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A short proof on the local detachment theorem

Zoltán Szigeti?

Abstract

A simplified and shortened proof is presented for a theorem of Jordán and
Szigeti [2] on detachments preserving local edge-connectivity.

1 Introduction

Let G = (V + s, E) be a graph. A degree specification for s is a sequence f(s) =
(d1, ..., dp) of positive integers with

∑p
j=1 dj = dG(s). An f(s)-detachment of G at

s is the graph G′ obtained from G by replacing s by a set s1, ..., sp of independent
vertices and distributing the edges incident to s among them in such a way that
dG′(si) = di (1 ≤ i ≤ p). Note that all the other ends of the edges in G remain the
same. For a requirement function r : V × V → Z+, we say that G is r-edge-connected
if λG(u, v) ≥ r(u, v) ∀u, v ∈ V, where λG(u, v) is the local edge-connectivity between
u and v in G, that is the size of a minimum edge cut separating u and v in G. The
following theorem characterizes graphs having an r-edge-connected f(s)-detachment.

Theorem 1.1 (Jordán, Szigeti [2]). Let r be a requirement function for G = (V +
s, E) with r(u, v) ≥ 2 ∀u, v ∈ V. Let f(s) = (d1, ..., dp) be a degree specification
for s with di ≥ 2 ∀i. Let ϕ =

∑p
1b

di

2
c. Then there exists an r-edge-connected f(s)-

detachment of G at s if and only if

G is r-edge-connected, (1)

G− s is (r−ϕ)-edge-connected. (2)

The aim of this paper is to provide a short proof for Theorem 1.1. We mention that
Theorem 1.1 is a common generalization of Mader’s theorem [4] on splitting off pre-
serving local edge-connectivities between vertices in V (f(s) = (2, dG(s)−2), r(u, v) =
λG(u, v) ∀u, v ∈ V ) and Fleiner’s theorem [1] on k-edge-connected detachments
(r(u, v) = k ∀u, v ∈ V ). This paper does not provide a new proof for Mader’s theorem
because it applies it. For a new proof on a generalization of Mader’s threorem the
reader is referred to [5].

?Equipe Combinatoire, Université Paris 6, 75252 Paris, Cedex 05, France. This work was done
while the author was visiting the Egerváry Research Group (EGRES), Department of Operations
Research, Eötvös University, Budapest.
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2 Definitions, preliminary results

Recall that G = (V + s, E) is r-edge-connected if λG(u, v) ≥ r(u, v) ∀u, v ∈ V. Note
that it is equivalent to hr

G(X) ≥ 0 ∀X ⊆ V, where hr
G(X) := dG(X) − R(X) and

R(X) := max{r(u, v) : u ∈ X, v ∈ V − X}. The following basic property “skew-
submodularity” of the function h (see in [3]) will be usefull. dG(X, Y ) denotes the
number of edges between X −Y and Y −X, dG(X,Y ) = dG(X ∩Y, V + s− (X ∪Y )).

For any two subsets X, Y ⊆ V at least one of the following inequalities holds:

hr
G(X) + hr

G(Y ) ≥ hr
G(X ∩ Y ) + hr

G(X ∪ Y ) + 2dG(X, Y ), (3)

hr
G(X) + hr

G(Y ) ≥ hr
G(X − Y ) + hr

G(Y −X) + 2dG(X, Y ). (4)

If X ∪ Y = V then (4) always holds (with equality).

For X ⊂ V, the cut δG(X) is the set of edges leaving X. For T ⊂ δG(s), the T-
split of G is the (|T |, dG(s) − |T |)-detachment G′ of G at s where δG′(s1) = T. Let
e(T,X) := |δG(X) ∩ T |.

3 The proof

Proof. Necessity: Let G′ := (V + {s1, ..., sp}, E) be an r-edge-connected f(s)-
detachment of G at s. Since the identification of {s1, ..., sp} does not destroy r-edge-
connectivity in V, (1) is satisfied. Applying for every vertex si 1 ≤ i ≤ p that the
deletion of si can decrease the local edge-connectivities in V by at most bdi

2
c it follows

that (2) is satisfied.

