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An algorithm for source location in directed graphs

Mihály Bárász, Johanna Becker, and András Frank?

Abstract

Ito, Makino, Arata, Honami, Itatsu, and Fujishige [6] provided a theoretical
answer to a source location problem by proving that the minimum cardinality
of a subset R of nodes in an edge-capacitated directed graph D = (V,A) so
that the maximum flow-amount from R to every node v ∈ V − R is at least
k and the maximum flow amount from every node v ∈ V − R to R is at least
l is equal to the maximum number of pairwise disjoint deficient sets where a
subset of nodes is deficient if its in-capacity is less than k or its out-capacity
is less than l. They also showed how this theorem gave rise to a polynomial
time algorithm to compute the optima in question in case the demands k and
l are fixed, and posed as an open problem of developing an algorithm that is
(strongly) polynomial not only in the size of the digraph but in k and l, as well.
The present work describes such an algorithm.

1 Introduction

Source location problems in directed or undirected graphs concerning various con-
nectivity type properties have recently been intensively investigated. In this paper
we concentrate on the edge-connectivity version in digraphs. For non-negative inte-
gers k, l, we call a directed graph D = (V,A) (k, l)-edge-connected with respect
to a root node r if there are k-edge-disjoint paths from r to every other node and
there are l edge-disjoint paths from every node to r. By the directed edge-version
of Menger’s theorem this is equivalent to requiring that the indegree and outdegree
of all nonempty subsets of V − r is at least k and l, respectively. When k = l, this
notion is equivalent to k-edge-connectivity of D, while the case l = 0 corresponds to
the rooted k-edge-connectivity of D.

Call a subset R of nodes of a digraph a (k, l)-source if the contraction of R into a
node r results in a (k, l)-edge-connected digraph with respect to root node r. Equiv-
alently, there are k edge-disjoint paths from R to every node and there are l edge-
disjoint paths from every node to R. Yet another equivalent formulation is that R
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Section 1. Introduction 2

covers all deficient sets where a nonempty proper subset of nodes is deficient if its
indegree is smaller than k or its outdegree is smaller than l.

Ito et al. [6] introduced and investigated the problem of finding a (k, l)-source
of minimum cardinality which may be called the directed source location problem
(DSL, in short). While they pointed out that several closely related problems are NP-
complete, they also showed, by proving the following fundamental min-max theorem,
that DSL belongs to NP∩co-NP.

Theorem 1.1 ([6]). The minimum cardinality of a (k, l)-source is equal to the max-
imum number of pairwise disjoint deficient sets.

They proved this result by observing first that in order to cover all deficient sets,
it is sufficient to cover only the minimal ones. Second, they proved that the family of
all minimal deficient sets form a subtree hypergraph Hkl. Finally, they invoked the
known result that in any subtree hypergraph H the transversal number τ(H) is equal
to the matching number ν(H).

A subtree hypergraph (sometimes called arboreal hypergraph) is one for which
there is a spanning tree T on its node set so that each hyperedge induces a subtree
of T . The tree is called a basic (or representative) tree for the hypergraph. Note
that the hypergraph of all deficient sets is not necessarily a subtree hypergraph. In a
hypergraph H = (V, E) a family of pairwise disjoint hyperedges is called a matching.
The largest cardinality ν(H) of a matching is the matching number of H. A subset
of nodes Z intersecting each hyperedge is called a transversal of H if Z. The smallest
cardinality τ(H) of a transversal is the transversal number of H.

There is a well-known algorithm, due to F. Gavril [3], to compute a maximum stable
set in a chordal graph along with a minimum set of cliques covering all nodes. This
algorithm can, in principle, be used for solving the DSL problem since the line graph
L(H) of an arbitrary subtree hypergraph H is chordal, and a stable set of nodes in
L(H) corresponds to a matching of H, while a clique covering of L(H) corresponds
to a transversal of H.

Therefore the approach of [6] gave rise to an algorithm for the directed source
location problem which is polynomial provided that the number of minimal deficient
sets (which is the number of nodes of L(H)) depends polynomially on the size of D. [6]
concluded that this is the case when k and l are considered fixed since every deficient
set Z is determined by the set of edges entering (or leaving) Z and the number of
subsets of edges smaller than max{k, l} is polynomial in |A|. That is, the algorithm
of [6] outlined above is polynomial for fixed k, l.

