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Two-connected orientations of Eulerian graphs

Alex R. Berg? and Tibor Jordán??

Abstract

A graph G = (V,E) is said to be weakly four-connected if G is 4-edge-
connected and G− x is 2-edge-connected for every x ∈ V . We prove that every
weakly four-connected Eulerian graph has a 2-connected Eulerian orientation.
This verifies a special case of a conjecture of A. Frank.

1 Introduction

A directed graph D is an orientation of an undirected graph G if the underlying graph
of D is G. Robbins [8] proved that a graph G has a strongly connected orientation
if and only if G is 2-edge-connected. A deep result of Nash-Williams [7] from 1960
implies the extension to higher edge-connectivity: a graph G has a k-edge-connected
orientation if and only if G is 2k-edge-connected. See also [6, Problem 6.54] for a
direct proof and [9, Chapter 61] for more results on graph orientations.

The vertex-connected version is still unsolved, even for k = 2. It is also open
whether sufficiently highly vertex-connected graphs have k-vertex-connected orienta-
tions, which was conjectured by Thomassen [10]. A stronger conjecture, due to Frank
[2], states that a graph G has a k-vertex-connected orientation if and only if G −X
is 2(k − |X|)-edge-connected for every subset X of vertices of G. Note that this is
a necessary condition. Thus, if true, the latter conjecture would yield the desired
characterisation. The only partial result known is due to Gerards [3], who verified
Frank’s conjecture in the special case when k = 2 and the graph is 4-regular.

In this paper we also consider the case k = 2 and show that Frank’s conjecture
holds for Eulerian graphs. This fact will be used in a forthcoming paper [5] to verify
Thomassen’s conjecture for k = 2. Although most orientation theorems with edge-
connectivity conditions are straightforward for Eulerian graphs (by taking an Eulerian
orientation), this is not the case for vertex-connectivity. For example the graph of Fig-
ure 1 has a 2-vertex-connected orientation, but the Eulerian orientation obtained by
reversing all arcs of the directed three-cycle at the bottom is not 2-vertex-connected.
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1.1 Definitions and notation 2

We shall use some recent results on edge splittings and removable cycles in weakly
four-connected graphs (these will be summarised in Sections 2 and 5, respectively), as
well as new results on merging and hooking up in 2-connected digraphs (described in
Sections 3 and 4). The proof of our main result is in Section 6. Algorithmic remarks
will follow in Section 7.

Figure 1: A weakly four-connected graph G and its 2-connected orientation.

1.1 Definitions and notation

Graphs and digraphs (directed graphs) in this paper may contain parallel edges and
loops. Let G = (V,E) be a graph with vertex set V and edge set E. For two disjoint
subsets X,Y of V let d(X,Y ) denote the number of edges between X and Y . For a
subset X we use d(X) := d(X,V −X) to denote the degree of X. For a singleton x
we simply write d(x). G is Eulerian if d(v) is even for all v ∈ V . The multiplicity of
an edge uv ∈ E is d(u, v). For some v ∈ V we use N(v) to denote the set of vertices
adjacent to v (that is, the set of neighbours of v). We say that G is k-edge-connected
if d(X) ≥ k for every ∅ 6= X ⊂ V . (We use ⊂ to denote proper inclusion and ⊆ to
mean ⊂ or =.)

Let D = (V,A) be a digraph with vertex set V and arc set A. For two disjoint
subsets X,Y of V let d+(X, Y ) denote the number of arcs with tail in X and head
in Y . For a subset X we use d+(X) := d+(X,V − X) to denote the out-degree
of X. Similarly, the in-degree of X is d−(X) := d+(V − X, X). D is Eulerian if
d+(v) = d−(v) for all v ∈ V . We let d(X,Y ) = d+(X,Y ) + d+(Y,X). For some v ∈ V
let N+(v) := {u ∈ V : vu ∈ A} denote the out-neighbours of v. The set N−(v) of
in-neighbours is defined analogously. We say that D is strongly connected if d+(X) ≥ 1
for every ∅ 6= X ⊂ V . D is k-vertex-connected (k-connected, for short) if |V | ≥ k + 1
and D −X is strongly connected for all X ⊂ V with |X| ≤ k − 1.