Sufficiency: Wlog. p ≥ 2 and ϕ ≥ 2. As we already mentioned, (1) and (2) can be
reformulated as

hr
G(X) ≥ 0 ∀X ⊆ V, (5)

hr−ϕ
G−s(X) ≥ 0 ∀X ⊆ V. (6)

We shall use induction on z(G) := |V |+ dG(s). Note that

hr−ϕ
G−s(X) = hr

G(X)− dG(s,X) + ϕ ∀X ⊆ V. (7)

Lemma 3.1. We may assume that

every set X with hr
G(X) = 0 is a singleton. (8)

Proof. Suppose there exists a set Q with hr
G(Q) = 0 and |Q| > 1. Then let Ĝ :=

(V̂ , Ê) be obtained from G by contracting Q into a vertex q and let r̂(u, v) := r(u, v)
if u, v ∈ V̂ − q, and max{r(w, x) : w ∈ Q} if q ∈ {u, v} where x = {u, v} − q. It can
be verified easily that R̂(X̂) = R(X) ∀X̂ ⊆ V̂ , so (5) and (6) are satisfied for Ĝ and
r̂. Since |Q| > 1, z(Ĝ) < z(G) and hence, by induction, Ĝ has an r̂-edge-connected
f(s)-detachment Ĝ′. We show that the graph G′ obtained from Ĝ′ by “blowing up” Q
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is r-edge-connected and we are done. Let X ′ ⊆ V ′. Using that hr
G′(Q) = hr

G(Q) = 0,
the skew-submodularity of hr

G′ and the fact that if X ′ and Q are not intersecting then
hr

G′(X ′) ≥ 0 (because if X ′ ⊂ Q then hr
G′(X ′) = hr

G(X) ≥ 0 by (5) and if Q ⊆ X ′ or

Q ∩ X ′ = ∅ then hr
G′(X ′) = hr̂

Ĝ′(X̂
′) ≥ 0 since Ĝ′ is r̂-edge-connected) we get that

hr
G′(X ′) ≥ 0 as we wanted.

Lemma 3.2. There exists T ⊂ δG(s) with |T | = 3 if f(s) = (3, 3, ..., 3) and |T | = 2
otherwise such that the graph G′ obtained from G by the T -split satisfy

G′ is r′-edge-connected in V ′, (9)

G′ − s is (r′ − (ϕ− 1))-edge-connected in V ′, (10)

where r′(u, v) := r(u, v) if u, v ∈ V and 2 otherwise and V ′ = V ∪ s1.

Proof.

Claim 3.3. (9) and (10) are equivalent to

hr
G(X) ≥ 2e(T,X)− |T | ∀X ⊂ V, (11)

e(T,C) ≥ 1 ∀C ∈ C, (12)

where C is defined as the minimal sets X with hr−ϕ
G−s(X) = 0.

Proof. (9) is satisfied if and only if 0 ≤ hr′

G′(X ′) wlog. ∀s1 ∈ X ′ which is, by
hr′

G′(X ′) = hr
G(X) − e(T,X) + (|T | − e(T,X)) with X = X ′ − s1, equivalent to (11).

(10) is satisfied if and only if 0 ≤ hr′−ϕ′

G′−s (X) wlog. ∀s1 /∈ X ′ which is, by hr′−ϕ′

G′−s (X) =

hr−ϕ
G−s(X) + e(T,X)− 1, equivalent to (12).

