
Egerv́ary Research Group

on Combinatorial Optimization

Technical reportS

TR-2004-08. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

On partition constrained splitting
off

Zoltán Szigeti

May 2004



EGRES Technical Report No. 2004-08 1

On partition constrained splitting off

Zoltán Szigeti?

Abstract

A short proof is presented for a slight generalization of the partition con-
strained splitting off theorem of [1].

1 Introduction

Let G := (V + s, E) be a k-edge-connected graph in V with d(s) even. A pair of
edges rs, st is called admissible if splitting off these edges (replacing rs and st by
rt) preserves k-edge-connectivity in V. Let P = {P1, ..., Pr} be a partition of δ(s).
e ∈ Pj will also be denoted by c(e) = j. An admissible pair {e, f} is called allowed if

c(e) 6= c(f). By a complete splitting off we mean that we split off d(s)
2

disjoint pairs
of edges incident to s. For X,Y ⊂ V + s, δ(X) denotes the set of edges leaving X,
d(X) = |δ(X)| and d(X,Y ) denotes the number of edges between X and Y.

A partition {A1, A2, A3, A4} of V is called a C4-obstacle of G if k is odd and

d(Ai) = k ∀1 ≤ i ≤ 4, (1)

d(Ai, Ai+2) = 0 ∀1 ≤ i ≤ 2, (2)

|Pl| = d(s)/2 ∃1 ≤ l ≤ r, (3)

δ(Aj ∪ Aj+2) ∩ δ(s) = Pl ∃1 ≤ j ≤ 2. (4)

A partition {A1, A2, ..., A6} of V is called a C6-obstacle of G if k is odd and

d(Ai) = k ∀1 ≤ i ≤ 6, (5)

d(Ai, Ai+1) = (k − 1)/2 ∀1 ≤ i ≤ 6, (A7 = A1) (6)

d(s, Ai) = 1 ∀1 ≤ i ≤ 6, (7)

δ(Aj ∪ Aj+3) ∩ δ(s) = Plj ∀1 ≤ j ≤ 3, ∃1 ≤ lj ≤ r. (8)

The following result is a slight generalization of the main theorem on splitting off
in [1]. The motivation of this form is that it allows us to contract tight sets and hence
it enables us to simplify the proof.
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while the author was visiting the Egerváry Research Group (EGRES), Department of Operations
Research, Eötvös University, Budapest.
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Theorem 1.1. Let G = (V + s, E) be a k-edge-connected graph in V with k ≥ 2 and
d(s) is even, let P = {P1, ..., Pr} be a partition of δ(s). Then there exists a complete
allowed splitting off at s if and only if

|Pi| ≤ d(s)/2 ∀1 ≤ i ≤ r, (9)

G contains no C4 or C6-obstacle. (10)

The aim of this note is to present a proof of Theorem 1.1 that is shorter than the
proof in [1]. We mention that not all the simplifications are due to the ”tight set
contraction”.

2 Definitions and Preliminary results

In this note G := (V + s, E) is always a k-edge-connected graph in V, that is (11)
is satisfied. The fact, that for X,Y ⊂ V, (12) and (13) are satisfied, will be used
frequently.

d(X) ≥ k ∀∅ 6= X ⊂ V, (11)

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ), (12)

d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d(X ∩ Y, V + s− (X ∪ Y )). (13)

Let X ⊂ V. X is called tight (resp. dangerous) if d(X) = k (resp. d(X) ≤ k + 1).
We say that X is a singleton if |X| = 1. G/X (resp. G[X]) denotes the graph
obtained from G by contracting X into one vertex (resp. by deleting the vertices not
in X). For e = rs and f = st, Ge,f = Gr,t = G− rs− rt+ rt.

The followimg two claims are from [2].

Claim 2.1. (a) {su, sv} is admissible if and only if there is no dangerous set con-
taining u and v. (b) For any edge su, there exist at most two dangerous sets M1 and
M2 so that u ∈M1 ∩M2 and {v : {su, sv} is not admissible } ⊆M1 ∪M2.

