid if δ(Y ) > δ(X)
for every Y ( X nonempty subset. The set X is called solid if it is either in-solid or
out-solid.

We mention that if one has to solve the (k, 0)-source location problem then it is
enough to work with in-solid sets. Fortunately it turns out that an in-solid and an
out-solid set can only be in a nice relation with each other, namely:

Lemma 1.2. (Bárász, Becker, Frank [1]) If X is in-solid and Y is out-solid, then at
least one of the subsets A := X − Y, B := Y −X, C := X ∩ Y is empty.

Proof. Let α, β, γ, γ′ denote, respectively, the number of edges from C to A, from B
to C, from V − (X ∪ Y ) to C, and from C to V − (X ∪ Y ). If, indirectly, none of
A,B,C is empty, then %(A) > %(X) and δ(B) > δ(Y ). Therefore α > β + γ and
β > α + γ′ from which 0 > γ + γ′ would follow, a contradiction.

It is observed in [1] that for any node s of D the maximal s-avoiding in-solid sets
are pairwise disjoint and so they form a partition of V −s (since singletons are in-solid
by the de�nition). We restate this proposition in Lemma 1.3 (the proof is di�erent
from the one in [1] and is based on Mihály Bárász's idea).

Lemma 1.3. (Bárász, Becker, Frank [1]) If X and Y are solid and X ∩ Y 6= ∅, then
X ∪ Y is also solid.

Proof. If one of X and Y is in-solid and the other is out-solid then by lemma 1.2 one
of them is contained in the other and the result is immediate. So we can suppose that
either both of them are in-solid or both are out-solid. We deal with the case when
both are in-solid, the other case is analogous.
Let us suppose indirectly that there are two in-solid sets X and Y with a nonempty

intersection such that their union is not in-solid (so X and Y have to be intersecting).
Let us take two such sets with %(X)+%(Y ) minimum. Since the sets X and Y cannot
be nesting we can notice that %(X) > %(X ∪ Y ) and %(Y ) > %(X ∪ Y ) holds by the
submodularity of %. Since X∪Y is not in-solid, we can �nd an in-solid Z ( X∪Y with
%(X∪Y ) ≥ %(Z). But Z ′ = X∪Z is in-solid, becauseX and Z are intersecting in-solid
sets (since Z is not contained in Y ) with %(X) + %(Y ) > %(X) + %(Z). Furthermore
%(Z) ≥ %(Z ′) because Z ⊆ Z ′ = X ∪ Z and Z ′ is in-solid. Now Z ′ intersects Y and
both of them are in-solid having %(X) + %(Y ) > %(Y ) + %(Z ′) so Y ∪ Z ′ = X ∪ Y is
in-solid, a contradiction.

By an s-avoiding in-solid (out-solid) set Z we mean an in-solid (out-solid) subset
of V − s. The adjective maximal is used if Z is not included in any other s-avoiding
in-solid (out-solid) subset of V − s. By Lemma 1.3 the maximal s-avoiding in-solid
sets are disjoint. Since each singleton is in-solid, the maximal s-avoiding in-solid sets
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partition V − s. This will be called the in-solid partition of V − s. The out-solid
partition of V − s is de�ned analogously. It follows from Lemmas 1.3 and 1.2 that:
Consequence: The family of maximal s-avoiding solid sets is a partition of V − s.

We call this partition the solid partition of V − s.
Another interesting property of the hypergraph of solid sets is that it admits the

Helly property. This is also proved in [1]: we restate this theorem here.

Theorem 1.4. (Bárász, Becker, Frank [1]) The hypergraph of solid sets admits the
Helly property, that is whenever we have pairwise intersecting solid sets X1, X2, . . . Xt

then
⋂t

i=1Xi 6= ∅.

Proof. Suppose indirectly that it does not admit the Helly property. Then there is a
smallest number h ≥ 3 along with h solid sets X1, . . . , Xh such that any two of these
sets intersect each other while the intersectionM = X1∩· · ·∩Xh is empty. By Lemma
1.2 either the sets X1, . . . , Xh are all in-solid or they are all out-solid. By symmetry
we may assume that every Xi is in-solid. Let Yi = X1∩X2∩· · ·∩Xi−1∩Xi+1∩· · ·∩Xh

(i = 1, . . . , h). By the minimal choice of h, Yi 6= ∅, whileM = ∅ implies that Yi∩Yj = ∅
(1 ≤ i < j ≤ h). If an edge enters one of the sets Yi, then it enters at least one of
the sets Xj. Therefore

∑
i %(Yi) ≤

∑
i %(Xi). On the other hand %(Yi) > %(Xi+1) for

each i as Xi+1 is in-solid and Yi ⊂ Xi+1. Hence
∑

i %(Yi) >
∑

i %(Xi+1) =
∑

i %(Xi), a
contradiction.

