Egerváry Research Group

 on Combinatorial Optimization

Technical ReportS

TR-2004-08. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www. cs.elte.hu/egres. ISSN 1587-4451.

On partition constrained splitting off

Zoltán Szigeti

On partition constrained splitting off

Zoltán Szigeti*

Abstract

A short proof is presented for a slight generalization of the partition constrained splitting off theorem of [T].

1 Introduction

Let $G:=(V+s, E)$ be a k-edge-connected graph in V with $d(s)$ even. A pair of edges $r s$, st is called admissible if splitting off these edges (replacing $r s$ and st by $r t)$ preserves k-edge-connectivity in V. Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{r}\right\}$ be a partition of $\delta(s)$. $e \in P_{j}$ will also be denoted by $c(e)=j$. An admissible pair $\{e, f\}$ is called allowed if $c(e) \neq c(f)$. By a complete splitting off we mean that we split off $\frac{d(s)}{2}$ disjoint pairs of edges incident to s. For $X, Y \subset V+s, \delta(X)$ denotes the set of edges leaving X, $d(X)=|\delta(X)|$ and $d(X, Y)$ denotes the number of edges between X and Y.

A partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of V is called a \boldsymbol{C}_{4}-obstacle of G if k is odd and

$$
\begin{array}{rlrl}
d\left(A_{i}\right) & =k & & \forall 1 \leq i \leq 4, \\
d\left(A_{i}, A_{i+2}\right) & =0 & \forall 1 \leq i \leq 2, \\
\left|P_{l}\right| & =d(s) / 2 & \exists 1 \leq l \leq r, \\
\delta\left(A_{j} \cup A_{j+2}\right) \cap \delta(s) & =P_{l} & & \exists 1 \leq j \leq 2 . \tag{4}
\end{array}
$$

A partition $\left\{A_{1}, A_{2}, \ldots, A_{6}\right\}$ of V is called a $\boldsymbol{C}_{\mathbf{6}}$-obstacle of G if k is odd and

$$
\begin{array}{rlrl}
d\left(A_{i}\right) & =k & \forall 1 \leq i \leq 6, \\
d\left(A_{i}, A_{i+1}\right) & = & (k-1) / 2 \quad \forall 1 \leq i \leq 6,\left(A_{7}=A_{1}\right) \\
d\left(s, A_{i}\right) & =1 \quad \forall 1 \leq i \leq 6, \\
\delta\left(A_{j} \cup A_{j+3}\right) \cap \delta(s) & = & P_{l_{j}} \quad \forall 1 \leq j \leq 3, \exists 1 \leq l_{j} \leq r . \tag{8}
\end{array}
$$

The following result is a slight generalization of the main theorem on splitting off in [T]. The motivation of this form is that it allows us to contract tight sets and hence it enables us to simplify the proof.

[^0]Theorem 1.1. Let $G=(V+s, E)$ be a k-edge-connected graph in V with $k \geq 2$ and $d(s)$ is even, let $\mathcal{P}=\left\{P_{1}, \ldots, P_{r}\right\}$ be a partition of $\delta(s)$. Then there exists a complete allowed splitting off at s if and only if

$$
\begin{array}{r}
\left|P_{i}\right| \leq d(s) / 2 \quad \forall 1 \leq i \leq r \\
G \text { contains no } C_{4} \text { or } C_{6} \text {-obstacle } \tag{10}
\end{array}
$$

The aim of this note is to present a proof of Theorem [1.1] that is shorter than the proof in [T]. We mention that not all the simplifications are due to the "tight set contraction".

2 Definitions and Preliminary results

In this note $G:=(V+s, E)$ is always a k-edge-connected graph in V, that is (11) is satisfied. The fact, that for $X, Y \subset V$, (12) and (13) are satisfied, will be used frequently.

$$
\begin{align*}
d(X) & \geq k \forall \emptyset \neq X \subset V \tag{11}\\
d(X)+d(Y) & =d(X \cap Y)+d(X \cup Y)+2 d(X, Y), \tag{12}\\
d(X)+d(Y) & =d(X-Y)+d(Y-X)+2 d(X \cap Y, V+s-(X \cup Y)) \tag{13}
\end{align*}
$$

Let $X \subset V . X$ is called tight (resp. dangerous) if $d(X)=k($ resp. $d(X) \leq k+1)$. We say that X is a singleton if $|X|=1 . G / X$ (resp. $G[X]$) denotes the graph obtained from G by contracting X into one vertex (resp. by deleting the vertices not in X). For $e=r s$ and $f=s t, G_{e, f}=G_{r, t}=G-r s-r t+r t$.