Claim 2.2. For a tight set T, {su, sv} is allowed in G if and only if it is allowed in
G/T.

Claim 2.3. d(X) − k ≥ 2d(s,X) − d(s) ∀X ⊂ V where equality holds if and only if
d(V −X) = k.

Proof. By (11), d(X)− k = d(V −X)− k+ d(s,X)− (d(s)− d(s,X)) ≥ 2d(s,X)−
d(s).

Claim 2.4. If k ≥ 3 and d(X) ≤ k + 2 then G[X] is connected.

Proof. For a set ∅ 6= Y ⊂ X, by (12) and (11), (k + 2) + 2d(Y,X − Y ) ≥ d(X) +
2d(Y,X − Y ) = d(Y ) + d(X − Y ) ≥ k + k ≥ k + 3, and the claim follows.
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Claim 2.5. If k is odd, X1, X2, X3 are disjoint tight sets, d(∪3
i=1Xi) = k + 2 and

d(X1, X3) = 0, then d(X1, X2) = d(X2, X3) = k−1
2
.

Proof. By (12) and (11), 2k = d(X2) + d(Xi) = d(X2 ∪ Xi) + 2d(X2, Xi) ≥ k +
2d(X2, Xi), thus, by parity, 2d(X2, Xi) ≤ k − 1 i ∈ {1, 3}. 3k =

∑3
i=1 d(Xi) =

d(∪3
i=1Xi) +

∑
i6=j 2d(Xi, Xj) ≤ (k+ 2) + 2(k− 1) + 0 = 3k, and the claim follows.

Claim 2.6. If A is a C4-obstacle, then d(s, Ai) ≥ 1 ∀Ai ∈ A.

Proof. Suppose wlog. d(s, A1) = 0. Then, by (2), d(A1, A2) + d(A1, A4) = k, so,
since k is odd, wlog. d(A1, A2) ≥ k+1

2
. Then, by (11), (12) and (1), k ≤ d(A1 ∪A2) =

d(A1) + d(A2)− 2d(A1, A2) ≤ k + k − (k + 1) = k − 1, contradiction.

Claim 2.7. If {A1, ..., A6} is a C6-obstacle, then for every allowed pair {sx, sy}, Gx,y

contains a C4-obstacle.

Proof. Wlog. x ∈ A1. By (12), (5), (6), d(Ai ∪ Ai+1) = d(Ai) + d(Ai+1) −
2d(Ai, Ai+1) = k+k− (k− 1) = k+ 1. Then, since {sx, sy} is admissible, y /∈ A2∪A6

by Claim 2.1(a). {sx, sy} is allowed so, by (8), y /∈ A4. Thus wlog. y ∈ A3. Then
{A1 ∪ A2 ∪ A3, A4, A5, A6} is a C4-obstacle in Gx,y.

The following lemma is a new observation.

Lemma 2.8. If G contains no C4-obstacle and (9) is satisfied then each edge su
belongs to an allowed pair.

Proof. Let S := {sv ∈ E : {su, sv} is admissible}. Suppose su belongs to no allowed

pair. Then every sv ∈ S and su belong to the same Pj. Then, by (9), d(s)
2
≥ |Pj| ≥

|S|+1, so |S| ≤ d(s)
2
−1 and if equality holds then d(s)

2
= |Pj|. It also follows, by Claim

2.1(b), that there are at most two dangerous sets M1 and M2 so that u ∈M1∪M2 and
{vi : svi ∈ δ(s)−S} ⊆M1 ∪M2. In fact there are exactly two, because, by Claim 2.3,

d(M1∪M2)−k ≥ 2d(s,M1∪M2)−d(s) = 2(d(s)−|S|)−d(s) ≥ d(s)−2(d(s)
2
−1) = 2,

and if equality holds then d(V −M1∪M2) = k and |S| = d(s)
2
−1. The following claim

provides a contradiction.

Claim 2.9. {A1 = M1 ∩M2, A2 = M1 −M2, A3 = V −M1 ∪M2, A4 = M2 −M1} is
a C4-obstacle.

