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Rigid realizations of graphs on small grids

Zsolt Fekete* and Tibor Jordan™

Abstract

A framework (G,p) is a graph G = (V, E) and a mapping p : V — RZ2.
We prove that if (G,p) is an infinitesimally rigid framework then there is an
infinitesimally rigid framework (G, ¢) for which the points ¢(v), v € V(G), are
distinct points of the k x k grid, where k = [1/|V| — 1] +9. We also show that
such a framework on G can be constructed in O(|V|?) time.

1 Introduction

A bar-and-joint framework, or framework for short, in d-space is a graph G = (V, E)
and a mapping p : V — Re. Tt is denoted by (G, p) and is also called a realization of G
in R?. A framework is non-degenerate if the points p(v), v € V, are pairwise distinct.
Otherwise it is degenerate. The rigidity matriz of the framework is the matrix R(G, p)
of size |E| x d|V|, where, for each edge v;v; € E, in the row corresponding to v;v;,
the entries in the d columns corresponding to vertex i (j) contain the d coordinates
of (p(vi) — p(v;)) ((p(vj) — p(vs)), respectively), and the remaining entries are zeros.
The rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set
E by independence of rows of the rigidity matrix.

Lemma 1.1. /8, Lemma 11.1.5] Let (G, p) be a framework in RE. Then rank R(G,p) <
S(n,d), where n = |V(G)| and

S(n, d) :{ nd = (%57) ifn>d+1
(2) ifn<d+1.

We say that a framework (G,p) in R? is infinitesimaly rigid if rank R(G,p) =
S(n,d). A framework (G,p) is generic if the coordinates of the points p(v), v € V,
are algebraically independent over the rationals. Any two generic frameworks (G, p)
and (G,p') have the same rigidity matroid. We call this the d-dimensional rigidity
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matroid Rq(G) = (E,ry) of the graph G. We denote the rank of R4(G) by ra(G).
We say that G is M-independent in R? if E is independent in R4(G). We say that a
graph G = (V, E) is generically rigid (or simply rigid) in R? if r4(G) = S(n,d). See
[2, 8, 7, 9] for more details on the rigidity of frameworks and graphs.

It follows that a graph G has an infinitesimally rigid realization if and only if G
is rigid. In this paper we consider the problem of finding infinitesimally rigid (non-
degenerate) realizations (G, p) of rigid graphs G for which the coordinates of the points
p(v), v € V(G), are integers between 1 and k, for some small £.

The existence of such a realization (which may be degenerate and where small
means O(n)) follows from a lemma of Schwartz [5]. It implies that rigidity is in NP
and it also leads to an efficient randomized algorithm for testing rigidity, for any d.
It will also follow from the next ‘moving’ lemma, which is a kind of deterministic
and algorithmic version of the above mentioned lemma of Schwartz, formulated for
polynomials obtained from the rigidity matrix. This lemma will be used in the proof
of our main result: we shall prove that for d = 2 a grid of size k = O(n2) suffices,
even if we require that the points p(v) are pairwise distinct. Furthermore, such a
realization can be found in O(n?) time.

Let (G, p) be a framework in R¢. Suppose that we create a new framework on G
by replacing the [-th coordinate of vertex u by some real number z and leaving all
other coordinates of all vertices unchanged. Then we say that the resulting framework
(G,p') is obtained from (G, p) by moving u along azis | to z. The degree of vertex u
in G is denoted by dg(u).

Lemma 1.2. Let G = (V, E) be a graph and let (G,p) be an infinitesimally rigid
realization of G in R. Let v € V be a designated vertez, let | be an integer with
1<1<d andlet z1, za, ..., zr be distinct real numbers with r > dg(v) + 1. Then there
is an integer m, 1 < m <, for which the framework obtained from (G,p) by moving
v along axis | to z,, is infinitesimally rigid.