We call a graph G = (V,E) weakly four-connected if |V | ≥ 3, G is 4-edge-connected,
and G− x is 2-edge-connected for all x ∈ V . Let X,Y, Z be pairwise disjoint subsets
of V with V = X ∪ Y ∪ Z, where only Z may be empty. We say that (X, Y, Z) is
a mixed cut in G of size d(X, Y ). If Z = {z} for some z ∈ V , we write (X,Y, z).
Note that G is weakly four-connected if and only if 2|Z|+ d(X,Y ) ≥ 4 for all mixed
cuts (X,Y, Z) in G. Let (X,Y, Z) be a mixed cut. It is non-trivial if |X|, |Y | ≥ 2.
Otherwise it is trivial. If d(X, Y ) = 2 then we call it tight. If there is an edge uv ∈ E
with u ∈ X,v ∈ Y , such that the multiplicity of uv equals 3 and d(X, Y ) = 3, then
we call it narrow.

We use G − X (G/X) to denote the graph obtained from graph G by deleting
(contracting, respectively) a set X of edges or vertices. Adding a set X of edges or
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Section 2. Splittable vertices of degree four 3

vertices is denoted by G + X. For X ⊆ V the subgraph induced by X is denoted by
G[X]. The notation for digraphs is similar. We apply standard notation to indicate
the graph we are referring to, when it is not clear from the context, e.g. dG′(X) or
V (D′) denotes the degree of X in G′ and the vertex set of D′, respectively. We close
this section with a simple lemma.

Lemma 1.1. Let G = (V, E) be a weakly four-connected Eulerian graph, let d(u, v) =
3 for some pair u, v ∈ V , and suppose that G−{uv, uv} is not weakly four-connected.
Then there is a narrow mixed cut (X, Y, z) in G with u ∈ X and v ∈ Y .

Proof: If |V | = 3 then the lemma is easy to verify, so we shall suppose that |V | ≥ 4.
Let e, f, g denote the three parallel edges between u and v and let G′ = G − {e, f}.
Since G′ is not weakly four-connected, either there is a set ∅ 6= X ⊂ V with dG′(X) ≤ 3
or there is a pair z, Y with z ∈ V , ∅ 6= Y ⊂ V −z and dG′−z(Y ) ≤ 1. In the former case
we must have dG(X) = 4 and |X ∩ {u, v}| = 1, since G is weakly four-connected and
Eulerian. This implies that G− u or G− v is not 2-edge-connected, a contradiction.

In the latter case let W = V − Y − z. Since G is weakly four-connected and
d(u, v) = 3, we must have dG−z(Y, W ) = 3, and e, f, g must connect Y to W . Thus
(Y,W, z) is a narrow mixed cut in G. •

2 Splittable vertices of degree four

By splitting off a pair su, sv of edges from a vertex s in a graph we mean the operation
of deleting the edges su, sv and adding (a new copy of) the edge uv. If d(s) is even,
we may consider a complete splitting at s, which is a sequence of d(s)/2 splittings at
s.

Let G = (V, E) be a weakly four-connected graph with |V | ≥ 4 and let s ∈ V be a
designated vertex with d(s) = 4. We say that a complete splitting at s is admissible if
the graph on vertex set V −s, obtained by splitting off s, is also weakly four-connected.
We call s admissible if there is an admissible complete splitting at s. Note that the
admissibility of a complete splitting does not depend on the order of splittings.

The proof of the next lemma is easy, using the definition of weak four-connectivity.
It also follows from [4, Proposition 2.1, Lemma 2.2, Lemma 2.3].