Proof. Note that Ai 6= ∅ 1 ≤ i ≤ 4 and ∪4
i=1Ai = V. By (12), (11) and d(M1∪M2) ≥

k+2, 2(k+1) ≥ d(M1)+d(M2) = d(A1)+d(M1∪M2)+ 2d(M1,M2) ≥ k+ (k+ 2), so

d(A1) = k, d(M1∪M2) = k+ 2 and hence d(A3) = k and d(s)
2

= |Pj| so (3) is satisfied,
and d(A2, A4) = d(M1,M2) = 0. By (13) and (11), 2(k + 1) ≥ d(M1) + d(M2) =
d(A2)+d(A4)+2d(A1, A3+s) ≥ k+k+2d(A1, A3)+2d(A1, s) ≥ 2k+0+2, so d(A2) =
d(A4) = k, d(A1, A3) = 0 and d(s, A1) = 1. It also follows that δ(A1∪A3)∩ δ(s) = Pj,
so (1), (2) and (4) are satisfied.

Lemma 2.8 shows that there exists an allowed splitting off. The main difficulty of
the proof of Theorem 1.1 is to show that there exists an allowed splitting off that
creates no C4- or C6-obstacle.
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3 The proof

Proof. (of the necessity) Suppose there exists a graph that has a complete allowed

splitting off {{ei, fi} : 1 ≤ i ≤ dG(s)
2
} and violates (9) or (10). Choose such a graph

G with dG(s) minimum. For every 1 ≤ i ≤ dG(s)
2
, 1 ≤ j ≤ r, |Pj ∩ {ei, fi}| ≤ 1 so

(9) is satisfied, whence G contains a C4 or a C6-obstacle. By Claim 2.6 and (6),
dG(s) 6= 0. Then, either by (3) and (4) or by Claim 2.7, Ge1,f1 is a smaller example,
contradiction.

Proof. (of the sufficiency) Induction on |V |. By Claim 2.2, we may assume that

every tight set is a singleton. (14)

Wlog. |P1| is maximum. By Lemma 2.8, there is an allowed pair {e = sx, f = sy}
with sx ∈ P1.

Lemma 3.1. Suppose that G′ := Ge,f contains a C6-obstacle A = {A1, ..., A6}. Then
there exists an edge f ′ = sy′ such that {e, f ′} is allowed and G′′ := Ge,f ′ satisfies (9)
and (10).

Proof. Since sx ∈ P1, G
′′ satisfies (9). Wlog. x ∈ A1. Since xy ∈ E(G′), either

y ∈ A1 (Case a) or wlog. y ∈ A2 (Case b). By (5) and (14), Aj = aj ∀ 2 ≤ j ≤ 6. By
(8), c(sa3) 6= c(sa5) so either c(sa3) 6= 1 (let y′ := a3) or c(sa5) 6= 1 (let y′ := a5).

Claim 3.2. If x, y′ ∈ X 6= V and dG′(X) ≤ k + 2 then dG′(X) = k + 2 and X ∪ A1

is the union of three consecutive sets in A.

Proof. Let X∗ := X∪A1. By (6), dG′−s(X
∗) ≥ k−1 where equality holds if and only

if X∗ is the union of 2 < l < 6 consecutive sets in A. By Claim 2.3, dG′(s,X) ≤ 4, by
(7), dG′(s, A1) = 1 and dG′(s, V ) = 6 so X∗ 6= V. By (5), dG′(A1) = k, by x ∈ X ∩ A1

and (11) for G′, dG′(X ∩ A1) ≥ k, so by (12), (k + 2) + k ≥ dG′(X) + dG′(A1) ≥
dG′(X ∩A1) + dG′(X∗) ≥ k + dG′(X∗), so k + 2 ≥ dG′(X∗) and if equality holds then
dG′(X) = k + 2. Then, by Claim 2.4, G′[X∗] is connected. Since dG′−s(y

′, A1) = 0,
X ′ := X − (y′ ∪ A1) 6= ∅. Then k + 2 ≥ dG′(X∗) = dG′(s,X∗) + dG′−s(X

∗) ≥
dG′(s, y′)+dG′(s,X ′)+dG′(s, A1)+dG′−s(X

∗) ≥ 1+1+1+(k−1), thus dG′(X∗) = k+2
and hence dG′(X) = k + 2, dG′(s,X ′) = 1 and dG′−s(X

∗) = k − 1, thus X ∪ A1 is the
union of three consecutive sets in A.