The followimg two claims are from [2].
Claim 2.1. (a) $\{s u, s v\}$ is admissible if and only if there is no dangerous set containing u and v. (b) For any edge su, there exist at most two dangerous sets M_{1} and M_{2} so that $u \in M_{1} \cap M_{2}$ and $\{v:\{s u, s v\}$ is not admissible $\} \subseteq M_{1} \cup M_{2}$.

Claim 2.2. For a tight set $T,\{s u, s v\}$ is allowed in G if and only if it is allowed in G / T.

Claim 2.3. $d(X)-k \geq 2 d(s, X)-d(s) \forall X \subset V$ where equality holds if and only if $d(V-X)=k$.

Proof. By (11), $d(X)-k=d(V-X)-k+d(s, X)-(d(s)-d(s, X)) \geq 2 d(s, X)-$ $d(s)$.

Claim 2.4. If $k \geq 3$ and $d(X) \leq k+2$ then $G[X]$ is connected.
Proof. For a set $\emptyset \neq Y \subset X$, by (12) and (11), $(k+2)+2 d(Y, X-Y) \geq d(X)+$ $2 d(Y, X-Y)=d(Y)+d(X-Y) \geq k+k \geq k+3$, and the claim follows.

Claim 2.5. If k is odd, X_{1}, X_{2}, X_{3} are disjoint tight sets, $d\left(\cup_{i=1}^{3} X_{i}\right)=k+2$ and $d\left(X_{1}, X_{3}\right)=0$, then $d\left(X_{1}, X_{2}\right)=d\left(X_{2}, X_{3}\right)=\frac{k-1}{2}$.

Proof. By (12) and (11), $2 k=d\left(X_{2}\right)+d\left(X_{i}\right)=d\left(X_{2} \cup X_{i}\right)+2 d\left(X_{2}, X_{i}\right) \geq k+$ $2 d\left(X_{2}, X_{i}\right)$, thus, by parity, $2 d\left(X_{2}, X_{i}\right) \leq k-1 i \in\{1,3\} .3 k=\sum_{i=1}^{3} d\left(X_{i}\right)=$ $d\left(\cup_{i=1}^{3} X_{i}\right)+\sum_{i \neq j} 2 d\left(X_{i}, X_{j}\right) \leq(k+2)+2(k-1)+0=3 k$, and the claim follows.

Claim 2.6. If \mathcal{A} is a C_{4}-obstacle, then $d\left(s, A_{i}\right) \geq 1 \forall A_{i} \in \mathcal{A}$.
Proof. Suppose wlog. $d\left(s, A_{1}\right)=0$. Then, by (2), $d\left(A_{1}, A_{2}\right)+d\left(A_{1}, A_{4}\right)=k$, so, since k is odd, wlog. $d\left(A_{1}, A_{2}\right) \geq \frac{k+1}{2}$. Then, by (11), (12) and (11), $k \leq d\left(A_{1} \cup A_{2}\right)=$ $d\left(A_{1}\right)+d\left(A_{2}\right)-2 d\left(A_{1}, A_{2}\right) \leq k+k-(k+1)=k-1$, contradiction.

Claim 2.7. If $\left\{A_{1}, \ldots, A_{6}\right\}$ is a C_{6}-obstacle, then for every allowed pair $\{s x, s y\}, G_{x, y}$ contains a C_{4}-obstacle.

Proof. Wlog. $x \in A_{1}$. By (12), (5), (6), $d\left(A_{i} \cup A_{i+1}\right)=d\left(A_{i}\right)+d\left(A_{i+1}\right)-$ $2 d\left(A_{i}, A_{i+1}\right)=k+k-(k-1)=k+1$. Then, since $\{s x, s y\}$ is admissible, $y \notin A_{2} \cup A_{6}$ by Claim 2.1(a). $\{s x, s y\}$ is allowed so, by (8), $y \notin A_{4}$. Thus wlog. $y \in A_{3}$. Then $\left\{A_{1} \cup A_{2} \cup A_{3}, A_{4}, A_{5}, A_{6}\right\}$ is a C_{4}-obstacle in $G_{x, y}$.

The following lemma is a new observation.
Lemma 2.8. If G contains no C_{4}-obstacle and (G) is satisfied then each edge su belongs to an allowed pair.