Proof: Since (G, p) is infinitesimally rigid, we have rankR(G,p) = S(n,d). Thus
there is a non-singular square submatrix 7" of R(G, p) of size S(n,d). It follows from
the definition of R(G,p) that p(v)’, the I-th coordinate of p(v), appears in at most
de(v) rows of T. Thus by replacing all the entries p(v)! of T by a variable z, the deter-
minant of 7' becomes a polynomial T'(x) of degree at most dg(v). Since T'(p(v)}) # 0
and r > dg(v) + 1, there exists an integer m, 1 < m < r, for which T(z,,) # 0. So the
rank of the rigidity matrix remains unchanged by moving v along axis [ to z,,. This
completes the proof. °

Let Z¢ C R? denote the grid points {(z',2?,...,2%) :2* € Z,1 < 2 < k,1 < i < d}.
Let us say that a point z € R? is covered by some framework (H, q) if there is a vertex
v € V(H) with ¢(v) = z. Otherwise x is uncovered. Given an infinitesimally rigid
framework (G, p), we can use Lemma 1.2 to move any vertex v € V along any axis [
to some integer between 1 and 2|V (G)| — 1 so that the modified framework remains
rigid and the new position of v was uncovered by (G, p). Thus we have:

Corollary 1.3. Let G = (V, E) be rigid in R, Then there is an infinitesimally rigid
non-degenerate framework (G, p) for which p(v) € ZgM_l forallveV.
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Figure 1: The operations 0-extension and 1-extension

2 Operations on graphs and frameworks in two di-
mensions

In the rest of the paper we shall suppose that d = 2. We need some further notation.
For X C V|, let Eg(X) denote the set, and ig(X) the number, of edges in G[X], that
is, in the subgraph induced by X in G. For some v € V' let Ng(v) denote the set of
vertices adjacent to v in G. We use E(X), i(X), or N(v) when the graph G is clear
from the context.

The following theorem, due to Laman, gives a combinatorial characterisation for
rigidity in two dimensions. We say that G = (V, E) is minimally rigid if G is rigid
but G — e is not rigid for all e € F(G). If G is rigid, the edge sets of the minimally
rigid spanning subgraphs correspond to the bases of the rigidity matroid of G.

Theorem 2.1. [/] A graph G = (V, E) is minimally rigid if and only if |E| = 2|V|—3
and
i(X) <2|X| =3 for all X C V with | X| > 2. (1)

Note that Theorem 2.1 leads to efficient algorithms for testing rigidity and, more
generally, computing the rank in Ro(G). It remains an open problem to find good
characterizations and algorithms for rigidity in RY when d > 3.

To find the required infinitesimally rigid realizations of rigid graphs it is sufficient to
consider their minimally rigid spanning subgraphs. Now we recall the basic reduction
and extension operations of minimally rigid graphs.

Let v be a vertex in a minimally rigid graph G with dg(v) = 3. The operation
splitting off (at vertex v) means deleting v (and the edges incident to v) and adding a
new edge connecting two non-adjacent vertices of N(v). Note that v can be split off
in at most three different ways. A splitting at v is admissible if the resulting graph is
also minimally rigid.

Lemma 2.2. [/, 6, 3/ Let G = (V, E) be a minimally rigid graph and let v € V.
(a) If d(v) = 2 then G — v is minimally rigid.
(b) If d(v) = 3 then there is an admissible splitting at v.

We shall use the following two operations on frameworks. Both of these operations
add a new vertex to the graph of the framework (by the inverse operations of deletion
or splitting) and specify the position of the new vertex. The positions of the old
vertices do not change.
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Let G = (V, E) be a graph and let (G, p) be a framework. The operation 0-eztension
(on distinct vertices a,b € V) adds a new vertex v to G and two edges va, vb, and
determines the position p(v) of v in the new framework.

Lemma 2.3. [8, Lemma 2.1.3] Suppose that (G,p) is a rigid framework. Then the
0-extension of (G, p) on vertices a,b is rigid for all choices p(v) with p(a),p(b),p(v)
not collinear.

The operation I-eztension (on edge ab € E and vertex ¢ € V — {a,b}) subdivides
the edge ab by a new vertex v and adds a new edge vc, and determines the position
p(v) of v in the new framework.

Lemma 2.4. [8, Theorem 2.2.2] Suppose that (G, p) is a rigid framework, ab € E(G),
¢ € V(GQ) — {a,b}, and the points p(a),p(b),p(c) are not collinear. Then the 1-
extension of (G,p) on ab and c is rigid if p(v) is any point on the line of p(a), p(b),
distinct from p(a), p(b).