Claim 3.3. {e, f ′} is admissible (and hence allowed).

Proof. If not then, by Claim 2.1(a), there exists a set X with x, y′ ∈ X 6= V and
k + 1 ≥ dG(X). Since dG(X) ≥ dG′(X), Claim 3.2 implies that dG′(X) = k + 2,
contradiction.

Case a: Wlog. y′ = a5. Suppose that G′′ contains a C4 (Case (i)) or a C6-obstacle
(Case (ii)) A′. Wlog. x ∈ A′1. Suppose y′ /∈ A′1. Then, by (5), k + 2 = dG′(A1) +
2 = dG(A1). By (1) or (5) and (14), |A′i| = 1 ∀A′i ∈ A′ so A′1 = A1 and hence
k = dG′′(A′1) = dG′′(A1) = dG(A1), contradiction. Thus y′ ∈ A′1 and dG(A′1) = k + 2.
Since dG′(A′1) ≤ dG(A′1), A

′
1 ∪A1 is the union of three consecutive sets in A by Claim

3.2.
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(i): Then 3 = |V − (A1 ∪ A′1)| ≤ |V − A′1| = 3 by (14) so A1 ⊂ A′1 thus wlog.
A′j = aj 2 ≤ j ≤ 4. By (8) for A, there is a w ∈ A1 with c(sw) = c(sa4) but
w ∈ A′1 and a4 ∈ A′4, contradiction by (4) for A′.

(ii): Then a6 ∈ A′1. Wlog. A′2 = a4 and A′3 = a3. Then, by (8) for A and A′,
c(sa3) = c(sa6) 6= c(sa3), contradiction.

Case b: Then, by (5) and (14), A1 = a1 so |V | = 6. Note that, by (7), dG(s, a1) =
dG(s, a2) = 2 and dG(s, ah) = 1 (3 ≤ h ≤ 6). dG′′(s, a2) = 2 so, by (7), G′′ contains
no C6-obstacle. Suppose that G′′ contains a C4-obstacle A′. Wlog. x, y′ ∈ A′1 and
dG(A′1) = k + 2. Since dG′(A′1) ≤ dG(A′1), dG′(A′1) = k + 2 and A′1 ∪ A1 is the union
of three consecutive sets in A by Claim 3.2. Then dG′(A′1) = dG(A′1) so y′ = a5. Thus
A′1 = {a5, a6, a1}. Wlog. A′j = aj 2 ≤ j ≤ 4 by (6) for A and (2) for A′. By (8) for A,
c(sa1) = c(sa4), contradiction by (4) for A′.

Lemma 3.4. Suppose that G′ := Ge,f contains a C4-obstacle A := {A1, A2, A3, A4}.
Then there exists an allowed pair e′ = sx′, f ′ = sy′ such that G′′ := Ge′,f ′ satisfies (9)
and (10).

Proof. Wlog. x ∈ A1. Since xy ∈ E(G′), either y ∈ A1 (Case a) or wlog. y ∈ A2

(Case b). By (1), (14), Aj = aj ∀ 2 ≤ j ≤ 4, in Case a dG(A1) = k + 2 and in Case b
A1 = a1 so |V | = 4.

Case a: Let g := sa3. If c(g) 6= c(e) then let e′ := e, f ′ := g, otherwise let e′ :=
g, f ′ := f. Since c(e′) = c(e), G′′ satisfies (9).

Claim 3.5. If x′, y′ ∈ X 6= V and dG(X) ≤ k + 2 then dG(X) = k + 2. Moreover if
|V −X| ≥ 2, then (a) X ∪ A1 = V − ai ∃i ∈ {2, 4}, (b) dG(X ∩ A1) = k.