Proof. Let $S:=\{s v \in E:\{s u, s v\}$ is admissible $\}$. Suppose $s u$ belongs to no allowed pair. Then every $s v \in S$ and su belong to the same P_{j}. Then, by (9), $\frac{d(s)}{2} \geq\left|P_{j}\right| \geq$ $|S|+1$, so $|S| \leq \frac{d(s)}{2}-1$ and if equality holds then $\frac{d(s)}{2}=\left|P_{j}\right|$. It also follows, by Claim 2.1(b), that there are at most two dangerous sets M_{1} and M_{2} so that $u \in M_{1} \cup M_{2}$ and $\left\{v_{i}: s v_{i} \in \delta(s)-S\right\} \subseteq M_{1} \cup M_{2}$. In fact there are exactly two, because, by Claim 2.3, $d\left(M_{1} \cup M_{2}\right)-k \geq 2 d\left(s, M_{1} \cup M_{2}\right)-d(s)=2(d(s)-|S|)-d(s) \geq d(s)-2\left(\frac{d(s)}{2}-1\right)=2$, and if equality holds then $d\left(V-M_{1} \cup M_{2}\right)=k$ and $|S|=\frac{d(s)}{2}-1$. The following claim provides a contradiction.
Claim 2.9. $\left\{A_{1}=M_{1} \cap M_{2}, A_{2}=M_{1}-M_{2}, A_{3}=V-M_{1} \cup M_{2}, A_{4}=M_{2}-M_{1}\right\}$ is a C_{4}-obstacle.

Proof. Note that $A_{i} \neq \emptyset 1 \leq i \leq 4$ and $\cup_{i=1}^{4} A_{i}=V$. By (12), (11) and $d\left(M_{1} \cup M_{2}\right) \geq$ $k+2,2(k+1) \geq d\left(M_{1}\right)+d\left(M_{2}\right)=d\left(A_{1}\right)+d\left(M_{1} \cup M_{2}\right)+2 d\left(M_{1}, M_{2}\right) \geq k+(k+2)$, so $d\left(A_{1}\right)=k, d\left(M_{1} \cup M_{2}\right)=k+2$ and hence $d\left(A_{3}\right)=k$ and $\frac{d(s)}{2}=\left|P_{j}\right|$ so (3) is satisfied, and $d\left(A_{2}, A_{4}\right)=d\left(M_{1}, M_{2}\right)=0$. By (13) and (11), $2(k+1) \geq d\left(M_{1}\right)+d\left(M_{2}\right)=$ $d\left(A_{2}\right)+d\left(A_{4}\right)+2 d\left(A_{1}, A_{3}+s\right) \geq k+k+2 d\left(A_{1}, A_{3}\right)+2 d\left(A_{1}, s\right) \geq 2 k+0+2$, so $d\left(A_{2}\right)=$ $d\left(A_{4}\right)=k, d\left(A_{1}, A_{3}\right)=0$ and $d\left(s, A_{1}\right)=1$. It also follows that $\delta\left(A_{1} \cup A_{3}\right) \cap \delta(s)=P_{j}$, so (1), (2) and (4) are satisfied.

Lemma 2.8 shows that there exists an allowed splitting off. The main difficulty of the proof of Theorem 1.1 is to show that there exists an allowed splitting off that creates no C_{4} - or C_{6}-obstacle.

3 The proof

Proof. (of the necessity) Suppose there exists a graph that has a complete allowed splitting off $\left\{\left\{e_{i}, f_{i}\right\}: 1 \leq i \leq \frac{d_{G}(s)}{2}\right\}$ and violates (9) or (10). Choose such a graph G with $d_{G}(s)$ minimum. For every $1 \leq i \leq \frac{d_{G}(s)}{2}, 1 \leq j \leq r,\left|P_{j} \cap\left\{e_{i}, f_{i}\right\}\right| \leq 1$ so (9) is satisfied, whence G contains a C_{4} or a C_{6}-obstacle. By Claim 2.6 and (6), $d_{G}(s) \neq 0$. Then, either by (3) and (4) or by Claim 2.7, $G_{e_{1}, f_{1}}$ is a smaller example, contradiction.
Proof. (of the sufficiency) Induction on $|V|$. By Claim 2.2, we may assume that every tight set is a singleton.

Wlog. $\left|P_{1}\right|$ is maximum. By Lemma 2.8, there is an allowed pair $\{e=s x, f=s y\}$ with $s x \in P_{1}$.
Lemma 3.1. Suppose that $G^{\prime}:=G_{e, f}$ contains a C_{6}-obstacle $\mathcal{A}=\left\{A_{1}, \ldots, A_{6}\right\}$. Then there exists an edge $f^{\prime}=s y^{\prime}$ such that $\left\{e, f^{\prime}\right\}$ is allowed and $G^{\prime \prime}:=G_{e, f^{\prime}}$ satisfies (G) and (19).