Note that in Lemmas 2.3 and 2.4 p(v) may be a point already covered by (G, p).

We shall perform splittings at some vertex v only if v has a neighbour of small
degree. The existence of such a vertex is guaranteed by the following lemma. Let
d(G) denote the minimum degree in graph G. It is easy to see that for a minimally
rigid graph G we have §(G) € {2, 3}.

Lemma 2.5. Let G = (V, E) be a minimally rigid graph with 6(G) = 3. Then there
is an edge uwv € E with d(v) = 3 and d(u) < 8.

Proof: Let A={w €V :d(w) =3} and let B =V — A. Since §(G) = 3, we have
A # (). If there is an edge between two vertices of A then we are done. Thus we may
assume that i(A) = 0. Since G is minimally rigid, i{(4) = 0, and each vertex in A has
degree three, we have |E| = 2|V | — 3 = 2|A| + 2|B| — 3 and d(A) = 3|A|, where d(A)
is the number of edges leaving A. Hence i(B) = |E| — d(A) = 2|B| — |A| — 3.

Let D = {z € B : dgp(z) < 3}. Clearly, each vertex z € D is connected to A
by at least one edge. Since ), dgs)(z) = 2i(B) = 4|B| — 2|A| — 6, it follows that
|ID| > |A|/2+ 1. Now d(A) = 3|A| implies that there is a vertex u € D which is
connected to A by at most five edges. Since dgp)(u) < 3, this implies dg(u) < 8.
Thus any edge uv with v € A satisfies the requirements of the lemma. °

3 Rigid realizations on a small grid

Theorem 3.1. Let G = (V, E) be a minimally rigid graph on n vertices. Then there
is an infinitesimally rigid non-degenerate framework (G,p) for which p(v) € Z2 for
allv €V, where k = [/n—1] 4+ 9.

Proof: The proof is by induction on n. The theorem trivially holds for n = 2, so
may assume that n > 3 and that the required frameworks exist for graphs on at most
n — 1 vertices. Since G is minimally rigid, we have 6(G) € {2, 3}.
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First suppose that §(G) = 2 and let v € V with dg(v) = 2. By Lemma 2.2
H := G —v is minimally rigid. By the induction hypothesis this implies that there is a
rigid framework (H, q) with ¢(z) € Z2 for all z € V(H). Let Ng(v) = {u,w} C V(H)
and let L C R? be the line of ¢(u), ¢(w). We claim that there is a point (z,y) € Z2
which is not on L and which is uncovered by (H, q). To see this observe that we have
at most k grid points on L and at most |V (H)| —2 = n — 3 grid points covered (H, q)
which are not on L. Thus

E>Hn-1+9%*=n—-14+18/n—-1+381
n+18/n—1+80>vVn—-1+104+n—-3>k+n — 3, (2)

1]

which implies the claim. Let p(v) = (z,y) and let p(xz) = ¢(z) for all z € V — v. By
Lemma 2.3, and by the choice of (z,y), (G, p) is the required rigid framework on G.

Next suppose that 6(G) = 3. By Lemma 2.5 there is an edge uv with d(v) = 3 and
d(u) < 8. Let Ng(v) = {u,w,t}. By Lemma 2.2 the graph H = G — v+ e is minimally
rigid, where e is some edge connecting two non-adjacent vertices from Ng(v). By the

induction hypothesis this implies that there is a rigid framework (H, q) with ¢(z) € Z;
for all z € V(H).

Claim 3.2. There is an infinitesimally rigid framework (H,q') for which ¢'(z) € 7.2
for all z € V(H) and such that ¢'(u),q (w), ¢ (t) are not collinear.

Proof: Suppose that q(u),g(w), q(t) are collinear in (H,q). By symmetry we may
assume that the line L of ¢(u), ¢(w), ¢(¢) is not vertical. Now suppose, for a contra-
diction, that there exist k — 8 columns in Z2 which contain at least £ — 9 grid points
covered by (H,q). Then

n—1 = [V(H)|> (k—28)(k—9)
> (k—92>(Wn—-149-92=n—1 (3)

follows, a contradiction. Thus at least 9 columns of Z? contain at least 10 uncovered
points with respect to (H,q). By using this fact and Lemma 1.2, and since dy(u) <
dg(u) < 8, we can first move u horizontally to a a point z which belongs to a the
line C of some column of Z? containing at least 10 uncovered points, such that the
resulting framework remains rigid. This temporary position of u need not be on the
grid and need not be uncovered by (H, q).