By the following example, however, they also showed that the number of minimal
deficient sets may be exponential in the size of the digraph even if l = 0. Define
a digraph on n nodes (n > k) with a special node s so that, for every other node
v, there is one edge from v to s and there are k parallel edges from s to v. Then
the minimal in-deficient sets are precisely those containing s and having n − k + 1
elements. In the concluding remarks of their paper, Ito at al. formulated the open
problem of developing an algorithm that is (strongly) polynomial not only in the size
of the digraph but in k and l, as well. The present work describes such an algorithm.
While completing this work, we learnt that J. van den Heuvel and M. Johnson [5]
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also developed a polynomial algorithm for the (k, 0)-source problem. Their approach,
which is completely different from ours, seems to be extendible to the general (k, l)
case.

Actually, [6] proved Theorem 1.1 in the slightly more general capacitated case
when a nonnegative capacity function is given on the edge-set and the requirement
for a (k, l)-source set R is that the flow-amount from R to every node is at least
k and from every node to R is at least l. Our algorithm is strongly polynomial in
this edge-capacitated case, as well, but technically it is a bit easier to work with
the uncapacitated case (when the capacity function is identically one). Therefore in
the description below we consider the the edge-connectivity version of the problem
formulated above.

1.1 Further notation and notions

For elements s, t ∈ V a subset X ⊂ V is called a ts̄-set if t ∈ X ⊆ V − s. Throughout
we denote |V | = n and |A| = m. We will not distinguish between a one-element set
and its only element.

A graph is called chordal if there is no induced circuit of length at least four, or in
other words every circuit of length at least four admits a chord. It is well-known that
every chordal graph contains a so-called simplicial node, a node whose neighbours
form a clique. By an arborescence of root s we mean a directed tree in which every
node is reachable from s.

A hypergraph is said to admit the Helly property or is of Helly type if any
subset of pairwise intersecting hyperedges has a nonempty intersection. A hypergraph
is laminar if at least one of the sets X−Y, Y −X,X∩Y is empty for any two members
X,Y .

The line graph L(H) of a hypergraph H is a graph in which the nodes correspond
to the hyperedges two of them being adjacent if the corresponding hyperedges have
a nonempty intersection. It follows from the definitions that ν(H) is the stability
number α(L(H)) of L(H) while τ(H) is at most the clique-covering number of L(H)
(which is, by definition, the chromatic number of the complement of L(H)) with
equality for hypergraphs of Helly type.

In a digraph D = (V,A), the indegree %(X) = %D(X) denotes the number of edges
entering X while the outdegree δD(X) = δ(X) is the number of edges leaving X. If
a nonnegative capacity function g is given on the edge set, %g(X) denotes the in-
capacity of X, that is, the sum of capacity values on the edges entering X. The
out-capacity δg(X) of X is the sum of capacity values on the edges leaving X. For
two disjoint non-empty sets S and T of V let λg(S, T ) denote the maximum flow-
amount from s to t in the digraph arising from D by contracting S and T into nodes
s and t, respectively. By the Max-flow Min-cut (MFMC) theorem, λg(S, T ) is equal
to the minimum in-capacity of a subset Z with T ⊆ Z ⊆ V −S. In the uncapacitated
case λ(S, T ) is the minimum in-degree of sets Z with T ⊆ Z ⊆ V −S. By the directed
edge-version of Menger’s theorem, λ(S, T ) is equal to the maximum number of edge-
disjoint paths from S to T . It is known that the minimizer sets are closed under
taking union and intersection. (Indeed, by using the submodularity of %g one has
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Section 2. Subtree hypergraphs 4

λg(S, T ) + λg(S, T ) = %g(X) + %g(Y ) ≥ %g(X ∩ Y ) + %g(X ∪ Y ) ≥ λg(S, T ) + λg(S, T )
from which %g(X ∩ Y ) = λg(S, T ) = %g(X ∪ Y ).)

