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Abstract

We prove that every 6k-connected graph contains k edge-disjoint 2-connec-
ted spanning subgraphs. By using this result we can settle special cases of two
conjectures, due to Kriesell and Thomassen, respectively: we show that every
12-connected graph G has a spanning tree T for which G−E(T ) is 2-connected,
and that every 18-connected graph has a 2-connected orientation.

1 Introduction

In this note we consider undirected graphs without multiple edges or loops. It is
well-known that every 2k-edge-connected graph contains k edge-disjoint connected
spanning subgraphs. We shall prove the following similar result on 2-connected span-
ning subgraphs of highly connected graphs.

Theorem 1.1. Every 6k-connected graph contains k edge-disjoint 2-connected span-
ning subgraphs.

Theorem 1.1 will follow from a stronger result on the existence of k edge-disjoint
‘rigid’ subgraphs that we shall prove in Section 3 by using matroidal methods. In the
rest of this section we discuss some corollaries.

The following conjecture, which has been open for k ≥ 2, is due to Kriesell.

Conjecture 1.2. [5] For every integer k there exists a (smallest) f(k) such that every
f(k)-connected graph G contains a spanning tree T for which G−E(T ) is k-connected.

Theorem 1.1 implies f(2) ≤ 12.

Theorem 1.3. Every 12-connected graph G has a spanning tree T for which G−E(T )
is 2-connected.

Thomassen posed the following conjecture, which has also been open for k ≥ 2.
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entific Research Fund grant no. T037547, F034930, and FKFP grant no. 0143/2001. e-mail:
jordan@cs.elte.hu

February 13, 2004



Section 2. Preliminaries 2

Conjecture 1.4. [8] For every integer k there exists a (smallest) g(k) such that every
g(k)-connected graph has a k-connected orientation.

Eulerian graphs with 2-connected orientations have been characterised in [1].

Theorem 1.5. [1] Let G = (V, E) be an Eulerian graph with |V | ≥ 3. Then G has
a 2-connected orientation if and only if G is 4-edge-connected and G − v is 2-edge-
connected for all v ∈ V .

Theorems 1.1 and 1.5 imply g(2) ≤ 18 as follows.

Theorem 1.6. Every 18-connected graph has a 2-connected orientation.

Proof: Let G = (V, E) be 18-connected. By Theorem 1.5 it suffices to prove that
G has a 4-edge-connected Eulerian spanning subgraph H for which H − v is 2-edge-
connected for all v ∈ V . It follows from Theorem 1.1 that G has three edge-disjoint
2-connected spanning subgraphs Hi = (V, Ei), 1 ≤ i ≤ 3. It is easy to see that
H ′ = (V, E1 ∪ E2) is 4-edge-connected and H ′ − v is 2-edge-connected for all v ∈ V .
It is well-known (and easy to show) that, since H3 is a connected spanning subgraph,
there is a set F ⊂ E3 for which H ′+ F is Eulerian. Thus H = (V, E1 ∪E3 ∪F ) is the
required spanning subgraph of G. •

We note that a conjecture of Frank [3] would imply g(k) = 2k for k ≥ 1.

2 Preliminaries

Let G = (V, E) be a graph. For sets X ⊆ V and F ⊆ E let EF (X) and iF (X) denote
the set and the number of edges of F induced by X, respectively. If F = E then we
may omit the subscript F . We say that a set S ⊆ E is sparse if

iS(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2. (1)

Let S be the collection of sparse sets in G. It follows from the theory of submodular
functions (and can also be verified directly [4, Section 2]) that S corresponds to the
independent sets of a matroid on ground-set E. Due to its importance in the theory
of ‘graph rigidity’, this matroid, denoted by R(G) = (E,S), is called the rigidity
matroid of G. For the rank function r of R(G) we have the following formula.

Theorem 2.1. [6, Theorem 1],[4, Corollary 2.5] Let F ⊆ E. Then

r(F ) = min{
t∑

i=1

(2|Xi| − 3)},

where the minimum is taken over all collections of subsets {X1, X2, . . . , Xt} of V such
that {EF (X1), EF (X2), . . . , EF (Xt)} partitions F .
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We say that a set S ⊆ E is rigid if S is sparse and r(S) = 2|V | − 3, that is, if S
is independent and has maximum possible rank in R(G). It follows easily from (1)
that if |V | ≥ 3 then every rigid set induces a 2-connected spanning subgraph in G. A
graph G = (V,E) is called rigid if the rank of R(G) is equal to 2|V | − 3, that is, if E
has a rigid subset. The following result is due to Lovász and Yemini [6].

Theorem 2.2. [6] Every 6-connected graph is rigid.

3 Edge-disjoint rigid subgraphs

In this section we extend Theorem 2.2 and show that every sufficiently highly con-
nected graph contains k edge-disjoint rigid spanning subgraphs.

Theorem 3.1. Every 6k-connected graph contains k edge-disjoint rigid spanning sub-
graphs.

Proof: For a contradiction suppose that for some integer k there exists a 6k-connected
graph without k edge-disjoint rigid spanning subgraphs, and suppose that G = (V,E)
is such a counterexample with the minimum number n = |V | of vertices, and subject
to this, with the maximum number of edges. By Theorem 2.2 we must have k ≥ 2.