Proof. Since $s x \in P_{1}, G^{\prime \prime}$ satisfies (9). Wlog. $x \in A_{1}$. Since $x y \in E\left(G^{\prime}\right)$, either $y \in A_{1}$ (Case a) or wlog. $y \in A_{2}$ (Case b). By (5) and (14), $A_{j}=a_{j} \forall 2 \leq j \leq 6$. By (8), $c\left(s a_{3}\right) \neq c\left(s a_{5}\right)$ so either $c\left(s a_{3}\right) \neq 1$ (let $y^{\prime}:=a_{3}$) or $c\left(s a_{5}\right) \neq 1$ (let $y^{\prime}:=a_{5}$).

Claim 3.2. If $x, y^{\prime} \in X \neq V$ and $d_{G^{\prime}}(X) \leq k+2$ then $d_{G^{\prime}}(X)=k+2$ and $X \cup A_{1}$ is the union of three consecutive sets in \mathcal{A}.

Proof. Let $X^{*}:=X \cup A_{1}$. By (6), $d_{G^{\prime}-s}\left(X^{*}\right) \geq k-1$ where equality holds if and only if X^{*} is the union of $2<l<6$ consecutive sets in \mathcal{A}. By Claim 2.3, $d_{G^{\prime}}(s, X) \leq 4$, by (7), $d_{G^{\prime}}\left(s, A_{1}\right)=1$ and $d_{G^{\prime}}(s, V)=6$ so $X^{*} \neq V$. By (5), $d_{G^{\prime}}\left(A_{1}\right)=k$, by $x \in X \cap A_{1}$ and (11) for $G^{\prime}, d_{G^{\prime}}\left(X \cap A_{1}\right) \geq k$, so by (12), $(k+2)+k \geq d_{G^{\prime}}(X)+d_{G^{\prime}}\left(A_{1}\right) \geq$ $d_{G^{\prime}}\left(X \cap A_{1}\right)+d_{G^{\prime}}\left(X^{*}\right) \geq k+d_{G^{\prime}}\left(X^{*}\right)$, so $k+2 \geq d_{G^{\prime}}\left(X^{*}\right)$ and if equality holds then $d_{G^{\prime}}(X)=k+2$. Then, by Claim [2.4, $G^{\prime}\left[X^{*}\right]$ is connected. Since $d_{G^{\prime}-s}\left(y^{\prime}, A_{1}\right)=0$, $X^{\prime}:=X-\left(y^{\prime} \cup A_{1}\right) \neq \emptyset$. Then $k+2 \geq d_{G^{\prime}}\left(X^{*}\right)=d_{G^{\prime}}\left(s, X^{*}\right)+d_{G^{\prime}-s}\left(X^{*}\right) \geq$ $d_{G^{\prime}}\left(s, y^{\prime}\right)+d_{G^{\prime}}\left(s, X^{\prime}\right)+d_{G^{\prime}}\left(s, A_{1}\right)+d_{G^{\prime}-s}\left(X^{*}\right) \geq 1+1+1+(k-1)$, thus $d_{G^{\prime}}\left(X^{*}\right)=k+2$ and hence $d_{G^{\prime}}(X)=k+2, d_{G^{\prime}}\left(s, X^{\prime}\right)=1$ and $d_{G^{\prime}-s}\left(X^{*}\right)=k-1$, thus $X \cup A_{1}$ is the union of three consecutive sets in \mathcal{A}.