Let Zmin and Zmax denote the unique minimal and maximal member of this family.
With the help of a max-flow min-cut (MFMC) computation one can compute not only
a maximum flow (or the edge-disjoint paths) from S to T and a minimizer set but the
set Zmin, as well. For example, if x is a maximum flow, then Zmin is nothing but the
set of nodes from which T is reachable in the auxiliary digraph defined by x in the
Ford-Fulkerson algorithm. That is, once a maximum flow x is already computed Zmin,
and analogously Zmax, is computable by a search algorithm in O(|A|) time. Note that
a typical MFMC algorithm based on alternating-paths can easily be modified so as to
output a Zmax as a minimizer set. The extra search for Zmin or Zmax may be needed
if another MFMC algorithm is applied. We will use these facts without any further
reference.

Given nonnegative values k and l, a nonempty proper subset X of nodes is called k-
in-deficient or simply in-deficient if %(X) < k (or in the capacitated case %g(X) <
k) and l-out-deficient or simply out-deficient if δ(X) < l (or in the capacitated
case δg(X) < l). An in- or out-deficient set is called deficient. For a property P of
subsets we say that a subset Z is minimal with respect to P if Z admits property P
but its nonempty proper subsets do not. In this sense we will, for example, speak of
minimal (in- or out-) deficient subsets.

2 Subtree hypergraphs

The algorithm suggested by [6] works on the line graph L(Hkl) of minimal deficient
sets. Since this may be exponential in the size of the digraph D, one must avoid
an algorithm running on the line graph. We will work directly with the hypergraph
of minimal deficient sets (and even with an appropriate extension of it) since the
complete list of the hyperedges will not really be needed. Instead, we must only be
able to realize polynomially certain subroutines.

2.1 Computing a basic tree

The following simple but useful theorem was discovered by several authors. (For
references, see [1].) For completeness, we include its proof, as well.

Theorem 2.1. A hypergraph H = (V, E) is a subtree hypergraph if and only if H
admits the Helly property and the line graph L(H) of H is chordal.

Proof. The necessity is clear. To see the sufficiency we use induction on |V |. The case
|V | = 1 is trivial so assume that |V | > 1. We may also assume that the cardinality
of every hyperedge is at least 2. Since L(H) is chordal, it contains a simplicial node.
This corresponds to a hyperedge Z of H so that every two hyperedges intersecting Z
intersect each other. By the Helly property it follows that Z must have an element
z covering all hyperedges intersecting Z. Let u be another element of Z and H ′ =
(V − u, E ′) be a hypergraph where E ′ := {X − u : X ∈ E}. By the choice of u, H ′
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also has the Helly property and its line graph is L(H). By induction, there is a basic
tree T ′ for H ′. Let T be a tree arising from T ′ by adding a new edge zu. It follows
from the construction that T is basic for H. •

The constructive nature of this proof allows one to turn it into an algorithm which
is polynomial in |E|. It is useful however to realize that deciding if a hypergraph
admits a basic tree is a matroid optimization problem and thus a basic tree may be
found by the greedy algorithm, as well. To this end, define a weight function c(uv)
on the edge-set of the complete graph on V as follows. For every pair {u, v} of nodes,

let c(uv) be the number of hyperedges containing both u and v.

Theorem 2.2. A hypergraph H admits a basic tree (that is, H is a subtree hyper-
graph) if and only if the maximum c-weight spanning tree is a basic tree for H.

Proof. To see the non-trivial direction, let Z be a hyperedge and T an arbitrary
spanning tree. Then Z induces at most |Z| − 1 edges of T . Therefore

c(T ) :=
∑

uv∈E(T )

c(uv) =
∑

uv∈E(T )

∑
[1 : Z ∈ E , {u, v} ⊆ Z] ≤

∑
Z∈E

(|Z| − 1) (1)

and equality holds if and only if every hyperedge Z induces precisely |Z| − 1 edges of
T , that is, if T is basic for H. •

It follows that Kruskal’s algorithm can be used to compute a basic tree for a subtree
hypergraph. Again, this algorithm is polynomial in the number of hyperedges. (In a
matroid one may be interested in finding a basis B that spans some specified subsets
S1, . . . , St, that is, |B∩Si| = r(Si) for all i. By defining c(uv) to be the number of sets
Si containing both u and v, the maximum weight basis will do if there is such a basis
at all. That is, the matroid greedy algorithm solves the problem and our approach
above is just a specialization of the matroid case.)