Claim 3.4. The following are true for C :

the sets in C are pairwise disjoint, (13)

dG(s, C) ≥ ϕ for each C ∈ C, (14)

|C| ∈ {0, 2, 3}, (15)

if |C| = 3 then f(s) = (3, 3, ..., 3) and hr
G(C) = 0 ∀C ∈ C. (16)

Proof. By the submodularity of hr−ϕ
G−s(X), the minimality of the sets in C and (6), (13)

follows. (7) and (5) imply (14). By (14), (13) and di ≥ 2, |C|ϕ ≤
∑

C∈C dG(s, C) ≤
dG(s) =

∑p
i=1 di ≤ 3

∑p
i=1b

di

2
c = 3ϕ that is |C| ≤ 3. Moreover, if X ∈ C, then there

exists Y ⊆ V − X with Y ∈ C implying (15). It also follows that if |C| = 3 then
each di = 3, that is f(s) = (3, 3, ..., 3) and for every C ∈ C, dG(s, C) = ϕ, so by (7),
hr

G(C) = 0.

By (15), either |C| = 3 or |C| ∈ {0, 2}. If |C| = 3, then, by (16), f(s) = (3, 3, ..., 3).
By (14), there exists T ⊂ δG(s) with |T | = 3 that satisfies (12). T also satisfies
(11). Indeed, by (16), (8) and (14), dG(s,X) ≥ ϕ e(T,X). So, by (7), (6) and ϕ ≥ 2,
hr

G(X) ≥ dG(s,X) − ϕ ≥ ϕ(e(T,X) − 1) ≥ 2(e(T,X) − 1) ≥ 2e(T,X) − |T |. From
now on |C| ∈ {0, 2}.
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Lemma 3.5. There exists T = {su, sv} that satisfies (11) and (12).

Proof. If |C| = 0, then, by Mader theorem [4], there exists T ⊂ δG(s) with |T | = 2
that satisfies (11) and in this case (12) is automatically satisfied. If C = {C1, C2},
then, by (14), there exists T ⊂ δG(s) with |T | = 2 that satisfies (12). We claim that
T satisfies (11). Suppose X ⊂ V violates (11). Then e(T,X) = 2 and hr

G(X) ≤ 1.
Wlog. C1 − X 6= ∅, otherwise C1 ∪ C2 ⊂ X so, by (7) (6) and (13) (14), 1 ≥
hr

G(X) ≥ dG(s,X)−ϕ ≥ dG(s, C1 ∪C2)−ϕ ≥ 2ϕ−ϕ ≥ 2, contradiction. Since C1 ∈
C, hr−ϕ

G−s(C1−X) ≥ 1. Then, by (7), hr
G(C1−X) = hr−ϕ

G−s(C1−X)+dG(s, C1−X)−ϕ ≥
1 + dG(s, C1)− dG(s, C1 ∩X)− ϕ = hr

G(C1) + 1− dG(s, C1 ∩X). Suppose (4) applies
for C1 and X. Then, by (5), 1 + hr

G(C1) ≥ hr
G(X) + hr

G(C1) ≥ hr
G(X −C1) + hr

G(C1−
X) + 2dG(X,C1) ≥ hr

G(C1 − X) + 2dG(X ∩ C1, s) ≥ hr
G(C1) + 1 + dG(s, C1 ∩ X) ≥

hr
G(C1) + 2, contradiction. So (3) applies for C1 and X and C1 ∪ X 6= V. Since
C = {C1, C2}, hr−ϕ

G−s(C1 ∪X) = hr−ϕ
G−s(V − (C1 ∪X)) ≥ 1. Then, by (7), hr

G(C1 ∪X) =

hr−ϕ
G−s(C1∪X)+dG(s, C1∪X)−ϕ ≥ 1+dG(s, C1)+dG(s, C2∩X)−ϕ ≥ hr

G(C1)+2. Then,
by (5), 1 + hr

G(C1) ≥ hr
G(X) + hr

G(C1) ≥ hr
G(X ∩ C1) + hr

G(C1 ∪X) ≥ hr
G(C1 ∪X) ≥

hr
G(C1) + 2, contradiction.