Lemma 2.1. Let G = (V,E) be weakly four-connected with |V | ≥ 4 and let {sx, sy,
sa, sb} be the set of edges incident to some s ∈ V with d(s) = 4. A complete splitting
at s on pairs sx, sy and sa, sb is non-admissible if and only if one of the following
holds:
(a) there is a set ∅ 6= X ⊆ V − {s, a, b} with d(X) = 4 and x, y ∈ X,
(b) there is a pair (X, w), where w ∈ V − s and ∅ 6= X ⊆ V − {s, w, a, b}, for which
dG−w(X) ≤ 3 and x, y ∈ X,
(c) there is a set ∅ 6= X ⊆ V − {s, y, a, b}, for which dG−y(X) = 2 and x ∈ X (or
there is a set ∅ 6= X ⊆ V − {s, x, a, b}, for which dG−x(X) = 2 and y ∈ X).

We shall also need the following results.
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Lemma 2.2. [4, Lemma 3.2] Let G = (V,E) be weakly four-connected with |V | ≥ 4
and let s ∈ V with d(s) = 4. If |N(s)| ≤ 3 then s is admissible.

A subset ∅ 6= X ⊂ V is called a mixed fragment if dG−z(X) = 2 for some z ∈ V −X.
Note that X is a mixed fragment if and only if (X, Y, z) is a tight mixed cut for some
z ∈ V and Y = V −X − z.

Theorem 2.3. [4, Theorem 6.3] Let G = (V,E) be weakly four-connected with |V | ≥
4 and suppose that V as well as every mixed fragment of G contains a vertex of degree
four. Then G has an admissible vertex s with d(s) = 4.

3 Reducible configurations

At some point in the proof of our main result we shall orient a weakly four-connected
Eulerian graph by first orienting two smaller graphs, obtained by contracting the
‘sides’ of an appropriate mixed cut, and then merging these oriented graphs to obtain
a 2-connected Eulerian orientation of G. This section contains the proofs of the
lemmas which make this step work.

3.1 Contracting mixed cuts

Lemma 3.1. Let G = (V,E) be weakly four-connected a let ∅ 6= X ⊂ V be a set of
vertices with |V −X| ≥ 2. Then G/X is weakly four-connected if and only if G−X
is 2-edge-connected.

Proof: Let x be the vertex of G/X obtained by contracting X. First suppose that
G/X is weakly four-connected. Since G−X = G/X − x, it follows that G−X is 2-
edge-connected. To prove the other direction suppose that G−X is 2-edge-connected.
First observe that the edge-connectivity of a graph cannot be decreased by contracting
a set of vertices. This shows that G/X is 4-edge-connected and G/X − z is 2-edge-
connected for all z ∈ V (G/X) − x. Now G/X − x is also 2-edge-connected, since
G −X is 2-edge-connected. Since |V −X| ≥ 2, we have |V (G/X)| ≥ 3. Thus G/X
is weakly four-connected. •

Lemma 3.2. Let G = (V, E) be weakly four-connected. If (X,Y, z) is a tight or
narrow mixed cut in G then G/X is weakly four-connected.

Proof: Clearly, X is a proper subset of V with |V −X| ≥ 2. Thus, by Lemma 3.1,
it is sufficient to verify that G−X is 2-edge-connected. For a contradiction suppose
that there exists a set ∅ 6= W ⊂ V − X with dG−X(W ) ≤ 1. By replacing W with
V − X − W , if necessary, we may assume that W ⊆ Y . Since G is weakly four-
connected, dG(W ) ≥ 4, and hence dG(W,X) ≥ 3 holds. If the mixed cut is tight, this
gives 3 ≤ dG(W, X) ≤ dG(Y,X) = 2, a contradiction. If the mixed cut is narrow, this
implies u ∈ W and v ∈ X for the common end-vertices u, v of the edges from Y to
X. But then dG−v(W ) ≤ 1, contradicting the fact that G is weakly four-connected. •
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A special mixed cut in a graph G = (V, E), denoted by (X + v, Y + u, z), is a
mixed cut in G for which |X| ≥ 2, d(v) = 4, d(v, u) = 2, d(X + v, Y + u) = 3 and
d(X, Y + u) = 1 hold.