3 Solid sets and partitions

How can one apply this algorithm to the hypergraph Hkl of minimal deficient sets
where the number of hyperedges may be exponential and the running time is expected
to be polynomial in the size of D? To answer this question we introduce a subtree
hypergraph HD on V which includes Hkl as a subhypergraph and show that there
exists a small, well-computable subhypergraph H ′D of HD such that any tree basic for
H ′D is basic for HD and hence for Hkl, as well. Therefore it will suffice to compute a
basic tree for H ′D.

Given a digraph D = (V,A), we call a nonempty proper subset Z of V in-solid (re-
spectively, out-solid) if %(X) > %(Z) (respectively, δ(X) > δ(Z)) for every nonempty
proper subset X of Z. An in- or out-solid set is called solid. Singletons are always in-
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and out-solid, and a minimal k-in-deficient set is in-solid (for any k). A k-in-deficient
in-solid set is not necessarily a minimal k-in-deficient set. Let HD = (V, ED) denote
the hypergraph of all solid sets. Note that the definition of deficient sets depends
on parameters k and l while that of solid sets does not. We remark that an analo-
gous notion for undirected graphs, under the name of extreme sets, was introduced
and successfully used to solve edge-connectivity augmentation problem by Watanabe
and Nakamura [9]. But the structure of extreme sets of undirected graphs, as being
laminar, is much simpler than that of solid sets of digraphs.

As mentioned, [6] proved that minimal deficient sets form a subtree hypergraph.
We can use their proof-technique almost word for word to show that the hypergraph
HD of solid sets is also a subtree hypergraph. Let us start with the following useful
observation.

Lemma 3.1. If X is in-solid and Y is out-solid, then at least one of the subsets
A := X − Y,B := Y −X,C := A ∩B is empty.

Proof. Let α, β, γ, γ′ denote, respectively, the number of edges from C to A, from
B to C, from V − (X ∪ Y ) to C, and from C to V − (X ∪ Y ). If, indirectly, none
of A,B,C is empty, then %(A) > %(X) and δ(B) > δ(Y ). Therefore α > β + γ and
β > α + γ′ from which the impossible 0 > γ + γ′ follows. •
Theorem 3.2. The hypergraph HD = (V, ED) of solid sets is a subtree hypergraph.

Proof. We claim that the line graph of HD is chordal. If, indirectly, it induces a
chordless circuit of length at least 4, then there are solid sets X1, . . . , Xh (h ≥ 4) so
that Xi ∩ Xj 6= ∅ if and only if i and j are consecutive integers where we use the
notational convention Xh+1 = X1. Lemma 3.1 implies that either all Xi’s are in-solid
or all Xi’s are out-solid, say the first case occurs. It follows that the h intersections
Xi ∩Xi+1 are pairwise disjoint and hence

h∑
i=1

%(Xi ∩Xi+1) ≤
h∑

i=1

%(Xi) (2)

Since Xi is in-solid, %(Xi) < %(Xi ∩ Xi+1) for i = 1, . . . , h and hence
∑

i %(Xi) <∑
i %(Xi ∩Xi+1), contradicting (2).
We claim that HD admits the Helly property. If it does not, then there is a smallest

number h along with h solid sets X1, . . . , Xh so that any two of these sets intersect
each other but the intersection M = X1 ∩ . . . ∩ Xh is empty. Again, by Lemma 3.1
either the sets Xi’s are all in-solid or all out-solid. By symmetry we may assume that
each Xi is in-solid. Let Yi = X1 ∩X2 ∩ . . .∩Xi−1 ∩Xi+1 ∩ . . .∩Xh (i = 1, . . . , h). By
the minimal choice of h, Yi 6= ∅, while M = ∅ implies that Yi∩Yj = ∅ (1 ≤ i < j ≤ h).
If an edge enters one of the sets Yi, then it enters at least one of the sets Xj. Therefore∑

i %(Yi) ≤
∑

i %(Xi). On the other hand %(Yi) > %(Xi+1) for each i as Xi+1 is in-solid
and hence

∑
i %(Yi) >

∑
i %(Xi+1) =

∑
i %(Xi), a contradiction.