Claim 3.3. $\left\{e, f^{\prime}\right\}$ is admissible (and hence allowed).
Proof. If not then, by Claim 2.1(a), there exists a set X with $x, y^{\prime} \in X \neq V$ and $k+1 \geq d_{G}(X)$. Since $d_{G}(X) \geq d_{G^{\prime}}(X)$, Claim 3.2 implies that $d_{G^{\prime}}(X)=k+2$, contradiction.
Case a: Wlog. $y^{\prime}=a_{5}$. Suppose that $G^{\prime \prime}$ contains a C_{4} (Case (i)) or a C_{6}-obstacle (Case (ii)) \mathcal{A}^{\prime}. Wlog. $x \in A_{1}^{\prime}$. Suppose $y^{\prime} \notin A_{1}^{\prime}$. Then, by (5), $k+2=d_{G^{\prime}}\left(A_{1}\right)+$ $2=d_{G}\left(A_{1}\right)$. By (11) or (5) and (14), $\left|A_{i}^{\prime}\right|=1 \forall A_{i}^{\prime} \in \mathcal{A}^{\prime}$ so $A_{1}^{\prime}=A_{1}$ and hence $k=d_{G^{\prime \prime}}\left(A_{1}^{\prime}\right)=d_{G^{\prime \prime}}\left(A_{1}\right)=d_{G}\left(A_{1}\right)$, contradiction. Thus $y^{\prime} \in A_{1}^{\prime}$ and $d_{G}\left(A_{1}^{\prime}\right)=k+2$. Since $d_{G^{\prime}}\left(A_{1}^{\prime}\right) \leq d_{G}\left(A_{1}^{\prime}\right), A_{1}^{\prime} \cup A_{1}$ is the union of three consecutive sets in \mathcal{A} by Claim उ.2.
(i): Then $3=\left|V-\left(A_{1} \cup A_{1}^{\prime}\right)\right| \leq\left|V-A_{1}^{\prime}\right|=3$ by (14) so $A_{1} \subset A_{1}^{\prime}$ thus wlog. $A_{j}^{\prime}=a_{j} 2 \leq j \leq 4$. By (8) for \mathcal{A}, there is a $w \in A_{1}$ with $c(s w)=c\left(s a_{4}\right)$ but $w \in A_{1}^{\prime}$ and $a_{4} \in A_{4}^{\prime}$, contradiction by (4) for \mathcal{A}^{\prime}.
(ii): Then $a_{6} \in A_{1}^{\prime}$. Wlog. $A_{2}^{\prime}=a_{4}$ and $A_{3}^{\prime}=a_{3}$. Then, by (8) for \mathcal{A} and \mathcal{A}^{\prime}, $c\left(s a_{3}\right)=c\left(s a_{6}\right) \neq c\left(s a_{3}\right)$, contradiction.

Case b: Then, by (5) and (14), $A_{1}=a_{1}$ so $|V|=6$. Note that, by (7), $d_{G}\left(s, a_{1}\right)=$ $d_{G}\left(s, a_{2}\right)=2$ and $d_{G}\left(s, a_{h}\right)=1(3 \leq h \leq 6) . d_{G^{\prime \prime}}\left(s, a_{2}\right)=2$ so, by (7), $G^{\prime \prime}$ contains no C_{6}-obstacle. Suppose that $G^{\prime \prime}$ contains a C_{4}-obstacle \mathcal{A}^{\prime}. Wlog. $x, y^{\prime} \in A_{1}^{\prime}$ and $d_{G}\left(A_{1}^{\prime}\right)=k+2$. Since $d_{G^{\prime}}\left(A_{1}^{\prime}\right) \leq d_{G}\left(A_{1}^{\prime}\right), d_{G^{\prime}}\left(A_{1}^{\prime}\right)=k+2$ and $A_{1}^{\prime} \cup A_{1}$ is the union of three consecutive sets in \mathcal{A} by Claim 3.2. Then $d_{G^{\prime}}\left(A_{1}^{\prime}\right)=d_{G}\left(A_{1}^{\prime}\right)$ so $y^{\prime}=a_{5}$. Thus $A_{1}^{\prime}=\left\{a_{5}, a_{6}, a_{1}\right\}$. Wlog. $A_{j}^{\prime}=a_{j} 2 \leq j \leq 4$ by (6) for \mathcal{A} and (2) for \mathcal{A}^{\prime}. By (8) for \mathcal{A}, $c\left(s a_{1}\right)=c\left(s a_{4}\right)$, contradiction by (4) for \mathcal{A}^{\prime}.

Lemma 3.4. Suppose that $G^{\prime}:=G_{e, f}$ contains a C_{4}-obstacle $\mathcal{A}:=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$. Then there exists an allowed pair $e^{\prime}=s x^{\prime}, f^{\prime}=s y^{\prime}$ such that $G^{\prime \prime}:=G_{e^{\prime}, f^{\prime}}$ satisfies (G) and (19).

Proof. Wlog. $x \in A_{1}$. Since $x y \in E\left(G^{\prime}\right)$, either $y \in A_{1}$ (Case a) or wlog. $y \in A_{2}$ (Case b). By (1), (14), $A_{j}=a_{j} \forall 2 \leq j \leq 4$, in Case a $d_{G}\left(A_{1}\right)=k+2$ and in Case b $A_{1}=a_{1}$ so $|V|=4$.
Case a: Let $g:=s a_{3}$. If $c(g) \neq c(e)$ then let $e^{\prime}:=e, f^{\prime}:=g$, otherwise let $e^{\prime}:=$ $g, f^{\prime}:=f$. Since $c\left(e^{\prime}\right)=c(e), G^{\prime \prime}$ satisfies (9).