Lemma 3.3. Let G = (V,E) be weakly four-connected and let (X + v, Y + u, z) be a
special mixed cut. Suppose that there is no non-trivial tight mixed cut in G. Then (i)
G/X and (ii) G/(Y + u) are both weakly four-connected.

Proof: First we prove that G/X is weakly four-connected. Clearly, X is a proper
subset of V with |V − X| ≥ 2. Thus, by Lemma 3.1, it is sufficient to verify that
G − X is 2-edge-connected. For a contradiction suppose that there exists a set ∅ 6=
W ⊂ V −X with dG−X(W ) ≤ 1. Since d(v, u) = 2, W does not separate v and u. By
replacing W by V −X−W , if necessary, we may assume that W∩{u, v} = ∅. If z /∈ W
then dG(X,W ) ≤ 1, since the mixed cut is special. Hence dG(W ) ≤ dG−X(W )+1 ≤ 2,
which contradicts the fact that G is weakly four-connected. Thus z ∈ W . Let
W ′ = V − X −W . Since dG(W ′) ≥ 4, dG−X(W ′) ≤ 1, and since the mixed cut is
special, we can deduce that dG(X,W ) = dG(X, z). Now either W − z 6= ∅, in which
case dG−z(W − z) ≤ 1 follows, or W = {z}, in which case (X + z, Y + u, v) is a non-
trivial tight mixed cut in G. Each of these conclusions contradicts the hypotheses of
the lemma, which completes the proof of (i).

As above, it follows from Lemma 3.1 that to prove (ii) it is sufficient to verify
that G − (Y + u) is 2-edge-connected. For a contradiction suppose that there ex-
ists a set ∅ 6= W ⊂ V − (Y + u) with dG−(Y +u)(W ) ≤ 1. We may assume that
z /∈ W . If v /∈ W , then dG(W ) ≤ dG−(Y +u)(W ) + 1 ≤ 2, which contradicts the
fact that G is weakly four-connected. Thus v ∈ W . Let W ′ = V − (Y + u) −W .
Since dG(W ) ≥ 4 and dG−(Y +u)(W ) ≤ 1, and since the mixed cut is special, we have
dG(Y +u,W ′) = dG(Y +u, z). So either W ′∩X 6= ∅, in which case dG−z(W ′∩X) ≤ 1
follows, or W ′ = {z}, in which case (X + v, Y + z, u) is a non-trivial tight mixed
cut in G. Each of these conclusions contradicts the hypotheses of the lemma, which
completes the proof of (ii). •

3.2 Merging digraphs

Let G = (V,E) be a graph and (X, Y, Z) be a mixed cut in G. Let Gx = G/X and
Gy = G/Y denote the graphs obtained from G by contracting the two sides of the
mixed cut, and let Dx and Dy be orientations of Gx and Gy, respectively. We say
that Dx and Dy are compatible if Dx[Z] = Dy[Z] and for all edges e between X and
Y the orientation of (the edge corresponding to) e in Dx and Dy is the same. If Dx

and Dy are compatible, we can obtain an orientation of G in a natural way: let the
edges in G[X ∪ Z] be oriented as in Dy, let the edges in G[Z ∪ Y ] be oriented as in
Dx, and let the edges between X and Y be oriented as in Dx and Dy. We call this
operation merging Dx and Dy (along (X, Y, Z)). We shall use this operation only for
1 ≤ |Z| ≤ 2.
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Lemma 3.4. Suppose that Dx and Dy are compatible 2-connected orientations of Gx

and Gy, respectively. If |Z| = 1 and dG(X,Y ) ≤ 3 or |Z| = 2 and dG(X, Y ) ≤ 1 then
the directed graph D = (V,A), obtained by merging Dx and Dy along (X, Y, Z), is
also 2-connected.