Theorem 2.1 implies that HD is indeed a subtree hypergraph. •

By a maximal s-avoiding in-solid (out-solid) set we mean an in-solid (out-
solid) subset of V − s not included in any other s-avoiding in-solid (out-solid) subset
of V − s.
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Theorem 3.3. For any element s ∈ V , the maximal s-avoiding in-solid (out-solid)
sets are pairwise disjoint.

Proof. Suppose indirectly that there are two maximal s-avoiding in-solid sets X,Y
with a nonempty intersection. By the maximality of X and Y , none of X − Y and
Y −X is empty and X ∪Y is not in-solid. Hence there is a maximal nonempty subset
Z ⊂ X ∪ Y with %(Z) ≤ %(X ∪ Y ).

If Z includes one of X and Y , say X, then Z ∩ Y ⊂ Y , X ∪ Y = Z ∪ Y and
hence %(Z ∩ Y ) > %(Y ), %(X ∪ Y ) = %(Z ∪ Y ) ≥ %(Z) from which %(Y ) + %(Z) ≥
%(Z ∩Y ) + %(Z ∪ Y ) > %(Y ) + %(Z) would follow. Therefore Z can include neither X
nor Y .

If Z is disjoint from X or Y , say from X, that is, Z ⊆ Y −X, then %(Z) > %(Y )
which is not possible since %(X) + %(Y ) ≥ %(X ∩ Y ) + %(X ∪ Y ) > %(X) + %(X ∪ Y )
implies %(Y ) > %(X ∪ Y ) from which we would have %(Z) > %(X ∪ Y ) contradicting
the assumption %(Z) ≤ %(X ∪ Y ). Therefore Z must intersect both X and Y .

It follows that X ∩ Z 6= ∅ and X ∩ Z ⊂ X from which %(X ∩ Z) > %(X) as X
is in-solid. Since Z ⊂ X ∪ Z, the maximal choice of Z implies %(X ∪ Z) ≥ %(Z).
Therefore we have %(X)+%(Z) ≥ %(X∩Z)+%(X∪Z) > %(X)+%(Z), a contradiction.

That is, the maximal s-avoiding in-solid sets are indeed disjoint. The proof for
out-solid sets is analogous. •

Since each singleton is in-solid, the maximal s-avoiding in-solid sets partition V −s.
This will be called the in-solid partition of V − s. The out-solid partition of V − s
is defined analogously. It follows from Theorem 3.3 and Lemma 3.1 that:

Corollary 3.4. The family of maximal s-avoiding solid sets is a partition of V − s.
•

We call this partition the solid partition of V − s.

3.1 Computing the solid partition of V − s
By Corollary 3.4 the members of the in-solid partition and the out-solid partition of
V − s form a laminar family L. Therefore the solid partition of V − s consists of
the maximal members of L. Hence, in order to compute the maximal solid partition
of V − s, it suffices to compute separately the in-solid and the out-solid partition of
V − s. Since the two computations are analogous, we describe only the first one to
compute the in-solid partition of V − s.

As mentioned in the introduction the maximum number λ(t) := λ(s, t) of edge-
disjoint paths from s to a node t ∈ V − s is equal to the minimum indegree of the
ts̄-sets, and the minimizer sets are closed under taking union and intersection. Let
Nt denote the unique minimal member of this family.

Theorem 3.5. If N is a minimal member of the family {Nt : t ∈ V − x}, then N is
a maximal s-avoiding in-solid set.
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Proof. We claim that z ∈ Nt implies that Nz ⊆ Nt for any z, t ∈ V −s. Indeed, if we
had, indirectly, Nz − Nt 6= ∅, then %(Nz ∩ Nt) > %(Nz) from which %(Nz) + %(Nt) ≥
%(Nz ∪Nt) + %(Nz ∩Nt) > λ(t) + %(Nt) ≥ %(Nz) + %(Nt) would follow.