Bárász, Becker and Frank in [1] solve the Directed Source Location Problem by
determining the maximal s-avoiding solid sets for every s ∈ V . Since these sets form
a partition of V −s, there can be at most n−1 of them for a certain s (where n = |V |),
so the hypergraph

H = {X : X is a maximal s-avoiding solid set for some s ∈ V }

(i.e. the union of solid partitions) cannot have more than n(n−1) hyperedges. Our aim
in this paper is to prove, that this bound can be improved, namely |H| ≤ 2(n − 1).
This is interesting because the bottleneck operation of the algorithm in [1] is the
determination of H.

2 The main result

Now we are ready to state and prove our theorem, in a slightly more general form:

Theorem 2.1. Let V be an n-element set (where n ≥ 2) and suppose we are given a
hypergraph with edge set F which satis�es the following condition

(∗) If X and Y are crossing elements of F then X ∪ Y is also in F .
Then the hypergraph

H = {X ⊆ V : X is a maximal s-avoiding set in F for some s ∈ V }

has cardinality at most 2(n− 1).
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Consequence: In a directed graph D = (V,A) with |V | = n the cardinality of
H = {X : X is a maximal s-avoiding solid set for some s ∈ V } is not more than 2n−2.
We mention that quite many examples show that this bound is sharp. Consider for
example the following graph: let the node set be indexed with the numbers 1, 2, . . . n
and the edge set be the following: for every i ∈ {1, 2, . . . n − 1} there are i parallel
edges from node i to node i + 1 and there are n − i parallel edges from node i + 1
to node i. In this graph the in-solid sets are exactly the sets with nodes indexed by
consecutive integers (subpaths of the path 1, 2, . . . n) and the out-solid sets are the
singletons.

Remark: We note that the proof is a little bit simpler if we also suppose that F has
the Helly property which is true for the hypergraph of solid sets. In the proof below
we will show these simpli�cations.

Proof of theorem 2.1: We use the following notations:

Hs = {X ⊆ V : X is a maximal s-avoiding set in F}

where s ∈ V is arbitrary. With this notation H = ∪s∈VHs. Because of property (∗)
of F , the family Hs is a subpartition of V − s.
We prove the theorem by induction on n. For n = 2 the theorem is trivially true.

So we can suppose that n > 2.
If every set in H is a singleton then we are done since |H| ≤ n. So suppose that
H has nontrivial sets as well (i.e. sets of size at least 2). Let X ∈ H be a minimal
nontrivial set of H, that is every Y ∈ H with Y ( X is a singleton. Suppose that
X ∈ Hs. We divide H into two disjoint parts in the following manner:

H1 = {Y ∈ H : X ∩ Y = ∅ or X ⊆ Y }

H2 = {Y ∈ H : X ∩ Y 6= ∅ and X * Y }

Let us �rst count the elements of H2: we would like to prove that the cardinality of
H2 is at most 2|X| − 2. If v /∈ X then Hv ⊆ H1, since X is in F . If v ∈ X then a set
in Hv is

• either disjoint from X (these sets belong to H1)

• or contained in X (these sets must be singletons)

• or intersecting X (but not contained in X): such set must contain s because of
property (∗) of F and so there can be at most one such set in Hv (again because
of property (∗) of F): we denote this set by Zv if it exists.

Let us denote by X1 = {v ∈ X : Zv does not exist}. We have the following cases:

• If |X1| ≥ 2 then we are done, since H2 contains at most |X| singletons and at
most |X| − 2 di�erent Zv-s in this case.
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• If X1 = {x} then we can observe that {x} /∈ H2, because if there was a v ∈ X for
which {x} ∈ Hv then Zv would be a nontrivial x-avoiding set of F contradicting
with x ∈ X1. Again we are done, since H2 contains at most |X| − 1 singletons
and at most |X| − 1 di�erent Zv-s.

• If X1 = ∅ (i.e. Zv exists for every v ∈ X) then let us consider the family
{Zv : v ∈ X}. We claim that there are at least two minimal sets in this family.
Suppose otherwise and denote the unique minimal set by Za. Then Za ⊆ Zv for
all v ∈ X. But for an element v ∈ Za ∩X this can not be true, a contradiction.

Consider a minimal set Zv of the family above. Then

1. either {v} /∈ H2

2. or {v} ∈ Hw for some w, but then w ∈ X − Zv so Zw = Zv (cannot be
larger).

In each cases we have that the number of di�erent elements of H2 is at most
2|X| − 2 (using the fact that there are at least two minimal sets in the family
{Zv : v ∈ X}).

Remark: We note that if F has the Helly property, then the set X1 is not empty,
because if this was the case then ∅ = X∩

⋂
v∈X Zv would give a contradiction with the

Helly property of F and the fact that these sets are pairwise intersecting (Zv ∩X 6= ∅
by the de�nition of Zv and for v1, v2 ∈ X both Zv1 and Zv2 contain s). Actually it is
easy to see that X1 =

(⋂
v∈X−X1

Zv

)
∩X, but we do not need this here.