Proof. By Claim 2.4, G[X] is connected, so, by (2), ∃i ∈ {2, 4} : V − ai ⊆ X ∪ A1.

First suppose that X ∪ A1 = V. Then, by Claims 2.3 and 2.6, (3), (4), 1 + dG(s)
2
≥

dG(X)−k+dG(s)
2

≥ dG(s,X) = dG′(s, a2 ∪ a4) + dG′(s, a3) + dG(s,X ∩A1) ≥ (dG(s)
2
− 1) +

1 + 1 ≥ 1 + dG(s)
2
, so dG(X) = k + 2 and dG(V −X) = k thus, by (14), |V −X| = 1.

Now suppose that |V −X| ≥ 2. Then it follows that X ∪A1 6= V and (a) is satisfied.
Then, by (3), (4) and Claim 2.6, dG(s,X ∪ A1) = dG′(s, a3 ∪ A1) + 2 + dG(s, a4) ≥
(dG(s)

2
−1)+2+1. Thus, by Claim 2.3, dG(X∪A1) ≥ k+2dG(s,X∪A1)−dG(s) ≥ k+4.

Then, by (12) and (11), (b) is satisfied and dG(X) = k + 2.

By Claims 2.1(a) and 3.5, {e′, f ′} is an allowed pair. If G′′ satisfies (10) then we are
done. If G′′ contains a C6-obstacle then, by Lemma 3.1, we are done. Suppose that
G′′ contains a C4-obstacle A′ := {A′1, A′2, A′3, A′4}. Wlog. x′ ∈ δ(A′1). Wlog. y′ ∈ A′1,
otherwise restarting the proof by e′ and f ′ we are in Case b. Then, by (1) and (14),
|A′j| = 1 ∀ 2 ≤ j ≤ 4 and dG(A′1) = k + 2. By Claim 3.5 applied for X = A′1, wlog.
A′1∪A1 = V −a4 and dG(A′1∩A1) = k thus, by (14), |A′1∩A1| = 1, say A′1∩A1 = a1.
Then it follows that |V | = 6, say V = {a1, a2, ..., a6}. Note that dG(ai) = k 1 ≤ i ≤ 6.
By Claim 2.6 for A and for A′, 1 ≤ dG(sai) 1 ≤ i ≤ 6 so 6 ≤ dG(s). The following
lemma provides a contradiction.
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Lemma 3.6. {a1, a2, ..., a6} forms a C6-obstacle in G.

Claim 3.7. (a) A1 = {a1, a5, a6}, Ai = ai 2 ≤ i ≤ 4, A′1 = {a1, a2, a3}, wlog. A′2 =
a6, A

′
3 = a5, A

′
4 = a4, (b) dG(a1, a2) = dG(a2, a3) = dG(a1, a6) = dG(a5, a6) = k−1

2
, (c)

{x, y} = {a1, a5}.

Proof. We know that A′1 = {a1, a2, a3} and A1 = {a1, a5, a6}. Then, by (2) for
A, dG(a1, a3) = 0 so, by Claim 2.5, dG(a1, a2) = dG(a2, a3) = k−1

2
. Wlog. A′2 =

a6. Suppose that A′4 = a5. Then, by (2) for A′, dG(a5, a6) = 0 so, by Claim 2.5,
dG(a1, a5) = dG(a1, a6) = k−1

2
. Then k = dG(a1) ≥ dG(a1, a2)+dG(a1, a5)+dG(a1, a6)+

dG(a1, s) ≥ 3k−1
2

+ 1, that is k ≤ 1, contradiction. Thus A′4 = a4 and A′3 = a5, that
is (a) is satisfied. Then, by (2) for A′, dG(a1, a5) = 0 so, by Claim 2.5, dG(a1, a6) =
dG(a5, a6) = k−1

2
and (b) is satisfied.