LetM(G) be the matroid on ground-set E, obtained by taking the matroid union of
k copies of R(G). Let r∗ be the rank function ofM(G). Since G is a counterexample,
r∗(E) < 2kn − 3k must hold. By using Edmonds’ formula for the rank function of
matroid unions (see [2] or [7, Chapter 42] for details), this implies that there is a set
F ⊆ E with kr(F ) + |E − F | < 2kn− 3k, where r is the rank function of R(G). By
inserting the equality for r(F ) from Theorem 2.1 we obtain that

k(
t∑
1

2|Xi| − 3) + |E − F | < 2kn− 3k (2)

holds for some collection of subsets X = {X1, X2, . . . , Xt} of V such that {EF (X1),
EF (X2), . . . , EF (Xt)} partitions F . Since adding new edges to G (and to F ) between
vertices of some Xi does not increase the left hand side of (2) and preserves 6k-
connectivity, the maximal choice of |E| implies that Xi induces a complete subgraph
in G for 1 ≤ i ≤ t. Furthermore, since moving and edge, induced by some Xi, from
E − F to F does not increase the left hand side, we may assume that every edge
induced by Xi belongs to F , for 1 ≤ i ≤ t.

For a vertex v ∈ V let g(v) denote the number of edges in E − F incident to v.

Claim 3.2. If g(v) = 0 then v belongs to at least two sets of X .

Proof: Suppose that g(v) = 0. Then for every edge vu there is an Xi ∈ X with
uv ∈ E(Xi). For a contradiction suppose also that v belongs to exactly one member,
say X1, of X . Then X1 contains all neighbours of v. This implies that v cannot be
adjacent to all other vertices of G, for otherwise X1 = V would follow, contradicting
(2).
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Consider G − v and F ′, where F ′ is the edge set obtained from F by deleting all
edges incident to v. Let X ′1 = X1 − v and let X ′i = Xi for 2 ≤ i ≤ t. Now (2) implies
that k(

∑t
1 2|X ′i| − 3) + |E(G− v)− F ′| < 2k(n− 1)− 3k, and hence G− v has no k

edge-disjoint rigid spanning subgraphs. Thus, by the minimal choice of G, G − v is
not 6k-connected. Since G is not complete (v is not adjacent to every other vertex),
this implies that v is in a minimum vertex separator of G. This contradicts the fact
that the neigbours of v induce a complete subgraph. •

Claim 3.3. For each vertex v ∈ V we have∑
Xi:v∈Xi

(2− 3

|Xi|
) +

g(v)

2k
≥ 2. (3)

Proof: Since G is 6k-connected, each vertex has degree at least 6k in G. First
consider a vertex v which belongs to no member of X . Then all edges incident to v
are in E − F , and hence g(v) ≥ 6k follows. Thus v satisfies (3). Next suppose that v
belongs to exactly one member of X , say X1. As above, the inequality follows easily
if g(v) ≥ 6k. So we may suppose g(v) ≤ 6k− 1. We also have g(v) ≥ 1 by Claim 3.2.
Since u ∈ X1 for all edges vu ∈ F , we have |X1| ≥ 6k − g(v) + 1. Hence

2− 3

|X1|
+

g(v)

2k
≥ 2− 3

6k − g(v) + 1
+

g(v)

2k
≥ 2,

as required.
Now let v be a vertex which belongs to at least two members of X . Since every

edge in F incident to v is induced by some member of X and v has degree at least 6k
in G, we have ∑

Xi:v∈Xi

(|Xi| − 1) ≥ 6k − g(v). (4)

Suppose, without loss of generality, that v belongs to X1, X2, ..., Xd, where d ≥ 2, and
|X1| ≥ |X2| ≥ ... ≥ |Xd|. Since |Xi| ≥ 2 for all 1 ≤ i ≤ t, each term in the sum in
(3) is at least 1

2
. So the claim follows if d ≥ 4. Similarly, if d = 3 and g(v) ≥ k then

the left hand side of (3) is at least 31
2

+ 1
2

= 2, as required. If d = 3 and g(v) ≤ k − 1
then

∑
Xi:v∈Xi

(|Xi| − 1) ≥ 5k + 1 by (4). Thus |X1| ≥ d5k+1
3
e + 1 ≥ 3, and hence∑

Xi:v∈Xi
(2− 3

|Xi|) ≥ 1 + 1
2

+ 1
2

= 2.

Finally, suppose that d = 2. If g(v) ≥ 2k then the left hand side of (3) is at least
1
2

+ 1
2

+ 1 = 2, as required. Otherwise
∑

Xi:v∈Xi
(|Xi| − 1) ≥ 4k + 1 by (4), and hence

|X1| ≥ d4k+1
2
e + 1. Thus, using the fact that k ≥ 2, we obtain |X1| ≥ 6. Hence∑

Xi:v∈Xi
(2− 3

|Xi|) ≥
3
2

+ 1
2

= 2. This completes the proof of the claim. •

By taking the sum of the inequalities of (3) over all vertices of G, multiplying by k
and interchanging the sums, we get

2kn ≤ k
t∑
1

|Xi|(2−
3

|Xi|
) +

∑
v

g(v)

2
= k(

t∑
1

2|Xi| − 3) + |E − F |,
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which contradicts (2). This proves the theorem. •

As we noted earlier, rigid spanning subgraphs are 2-connected. Thus Theorem 1.1
follows directly from Theorem 3.1. Since there exist efficient algorithms to find a
maximum size independent set in M(G), the required spanning subgraphs can be
found in polynomial time [2, 7].

Examples for non-rigid 5-connected graphs are given in [6]. By modifying these
examples one can construct (6k − 1)-connected graphs without k edge-disjoint rigid
spanning subgraphs, showing that the bound in Theorem 3.1 cannot be improved.
On the other hand, the bounds in Theorems 1.3 and 1.6 can certainly be improved
by more involved counting arguments. For instance, to prove Theorem 1.3 one could
replace one of the two rigidity matroids by the circuit matroid of G in the definition
of M(G). We leave the details to the interested reader.
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