Claim 3.5. If $x^{\prime}, y^{\prime} \in X \neq V$ and $d_{G}(X) \leq k+2$ then $d_{G}(X)=k+2$. Moreover if $|V-X| \geq 2$, then (a) $X \cup A_{1}=V-a_{i} \exists i \in\{2,4\}$, (b) $d_{G}\left(X \cap A_{1}\right)=k$.

Proof. By Claim 2.4, $G[X]$ is connected, so, by (2), $\exists i \in\{2,4\}: V-a_{i} \subseteq X \cup A_{1}$. First suppose that $X \cup A_{1}=V$. Then, by Claims 2.3 and 2.6, (3), (4), $1+\frac{d_{G}(s)}{2} \geq$ $\frac{d_{G}(X)-k+d_{G}(s)}{2} \geq d_{G}(s, X)=d_{G^{\prime}}\left(s, a_{2} \cup a_{4}\right)+d_{G^{\prime}}\left(s, a_{3}\right)+d_{G}\left(s, X \cap A_{1}\right) \geq\left(\frac{d_{G}(s)}{2}-1\right)+$ $1+1 \geq 1+\frac{d_{G}(s)}{2}$, so $d_{G}(X)=k+2$ and $d_{G}(V-X)=k$ thus, by (14), $|V-X|=1$. Now suppose that $|V-X| \geq 2$. Then it follows that $X \cup A_{1} \neq V$ and (a) is satisfied. Then, by (3), (4) and Claim 2.6, $d_{G}\left(s, X \cup A_{1}\right)=d_{G^{\prime}}\left(s, a_{3} \cup A_{1}\right)+2+d_{G}\left(s, a_{4}\right) \geq$ $\left(\frac{d_{G}(s)}{2}-1\right)+2+1$. Thus, by Claim 2.3, $d_{G}\left(X \cup A_{1}\right) \geq k+2 d_{G}\left(s, X \cup A_{1}\right)-d_{G}(s) \geq k+4$. Then, by (12) and (11), (b) is satisfied and $d_{G}(X)=k+2$.

By Claims 2.1(a) and 3.5, $\left\{e^{\prime}, f^{\prime}\right\}$ is an allowed pair. If $G^{\prime \prime}$ satisfies (10) then we are done. If $G^{\prime \prime}$ contains a C_{6}-obstacle then, by Lemma 3.1, we are done. Suppose that $G^{\prime \prime}$ contains a C_{4}-obstacle $\mathcal{A}^{\prime}:=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, A_{4}^{\prime}\right\}$. Wlog. $x^{\prime} \in \delta\left(A_{1}^{\prime}\right)$. Wlog. $y^{\prime} \in A_{1}^{\prime}$, otherwise restarting the proof by e^{\prime} and f^{\prime} we are in Case b. Then, by (11) and (14), $\left|A_{j}^{\prime}\right|=1 \forall 2 \leq j \leq 4$ and $d_{G}\left(A_{1}^{\prime}\right)=k+2$. By Claim 3.5 applied for $X=A_{1}^{\prime}$, wlog.
 Then it follows that $|V|=6$, say $V=\left\{a_{1}, a_{2}, \ldots, a_{6}\right\}$. Note that $d_{G}\left(a_{i}\right)=k 1 \leq i \leq 6$. By Claim 2.6 for \mathcal{A} and for $\mathcal{A}^{\prime}, 1 \leq d_{G}\left(s a_{i}\right) 1 \leq i \leq 6$ so $6 \leq d_{G}(s)$. The following lemma provides a contradiction.

Lemma 3.6. $\left\{a_{1}, a_{2}, \ldots, a_{6}\right\}$ forms a C_{6}-obstacle in G.
Claim 3.7. (a) $A_{1}=\left\{a_{1}, a_{5}, a_{6}\right\}, A_{i}=a_{i} 2 \leq i \leq 4, A_{1}^{\prime}=\left\{a_{1}, a_{2}, a_{3}\right\}$, wlog. $A_{2}^{\prime}=$ $a_{6}, A_{3}^{\prime}=a_{5}, A_{4}^{\prime}=a_{4}$, (b) $d_{G}\left(a_{1}, a_{2}\right)=d_{G}\left(a_{2}, a_{3}\right)=d_{G}\left(a_{1}, a_{6}\right)=d_{G}\left(a_{5}, a_{6}\right)=\frac{k-1}{2}$, (c) $\{x, y\}=\left\{a_{1}, a_{5}\right\}$.