This and the minimality of N imply that N = Nt for every element t ∈ N and hence
N is in-solid. Furthermore there are %(N) edge-disjoint paths from s to t, therefore
%(Z) ≥ %(N) whenever N ⊆ Z ⊆ V − s, that is, N is maximally in-solid in V − s. •

Based on this, the in-solid partition of V − s can be computed as follows. First
compute all sets Nt (t ∈ V − s) and choose the smallest of them, denoted by N1.
By Theorem 3.5, N1 is a maximal s-avoiding in-solid set. Contract s and N1 into a
node s1 and compute in a similar manner a maximal s1-avoiding in-solid set N2 in
the contracted digraph. Since the maximal s-avoiding in-solid sets in D are disjoint,
N2 is a maximal s-avoiding in-solid set in D. At the general step, contract s and
the already computed maximal s-avoiding in-solid sets N1, . . . , Nh into a node sh

and compute a maximal sh-avoiding solid set Nh+1 of the contracted digraph. The
algorithm terminates when the union of the current sets N1, . . . , Nh is V − s.

To describe the algorithm more formally, letN denote the current family of maximal
disjont in-solid subsets of V − s. Instead of carrying out the contractions we will
maintain a subset S that is the union of the members of N plus s.

Algorithm for computing the in-solid partition of V − s.

INPUT Digraph D(V,A) and a node s ∈ V .
OUTPUT The in-solid partition N of V − s

(P1) Set N := ∅ and S := {s}.

(P2) If V − S is empty, output N . STOP. (The algorithm terminates.)

(P3) For each t ∈ V − S, with the help of an MFMC routine, compute λ(S, t) and
the unique smallest set Nt for which t ∈ Nt ⊆ V − S and %(Nt) = λ(S, t). Let N be
a smallest member of the family {Nt : t ∈ S − V }. Add {N} to N . Set S := S ∪N .
Go to (P2).

3.2 Computing a basic tree for HD

Given the solid partition of V − s for every node s ∈ V , let H ′D be the subhypergraph
of HD consisting of those hyperedges which occur in the solid partition of V − s for
some s ∈ V . Note that H ′D has at most n2 hyperedges, that is, H ′D is small even if
HD has exponentially many hyperedges. Therefore one can compute a basic tree for
H ′D in polynomial time with the greedy algorithm described in the previous section.
That is, for each pair of nodes u, v ∈ V , let c(uv) denote the number of hyperedges
of H′D containing both u and v. With the help of the greedy algorithm, compute a
maximum weight tree T . The good thing is that this tree is automatically basic for
the whole HD.
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Theorem 3.6. If T is a basic tree for H ′D, then T is basic for the hypergraph HD of
all solid sets (and hence for its subhypergraph Hkl) of deficient sets.

Proof. Suppose indirectly that there is solid set Z that does not induce a subtree of
T . Then there are two elements a, b of Z so that the unique path P in T connecting
a and b contains a node s not belonging to Z. That is, Z is an s-avoiding solid set
and hence there is a maximal s-avoiding solid set Z ′ including Z. But T is basic for
H ′D and hence the whole P must belong to Z ′, a contradiction. •

4 Computing a minimum transversal and a maxi-

mum matching

Let H = (V, E) be an arbitrary subtree hypergraph and T a basic tree for H. [2]
describes an algorithm for computing a minimum transversal and a maximum match-
ing of H that works directly on the basic tree T for H, rather than using the line
graph of H. Actually, that algorithm settles a weighted case as well but we need
only its unweighted version. We exhibit first this Generic Algorithm in which it does
not matter how the input hypergraph is ‘given’ and the main step is described in a
general form. We show then a more detailed and specialized version that applies to
the hypergraph Hkl of minimal deficient sets.

We need some notation. Choose an arbitrary node s of T as a root node. Let
~T denote the arborescence arising from T by orienting each edge of T away from s.
Define the height of a node v to be the distance of v from s in ~T . A node v is said
to be above a node u 6= v if there is a path in ~T from u to v. For a hyperedge Z of
H, the bottom node b(Z) of Z is the (unique) lowest node of Z. The height of Z
is defined to be the height of its bottom node. We say that a hyperedge Z of H is
independent from a matching M if Z is disjoint from the members of M, that is,
if M+ {Z} is a matching.