Since C' contains at least 10 uncovered grid points, it contains at least 9 uncovered
grid points p, ..., pg, such that p(t), p(w), p; are not collinear, 1 < i < 9. By applying
Lemma 1.2 again we can move u further vertically to one of these grid points p; such
that the resulting framework (H, ¢') remains rigid and such that ¢'(u), ¢'(w), ¢'(t) are
not on a line. °

By Claim 3.2 we may assume that ¢(u), g(w), ¢(t) are not collinear. Suppose, with-
out loss of generality, that e = ww, i.e. the splitting operation adds a new edge
uw (we shall no longer use the fact that dg(u) is small). First we construct a rigid
framework (G,p') by applying a l-extension on (H,¢q) so that p'(v) is a point in the
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intersection of the line of ¢(u), ¢(w), and the line of some column of the grid, and such
that p'(v) # q(u), g(w). This is possible by Lemma 2.4, since ¢q(u), g(w), ¢(t) are not
collinear, and k£ > 3. This temporary position of v need not be on the grid and need
not be uncovered by (H, gq).

We claim that there exist at least 4 rows of Z2 containing at least 4 uncovered grid
points with respect to (G,p'). To see this suppose, for a contradiction, that there
exist k£ — 3 rows of the grid which contain at least k — 3 grid points covered by (G, p').
Then

n = [V(G)|>((k-3)7>(n—-1+9-3)
= (Vn—-146?=n—-14+12y/n—-1+36>n (4)

follows, a contradiction. This proves the claim. By using the claim and Lemma 1.2
we can move p'(v) further vertically to some row of the grid which contains at least
4 uncovered points, preserving the rigidity of the framework. This new position is
also temporary, and it need not be on the grid and need not be uncovered by (H, q).
Finally, using that dg(v) = 3, we can use Lemma 1.2 to move v again horizontally to
some uncovered grid point in this row of the grid such that the new framework (G, p)
obtained is also rigid, all points p(v), v € V are distinct, and p(v) € Z2 for allv € V.
This proves the theorem. °

4 Concluding remarks

The proof of Theorem 3.1 is algorithmic: the required infinitesimally rigid realization
of a minimally rigid graph GG can be found by first reducing G to a single edge by vertex
deletions and splittings, and then building up the framework by using extensions
and moving coordinates. This algorithm needs a subroutine to find an admissible
splitting at a vertex of degree three. This can be done in O(n?) time, see [1] and
the references therein. Within the same time bound one can find a minimally rigid
spanning subgraph of a rigid graph. Thus an infinitesimally rigid realization of a rigid
graph in Z2 can be found in O(n?) time, where k = [/(n — 1)] + 9.

Since we considered non-degenerate frameworks, our bound k on the size of the grid
is essentially best possible. It might be possible to specify a set S of n+c points in R?,
for some constant ¢, such that every rigid graph on n vertices has an infinitesimally
rigid non-degenerate realization on S.

For degenerate frameworks we have the following lower bound. Let H be a mini-
mally rigid graph on a set K of k£ > 2 vertices and let G be obtained from H by adding
(g) new vertices of degree two in such a way that each new vertex w is adjacent to a
pair of vertices of K, and these pairs of neighbours of the new vertices are pairwise
distinct. Then G has ((k’;l)) vertices, and in any rigid realization of G the vertices of
K must be distinct. Thus we obtain a lower bound of O(n1) on the grid size. It may
be interesting to note that in one dimension every rigid (i.e. connected) graph has a
degenerate infinitesimally rigid realization on the grid of size two.
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Another direction for possible extensions is to try to find a realization (G, p) of a
graph G, on a small grid, for which the rigidity matroid of (G, p) is isomorphic to the
rigidity matroid of G. What can we say when G is rigid and |E| = 2|V| — 27
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