Proof. We know that $A_{1}^{\prime}=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $A_{1}=\left\{a_{1}, a_{5}, a_{6}\right\}$. Then, by (2) for $\mathcal{A}, d_{G}\left(a_{1}, a_{3}\right)=0$ so, by Claim 2.5, $d_{G}\left(a_{1}, a_{2}\right)=d_{G}\left(a_{2}, a_{3}\right)=\frac{k-1}{2}$. Wlog. $A_{2}^{\prime}=$ a_{6}. Suppose that $A_{4}^{\prime}=a_{5}$. Then, by (2) for $\mathcal{A}^{\prime}, d_{G}\left(a_{5}, a_{6}\right)=0$ so, by Claim 2.5, $d_{G}\left(a_{1}, a_{5}\right)=d_{G}\left(a_{1}, a_{6}\right)=\frac{k-1}{2}$. Then $k=d_{G}\left(a_{1}\right) \geq d_{G}\left(a_{1}, a_{2}\right)+d_{G}\left(a_{1}, a_{5}\right)+d_{G}\left(a_{1}, a_{6}\right)+$ $d_{G}\left(a_{1}, s\right) \geq 3 \frac{k-1}{2}+1$, that is $k \leq 1$, contradiction. Thus $A_{4}^{\prime}=a_{4}$ and $A_{3}^{\prime}=a_{5}$, that is (a) is satisfied. Then, by (2) for $\mathcal{A}^{\prime}, d_{G}\left(a_{1}, a_{5}\right)=0$ so, by Claim 2.5, $d_{G}\left(a_{1}, a_{6}\right)=$ $d_{G}\left(a_{5}, a_{6}\right)=\frac{k-1}{2}$ and (b) is satisfied.

By definition $\{x, y\} \cap\left\{x^{\prime}, y^{\prime}\right\}=a_{1}$ so $a_{1} \in\{x, y\}$. Suppose $a_{5} \notin\{x, y\}$. Then $\{x, y\}=\left\{a_{1}, a_{6}\right\}$. By (12), (5) and (b), $d_{G}\left(\left\{a_{1}, a_{6}\right\}\right)=d_{G}\left(a_{1}\right)+d_{G}\left(a_{6}\right)-2 d_{G}\left(a_{1}, a_{6}\right)=$ $k+k-(k-1)=k+1$, hence, by Claim 2.1(a), $\{s x, s y\}$ is not admissible, contradiction, thus (c) is satisfied.
Proof. By (4) for $\mathcal{A}^{\prime}, c\left(s a_{2}\right) \neq c\left(s a_{4}\right)$ so $\delta_{G^{\prime}}\left(A_{1} \cup A_{3}\right) \cap \delta_{G^{\prime}}(s)=P_{l}^{\prime}$ in (4) for \mathcal{A} for some l with $\left|P_{l}\right| \geq\left|P_{l}^{\prime}\right|=\frac{d_{G^{\prime}}(s)}{2}=\frac{d_{G}(s)}{2}-1$. By (4) for $\mathcal{A}, c\left(s a_{6}\right) \neq c\left(s a_{4}\right)$ so $\delta_{G^{\prime \prime}}\left(A_{1}^{\prime} \cup A_{3}^{\prime}\right) \cap \delta_{G^{\prime \prime}}(s)=P_{l^{\prime}}$ in (4) for \mathcal{A}^{\prime} for some l^{\prime} with $\left|P_{l^{\prime}}\right| \geq\left|P_{l^{\prime}}^{\prime}\right|=\frac{d_{G^{\prime}}(s)}{2}=$ $\frac{d_{G}(s)}{2}-1$. In particular, $c\left(s a_{2}\right)=c\left(s a_{5}\right)=l^{\prime}$. By (4) for $\mathcal{A}, l=c\left(s a_{3}\right) \neq c\left(s a_{2}\right)=l^{\prime}$ thus, by Claim 3.7(c), $e=e^{\prime}=s a_{1}, f=s a_{5}, f^{\prime}=s a_{3}$. Since $\{e, f\}$ and $\left\{e^{\prime}, f^{\prime}\right\}$ are allowed, $l \neq 1 \neq l^{\prime}$. Then, by the maximality of $P_{1},\left|P_{1}\right| \geq\left|P_{l}\right| \geq \frac{d_{G}(s)}{2}-1$. $d_{G}(s) \geq\left|P_{1}\right|+\left|P_{l}\right|+\left|P_{l^{\prime}}\right| \geq 3\left(\frac{d_{G}(s)}{2}-1\right)$, that is $d_{G}(s) \leq 6$. Then $d_{G}(s)=6$ and $\left|P_{1}\right|=\left|P_{l}\right|=\left|P_{l^{\prime}}\right|=2$, namely $P_{1}^{2}=\left\{s a_{1}, s a_{4}\right\}, P_{l}=\left\{s a_{3}, s a_{6}\right\}, P_{l^{\prime}}=\left\{s a_{2}, s a_{5}\right\}$, so (7) and (8) are satisfied. We have already seen that (5) is satisfied. By (17) and (2) for \mathcal{A}^{\prime} and for \mathcal{A}, Claim 3.7(b) and (7), $d_{G}\left(a_{5}, a_{4}\right)=\frac{k-1}{2}=d_{G}\left(a_{3}, a_{4}\right)$. Then, by Claim 3.7(b), (6) is satisfied.