Starting with the empty matching M, in each step of the algorithm, we find a
highest hyperedge which is independent from the current matching M and add it to
M. The algorithm teminates when there is no more hyperedge independent fromM.
We will prove that the bottom nodes of the members ofM is a transversal of H. Let
us describe the algorithm a bit more formally.

Generic Algorithm for computing a maximum matching and a minimum transversal
of a subtree hypergraph.

INPUT: A subtree hypergraph H = (V, E) along with a basic tree T for H.
OUTPUT: A matching M and a transversal R of H so that |M| = |R|.

(GA1) Set M and R to be empty.

(GA2) Find a highest hyperedge Z which is independent from M. If there is no
hyperedge, output M and R. STOP. (The algorithm terminates).
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Section 4. Computing a minimum transversal and a maximum matching 10

(GA3) Add {Z} to M. Add the bottom node b(Z) to R. Go to (GA2).

The correctness of the algorithm along with the proof of the min-max relation
ν(H) = τ(H) for subtree hypergraphs follow from the following observation.

Lemma 4.1. The set R of bottom nodes output by the algorithm covers all hyperedges.

Proof. Suppose indirectly that there is a hyperedge Y not covered by R. Since the
algorithm terminates when there is no more hyperedge independent from the current
M, Y must intersect a member ofM. Among these members, let Z be the one which
was added earliest to M. Then Y is disjoint from each member of M that has been
added toM previous to Z. Since b(Z) is not in Y but Z ∩Y 6= ∅, it follows that b(Y )
is above b(Z) contradicting the ‘highest’ rule of (GA2). •

We describe now more specifically how Step (GA2) can be carried out. Instead of
trying to find directly a highest hyperedge in Step (GA2) which is independent from
M, the algorithm considers the nodes of H in a decreasing order according to their
height, and checks whether or not the current node is the bottom node of a hyperedge
Z which is independent fromM. In the first case Z is added toM and the algorithm
turns to the next node.

To describe more formally this algorithm, we let A(X) denote, for a subset X ⊆ V ,

the set of nodes reachable from X in ~T . For a singleton {v} we write A(v) and let
B(v) := V − A(v). Then v ∈ A(v) and V = A(s). In addition to the matching M
and the set R of the bottom nodes of the member of M, the algorithm maintains a
label marked-unmarked assigned to the nodes.

Specific Algorithm for computing a maximum matching and a minimum transversal
of a subtree hypergraph H

INPUT: A subtree hypergraph H = (V, E) along with a basic tree for T for H.
OUTPUT: A matching M and a transversal R of H so that |M| = |R|

(SA1) Set M and R to be empty, and let each node be unmarked.

(SA2) If there is no unmarked node, output M and R. STOP. (The algorithm
terminates).

(SA3) Choose a highest unmarked node v and mark it. Let S(v) := B(v) ∪ A(R).

(SA4) Find a hyperedge Z for which v ∈ Z ⊆ V − S(v). If no such a hyperedge
exists go to Step (SA2).

(SA5) Add Z to M and add b(Z) to R. Go to Step (SA2).

The correctness of this algorithm follows from that of the Generic Algorithm since a
node v get marked only when A(v)− v includes no hyperedge disjoint from R. Hence
we have:

PROPERTY (∗) Every hyperedge included in V − S(v) must contain v.
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4.1 Realizing Step (SA4) for Hkl

Let us return to our initial problem of computing a minimum (k, l)-source set, that
is, a minimum transversal of the hypergraph Hkl of minimal deficient sets along with
a maximum matching. In the preceding section we showed how to compute a basic
tree T for Hkl. Now we want to apply the algorithm above to Hkl, a situation where
the list of hyperedges is not explicitly listed. The only task is to realize Step (SA4).
To this end, let v be the node considered in Steps (SA3) and (SA4).

(SA4.1) Compute λ(S(v), v) along with the unique minimal set Z ′ for which v ∈
Z ′ ⊆ V − S(v) and %(Z ′) = λ(S(v), v). Compute λ(v, S(v)) along with the unique
minimal set Z ′′ for which v ∈ Z ′ ⊆ V − S(v) and δ(Z ′′) = λ(v, S(v)).