Proof: For a contradiction suppose that D − w is not strongly connected for some
w ∈ V . Then V − w can be partitioned into two non-empty sets S, T such that
d+

D−w(S, T ) = 0 holds.
First suppose w ∈ Y . If S properly intersects X ∪ Z (that is, S ∩ (X ∪ Z) 6= ∅ 6=

(X∪Z)−S) then we obtain d+
D−w(S, T ) ≥ d+

D−w(S∩(X∪Z), (X∪Z)−S) = d+
Dy−y(S∩

(X∪Z), (X∪Z)−S) ≥ 1, by using the definition of merging and the fact that Dy is 2-
connected. Similarly, if ∅ 6= S ⊂ Y , then d+

D−w(S, T ) = d+
Dx−w(S, V (Dx)−w−S) ≥ 1,

since Dx is 2-connected. A similar argument proves that there is at least one arc from
S to T in D − w if T properly intersects X ∪ Z or ∅ 6= T ⊂ Y . Thus, for all possible
pairs S, T , we have deduced d+

D(S, T ) ≥ 1, a contradiction. By symmetry, we have a
similar contradiction when w ∈ X.

Thus it remains to consider the case w ∈ Z. As above, the 2-connectivity of Dx

and Dy, and the definition of merging imply that d+
D−w(W ) ≥ 1 and d−D−w(W ) ≥ 1

whenever W ⊆ (X∪Z)−w or W ⊆ (Y ∪Z)−w. So we may assume that each of S, T
properly intersects the sets X and Y . We can also assume, without loss of generality,
that if |Z| = 2 then S ∩ Z = ∅.

Since d+
D−w(S ∩ X) ≥ 1, d+

D−w(S ∩ Y ) ≥ 1, and d+
D(S, T ) ≥ 1, we must have

dD(S ∩ X,S ∩ Y ) ≥ 2. Similarly, if |Z| = 1 (and hence T ⊂ X ∪ Y ) then we get
dD(T ∩X, T ∩ Y ) ≥ 2. Thus for |Z| = 1 we obtain dG(X,Y ) ≥ dD(S ∩X,S ∩ Y ) +
dD(T ∩X,T ∩Y ) ≥ 4. For |Z| = 2 we obtain dG(X, Y ) ≥ dD(S ∩X, S ∩Y ) ≥ 2. This
contradicts the hypotheses of the lemma. •

Lemma 3.5. Let (X, Y, z) be a tight or narrow mixed cut in G = (V,E) and suppose
that G/X and G/Y both have 2-connected Eulerian orientations. Then G also has a
2-connected Eulerian orientation.

Proof: We shall prove that there exist 2-connected Eulerian orientations Dx and Dy

of Gx = G/X and Gy = G/Y , respectively, which are compatible. Since |Z| = 1,
Dx[Z] = Dy[Z] trivially holds for any pair of orientations.

First suppose that (X, Y, z) is tight and let e, f denote the edges between X and
Y in G. Let Dx, Dy be a pair of 2-connected Eulerian orientations. By reorienting all
arcs of Dy, if necessary, we may assume that the orientation of (the edge corresponding
to) e is the same in Dx and Dy. Since Dx−z and Dy−z are both strongly connected,
this implies that the orientation of f is also the same in Dx and Dy. Thus the pair is
compatible.

Next suppose (X,Y, z) is narrow and let e, f, g denote the (parallel) edges between
X and Y in G. Let Dx, Dy be a pair of 2-connected Eulerian orientations. Since
Dx − z and Dy − z are both strongly connected, we may assume, by reorienting all
arcs of Dy, and by relabelling e, f, g, if necessary, that the orientations of the edges
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e, f, g are the same in Dx and Dy. Thus we have a compatible pair in this case as
well.