We want to count the cardinality of H1 by induction. For this sake we prove the
following claim:

Claim:

H1 ⊆
⋃
v/∈X

Hv ∪ {maximal X-avoiding sets in F}

Proof of the claim: Take an element Z in H1. Then there is some v ∈ V for which
Z ∈ Hv. If v /∈ X then we are done, so suppose v ∈ X and hence Z is disjoint from
X. Now Z is a maximal v-avoiding set in F so it is also a maximal X-avoiding set in
F and hence an element of the right hand side.

Remark: We note that equality is not necessarily true here: let F be the power set
of the 3 element set (F = 2{1,2,3}) and X any nontrivial set of H. This example also
shows that X1 can be empty (see above). But if F also has the Helly property, than
we have equality. To show this, let us take an element Z of the right hand side. If
Z ∈

⋃
v/∈X Hv then we know that Z ∈ H1 is also true, so suppose that Z is a maximal

X-avoiding set of F . But then Z ∈ Hv for an element v ∈ X1 and so Z ∈ H1 is also
true.

Now we are ready to �nish our proof. Contract the set X into a single node and
let F ′ be the set of the images of sets Z ∈ F that were either disjoint from X or
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containing X. We get a hypergraph on the n− |X|+ 1 element set with edge set F ′
which has property (∗). So we can de�ne H′ with F ′ in a similar manner to that of H
and notice that �by the above claim� H′ contains the set of images of the elements
of H1. So by induction we have

|H1| ≤ |H′| ≤ 2(n− |X|+ 1)− 2 = 2n− 2|X|.

This together with the bound for |H2| gives the result.

3 Concluding remarks

It turns out that theorem 2.1 is useful in other situations as well. For example Gabow
in [4] gives a representation for a general intersecting (or crossing) set family, the
so-called tree-of-posets representation which uses O(n2) space. Using theorem 2.1 we
can give another representation for intersecting families (a crossing family can always
be represented by representing two intersecting families) using the following easily
proved fact:

Lemma 3.1. Let F be an intersecting family over ground set V . Then

H∩ ∪ {∅, V } = F ∪ {∅, V }

where

H = {X ⊆ V : X is a maximal s-avoiding set in F for some s ∈ V }

and

H∩ =

{
t⋂

j=1

Xj : t ∈ N, X1, X2, . . . Xt are in H

}

So the representation is the following: we store the hypergraph H (which can
obviously be done using at most n(2n− 2) bits, since |H| ≤ 2n− 2) plus in two more
bits we tell whether any of V and ∅ are in F or not. Can't we hope for a better space
bound representation for intersecting families? In the following section we show that
we can not: even a subclass of intersecting families has θ(|V |2) space complexity (this
is also mentioned in [4], without a proof).

3.1 Representation of ring families

A ring family is a set family that is closed under intersection and union. It is easy
to see that we can add ∅ or V to a ring family and it remains a ring family (though
we can not always leave them out). For example if we are given a directed graph on
node set V then the subsets X ⊆ V having out degree 0 form a ring family, as can
easily be checked (we call it the ring family de�ned by D). Fortunately, the converse
is also true:
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Lemma 3.2. If F is a ring family over V containing ∅ and V then there exists a
directed graph D for which

X ∈ F ⇐⇒ δD(X) = 0

Proof. De�ne the digraph as follows: for every u ∈ V draw an edge (uv) going to
every v ∈ M(u), where M(u) is the smallest set in F that contains u. Note that
M(u) exists as V ∈ F and it is unique. It is easy to see that this construction is
good.

Observe that if the transitive closure of graphs D1 and D2 is the same then they
de�ne the same ring family, that is for any X ⊆ V

δD1(X) = 0⇐⇒ δD2(X) = 0.

The converse is also true, as stated in the next lemma (the proof is left to the
reader).

Lemma 3.3. Two digraphs on the same node set de�ne the same ring family if and
only if they have the same transitive closure.

So we could use the digraph D to represent the ring family F (either in transitively
closed or in any other form). D has size at most n2, so we have developed a represen-
tation of size O(n2) for ring families. The following example shows that we can not
hope for a better bound on a representation: we give 2n

2/4 di�erent ring families over a
ground set of size n (or 2(n−1)

2/4 if n is odd). So whatever representation one develops
for ring families there will be a ring family that needs n2/4 bits for its representation.
So we prove the following lemma:

Lemma 3.4. The space requirement for representing ring families over ground set V
is θ(|V |2).

Proof. The example that proves the lower bound is the following: suppose n is even
and divide the nodes of V into two sets X and Y , each of size n/2. Construct a
digraph D = (V,A) where A = {(xy) : x ∈ X, y ∈ Y }. Then D has n2/4 edges and
for every subset A′ ⊆ A the subgraph D′ = (V,A′) is transitively closed, so by lemma
3.3 we have given 2n

2/4 di�erent ring families over the n element ground set V .
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