Case b: If there exists an edge $g=s a_{3}$ with $c(g) \neq c(e)$ then let $e^{\prime}:=e, f^{\prime}:=g$. Otherwise, since \mathcal{A} is not a C_{4}-obstacle in G, there is an edge $h=s a_{1}$ with $c(h) \neq c(e)$ and then let $e^{\prime}:=s a_{3}, f^{\prime}:=h$.

Claim 3.8. $\left\{e^{\prime}, f^{\prime}\right\}$ is admissible (and hence allowed).
Proof. Suppose not. Then, by Claim 2.1(a), there exists $x^{\prime}, y^{\prime} \in X \neq V$ and $d_{G}(X) \leq$ $k+1$. By Claim 2.4, $G[X]$ is connected so, by (22), $\exists i \in\{2,4\} X=\left\{a_{1}, a_{3}, a_{i}\right\}$. Then, by (3), (4) and Claim 2.6, $d_{G}(s, X) \geq d_{G^{\prime}}(s, X)+1=d_{G^{\prime}}\left(s, a_{1} \cup a_{3}\right)+d_{G^{\prime}}\left(s, a_{i}\right)+1 \geq$ $\left(\frac{d_{G}(s)}{2}-1\right)+1+1$. Then, by Claim 2.3, $1 \geq d_{G}(X)-k \geq 2 d_{G}(s, X)-d_{G}(s) \geq 2$, contradiction.

Since $c\left(e^{\prime}\right)=c(e), G^{\prime \prime}$ satisfies (9). Suppose that $G^{\prime \prime}$ does not satisfy (10). Then, since $|V|=4, G^{\prime \prime}$ contains a C_{4}-obstacle $\mathcal{A}^{\prime}:=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, A_{4}^{\prime}\right\}$. Since $a_{1} a_{3} \in E\left(G^{\prime \prime}\right)$, wlog. $A_{1}^{\prime} \cup A_{2}^{\prime}=a_{1} \cup a_{3}$ and $A_{3}^{\prime} \cup A_{4}^{\prime}=a_{2} \cup a_{4}$. By Claim 2.6, $d_{G^{\prime \prime}}\left(s, A_{i}^{\prime}\right) \geq 1$ so $d_{G}\left(s, A_{i}^{\prime}\right) \geq 2 i \in\{1,2\}$. By (3) and (4) for \mathcal{A} in G^{\prime}, there exist $1 \leq l \leq r$ and $j \in\{1,2\}$ such that for every edge $s d \in E\left(G^{\prime}\right)$ with $d \in A_{j} \cup A_{j+2}, c(s d)=l$. Then
there exist $s d_{1}, s d_{2} \in E\left(G^{\prime \prime}\right)$ with $d_{1} \in A_{j}, d_{2} \in A_{j+2}$ and $c\left(s d_{1}\right)=c\left(s d_{2}\right)=l$. This contradicts (4) for \mathcal{A}^{\prime}.

By Lemmas 2.8, 3.1 and 3.4, there exists a complete allowed splitting off and Theorem 1.1 is proved.

References

[1] J. Bang-Jensen, H. Gabow, T. Jordán, Z. Szigeti, Edge-connectivity augmentation with partition constraints, SIAM Journal on Disc. Math. Vol. 12 No. 2 (1999) 160-207.
[2] A. Frank, On a theorem of Mader, Discrete Mathematics, 101 (1992) 49-57.
[3] W. Mader, A reduction method for edge-connectivity in graphs, Ann. Discrete Math. 3 (1978) 145-164.

[^0]: *Equipe Combinatoire, Université Paris 6, 75252 Paris, Cedex 05, France. This work was done while the author was visiting the Egerváry Research Group (EGRES), Department of Operations Research, Eötvös University, Budapest.