By definition {x, y} ∩ {x′, y′} = a1 so a1 ∈ {x, y}. Suppose a5 /∈ {x, y}. Then
{x, y} = {a1, a6}. By (12), (5) and (b), dG({a1, a6}) = dG(a1)+dG(a6)−2dG(a1, a6) =
k+k−(k−1) = k+1, hence, by Claim 2.1(a), {sx, sy} is not admissible, contradiction,
thus (c) is satisfied.

Proof. By (4) for A′, c(sa2) 6= c(sa4) so δG′(A1 ∪ A3) ∩ δG′(s) = P ′l in (4) for A
for some l with |Pl| ≥ |P ′l | =

dG′ (s)
2

= dG(s)
2
− 1. By (4) for A, c(sa6) 6= c(sa4) so

δG′′(A′1 ∪ A′3) ∩ δG′′(s) = Pl′ in (4) for A′ for some l′ with |Pl′| ≥ |P ′l′| =
dG′ (s)

2
=

dG(s)
2
− 1. In particular, c(sa2) = c(sa5) = l′. By (4) for A, l = c(sa3) 6= c(sa2) = l′

thus, by Claim 3.7(c), e = e′ = sa1, f = sa5, f
′ = sa3. Since {e, f} and {e′, f ′}

are allowed, l 6= 1 6= l′. Then, by the maximality of P1, |P1| ≥ |Pl| ≥ dG(s)
2
− 1.

dG(s) ≥ |P1| + |Pl| + |Pl′ | ≥ 3(dG(s)
2
− 1), that is dG(s) ≤ 6. Then dG(s) = 6 and

|P1| = |Pl| = |Pl′| = 2, namely P1 = {sa1, sa4}, Pl = {sa3, sa6}, Pl′ = {sa2, sa5}, so
(7) and (8) are satisfied. We have already seen that (5) is satisfied. By (1) and (2) for
A′ and for A, Claim 3.7(b) and (7), dG(a5, a4) = k−1

2
= dG(a3, a4). Then, by Claim

3.7(b), (6) is satisfied.

Case b: If there exists an edge g = sa3 with c(g) 6= c(e) then let e′ := e, f ′ := g.
Otherwise, since A is not a C4-obstacle in G, there is an edge h = sa1 with c(h) 6= c(e)
and then let e′ := sa3, f

′ := h.

Claim 3.8. {e′, f ′} is admissible (and hence allowed).

Proof. Suppose not. Then, by Claim 2.1(a), there exists x′, y′ ∈ X 6= V and dG(X) ≤
k+ 1. By Claim 2.4, G[X] is connected so, by (2), ∃i ∈ {2, 4} X = {a1, a3, ai}. Then,
by (3), (4) and Claim 2.6, dG(s,X) ≥ dG′(s,X) + 1 = dG′(s, a1 ∪ a3) + dG′(s, ai) + 1 ≥
(dG(s)

2
− 1) + 1 + 1. Then, by Claim 2.3, 1 ≥ dG(X) − k ≥ 2dG(s,X) − dG(s) ≥ 2,

contradiction.

Since c(e′) = c(e), G′′ satisfies (9). Suppose that G′′ does not satisfy (10). Then,
since |V | = 4, G′′ contains a C4-obstacle A′ := {A′1, A′2, A′3, A′4}. Since a1a3 ∈ E(G′′),
wlog. A′1 ∪ A′2 = a1 ∪ a3 and A′3 ∪ A′4 = a2 ∪ a4. By Claim 2.6, dG′′(s, A′i) ≥ 1 so
dG(s, A′i) ≥ 2 i ∈ {1, 2}. By (3) and (4) for A in G′, there exist 1 ≤ l ≤ r and
j ∈ {1, 2} such that for every edge sd ∈ E(G′) with d ∈ Aj ∪ Aj+2, c(sd) = l. Then
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there exist sd1, sd2 ∈ E(G′′) with d1 ∈ Aj, d2 ∈ Aj+2 and c(sd1) = c(sd2) = l. This
contradicts (4) for A′.

By Lemmas 2.8, 3.1 and 3.4, there exists a complete allowed splitting off and
Theorem 1.1 is proved.
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