(SA4.2) If λ(S(v), v) ≥ k and λ(v, S(v)) ≥ l, then (by Property (∗)) the hyperedge
for (SA4) does not exist. Go to Step (SA2).

(SA4.3) If λ(S(v), v) < k and λ(v, S(v)) < l, then let Z be the smaller of Z ′ and Z ′′.
If exactly one of λ(S(v), v) < k and λ(v, S(v)) < l holds, then let Z be, accordingly,
Z ′ or Z ′′. Turn to Step (SA5) with this Z.

The only property we have to check is that the subset Z constructed this way is
hyperedge of Hkl.

Claim 4.2. Subset Z is minimal deficient, that is, Z is a hyperedge of Hkl.

Proof. If λ(S(v), v) < k and λ(v, S(v)) < l, then by Property (∗), Z ′ is minimal
in-deficient and Z ′′ is minimal out-deficient. By Lemma 3.1 one of them includes the
other, hence Z is minimally deficient. If exactly one of λ(S(v), v) < k and λ(v, S(v))
holds, then by Property (∗) again, Z is minimal deficient. •

5 Running time and conclusions

The algorithm we outlined above for solving the (k, l)-source location problem consists
of three consecutive phases:

1. Computing the solid partition of V − s for each s ∈ V .

2. Computing a basic tree T for HD.

3. Computing a minimum (k, l)-source (and a maximum matching) using T .

Note that only the last step depends on k and l, so in order to solve the (k, l)-source
location problem for several values of k and l, only the third step should be repeated.

Let S(n,m) denote the complexity of a MFMC algorithm on a digraph with n
nodes and m edges. As we mentioned in Section 3, one member of the solid parti-
tion of V − s may be obtained by running an MFMC algorithm n times. Thus the
in-solid partition of S − v, and analogously the out-solid partition as well, can be
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computed in O(n2S(n,m)). Since we need this for all nodes, the total time of Phase
1 is O(n3S(n,m)).

To compute a basic tree for HD, we first have to determine the weight function
c corresponding to H ′D, and find then a maximum weight spanning tree T . So this
phase can be bounded by O(n3).

The third phase of the algorithm applies the MFMC algorithm twice for every node
v (to get the maximum flow-amount and the min-cut from v to S(v) and from S(v)
to v). Hence this is doable in O(nS(n,m)).

We can conclude that the bottleneck of the whole algorithm is Phase 1, therefore
we want to improve on this.

5.1 Computing the solid partition via the algorithm of Hao
and Orlin

Hao and Orlin [4] invented an O(nm log(n2/m)) algorithm to compute a minimum
cut in a digraph between a given node s and all the other nodes t ∈ V − s. With
a slight modification of their algorithm (which does not increase its complexity), one
can obtain the unique minimal minimizer set Nt. Namely, the Hao-Orlin algorithm
maintains a feasible preflow, so when it finds a ts̄-set with λg(s, t) out-capacity, then
a maximum flow can immediately be obtained from the available preflow, and then
one more search algorithm gives rise to Nt. That is, the additional time we need is
O(mn) which does not affect the total complexity of the Hao-Orlin algorithm.

Summing up, when the algorithm of Hao and Orlin is used in Phase 1, the total
complexity of our algorithm is O(n3m log(n2/m)).

5.2 Conclusion

We developed a strongly polynomial time algorithm for the (k, l)-source location prob-
lem introduced and analyzed in [6]. An advantage of this approach is that it can be
used to solve the following inverse problem: given the digraph D and a number C,
what is the maximum value k = k(C) so that there is a C-element subset of V whose
contraction to a node gives rise to a k-edge-connected digraph (or in another version,
to a (k, 0)-edge-connected digraph). In the uncapacitated case this question can be
easily answered: simply run the algorithm above for all possible values 1, 2, . . . ,M ,
where M is the maximum of the in-degrees and the out-degrees of the nodes, and
choose the largest k for which the resulting minimum (k,k)-source set has at most C
elements. This approach is certainly not strongly polynomial in the capacitated case
but an elegant idea of N. Megiddo [7] can be used to show that n applications of our
algorithm k(C) can be obtained.
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