If f(s) 6= (3, 3, ..., 3), then we are done. From now on f(s) = (3, 3, ..., 3). Then
dG(s) = 3ϕ.

Lemma 3.6. T can be extended to T ′ ⊂ δG(s) with |T ′| = 3 such that T ′ satisfies
(11).

Proof. First suppose that Γ(s) = {u, v}. Since dG(s) = 3ϕ and ϕ ≥ 2, wlog.
dG(s, u) ≥ ϕ + 1 and hence there exists another copy e′ of su. Then T ′ := T ∪ e′
satisfies (11). Hence Γ(s) 6= {u, v}. Suppose indirect that there exists a minimal set
M of subsets of V such that for every zi ∈ Γ(s) − {u, v} there exists a set Mi ∈ M
violating (11) for T ′ := T ∪ szi. Then, by the fact that T satisfies (11) and by (8),
e(T ′,Mi) = 3 so {u, v, zi} ⊆ Mi and hr

G(Mi) ≤ 2. Since Γ(s) 6= {u, v}, |M| ≥ 1. By
(7), (6), hr

G(Mi) ≤ 2 and ϕ ≥ 2, |M| ≥ 2.

Claim 3.7. If Mi,Mj ∈M, then

hr
G(Mi −Mj) = 0, (so, by (8), Mi −Mj = zi, ) (17)

dG(Mi,Mj) = 2, (18)

dG(zi,Mi − zi) ≥ 1. (19)

Proof. 2 ≥ hr
G(Mi), 2 ≥ hr

G(Mj), h
r
G(Mi∩Mj) ≥ 2e(T,Mi∩Mj)−|T | ≥ 2×2−2 = 2

(by (11) and {u, v} ⊂ Mi ∩ Mj), h
r
G(Mi ∪ Mj) ≥ 3 (by the minimality of M),

so (3) cannot be satisfied for Mi and Mj. Then Mi and Mj satisfy (4) implying
(17) and (18). Moreover, 2 ≤ hr

G(zi) + hr
G(Mi ∩ Mj) = hr

G(zi) + hr
G(Mi − zi) ≤

hr
G(Mi)− 2 + 2dG(zi,Mi − zi) ≤ 2dG(zi,Mi − zi).

Claim 3.8. |M| ≥ 3.

Proof. SupposeM = {M1,M2}. Then, by (7),(17),(6),(18), 3ϕ = dG(s) = dG(s, z1)+
dG(s, z2)+dG(s,M1∩M2) = hr

G(z1)−hr−ϕ
G−s(z1)+ϕ+hr

G(z2)−hr−ϕ
G−s(z2)+ϕ+dG(s,M1∩
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M2) ≤ 2ϕ + 2 ≤ 3ϕ. It follows that hr−ϕ
G−s(z1) = 0, so z1 ∈ C, that is (12) is violated

for T , contradiction.

Let M1,M2,M3 ∈ M. Then, by (19), (17), (18), 1 ≤ dG(M3 − z3, z3) = dG(M1 ∩
M2, z3) ≤ dG(M1,M2) − dG(M1 ∩M2, s) ≤ 2 − 2 = 0, contradiction. This completes
the proof of Lemma 3.6.

Since T satisfies (12), so does T ′ and the proof of Lemma 3.2 is complete.

Let G′ be obtained from G by the T-split from Lemma 3.2. Let us denote the
new vertex of G′ of degree |T | by t. Wlog. d1 ≥ d2 ≥ ... ≥ dp. If dp = |T | then
let f ′(s) := (d1, ..., dp−1) otherwise (|T | = 2, d1 ≥ 4) let f ′(s) := (d1 − 2, d2, ..., dp).
Then (G′, f ′(s)) satisfies (9) and (10) and z(G′) < z(G), so by induction, G′ has
an r-edge-connected f ′(s)-detachment G′′. Then, in the former case G′′, in the latter
case the graph obtained from G′′ by identifying s1 and t, is an r-edge-connected f(s)-
detachment of G.
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