Hence the directed graph D, obtained by merging Dx and Dy along (X,Y, z) is a
2-connected orientation of G by Lemma 3.4. It remains to show that D is Eulerian.
Since Dx and Dy are Eulerian orientations, we have d+

D(w) = d−D(w) for all w ∈ V −z.
But then d+

D(z) = d−D(z) must also hold. This completes the proof of the lemma. •

Lemma 3.6. Let (X + v, Y + u, z) be a special mixed cut in G = (V, E) and suppose
that G/X and G/(Y + u) both have 2-connected Eulerian orientations. Then G also
has a 2-connected Eulerian orientation.

Proof: First we show that there exist 2-connected Eulerian orientations Dx and Dy

of Gx = G/X and Gy = G/(Y + u), respectively, which are compatible (with respect
to the mixed cut (X, Y + u, Z) with Z = {v, z}). Let e, f denote the (parallel) edges
from v to u and let g denote the edge from X to Y +u in G. Let Dx and Dy be a pair
of 2-connected Eulerian orientations. By reorienting all arcs of Dy, if necessary, we
may assume that the orientation of g is the same in Dx and Dy. By 2-connectivity,
and since dGx(v, u) = dGy(v, y) = 2, this implies that the orientation of the edge
between v and z, if it exists, is also the same in Dx and Dy. Thus Dx[Z] = Dy[Z] is
also satisfied, and the orientations are compatible.

Thus the directed graph D, obtained by merging Dx and Dy along (X, Y + u, Z)
is a 2-connected orientation of G by Lemma 3.4. It remains to show that D is Eu-
lerian. Since Dx and Dy are Eulerian orientations, we have d+

D(w) = d−D(w) for all
w ∈ V − Z. Since dG(v) = 4 and D is 2-connected, we also have d+

D(v) = d−D(v). But
then d+

D(z) = d−D(z) holds as well. This completes the proof of the lemma. •

4 Hooking up arcs

Let D = (V, A) be a directed graph and ab, xy ∈ A. By hooking up ab, xy on vertex
v we mean the operation which adds a new vertex v to D, deletes the arcs ab, xy,
and adds new arcs av, vb, xv, vy. Note that in the underlying undirected graph of
the resulting digraph this corresponds to the reverse operation of a complete splitting
at v. We shall also use hooking up to create 2-connected orientations. We need the
following lemmas to describe the situations when hooking up preserves 2-connectivity.
Note that in the next two lemmas e or f (or both) may be loops.

Lemma 4.1. Let D = (V, A) be a 2-connected digraph, let e, f ∈ A, and let D′ be
obtained from D by hooking up e, f on vertex v. Then either D′ is 2-connected or one
of the following holds:
(i) the arcs e, f have a common tail or head (or both),
(ii) there is a bipartition of V into sets X, Y with |X|, |Y | ≥ 2, and such that the set
of arcs entering Y in D equals {e, f}.
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Proof: Suppose that D′ is not 2-connected. Then there is a vertex w ∈ V (D′) and a
set ∅ 6= X ⊂ V (D′)− w with d+

D′−w(X) = 0.
First suppose w = v. In this case X ⊂ V = V (D′)− v. Since D is 2-connected, we

have d+
D(X) ≥ 2, and hence the set of edges entering V − X in D must be equal to

{e, f}. If |X|, |V − X| ≥ 2 then (ii) follows by choosing Y = V −X. Otherwise we
must have (i).

Next suppose w 6= v. If X = {v} (X = V (D′)− {w, v}) then w is the common tail
(head, respectively) of e and f , and hence (i) follows. So we may assume, without
loss of generality, that v ∈ X and |X| ≥ 2. By using the assumption d+

D′−w(X) = 0,
we obtain d+

D−w(X − v) = 0. Thus D − w is not strongly connected, a contradiction.
This completes the proof of the lemma. •

Lemma 4.2. Let D = (V, A) be a 2-connected digraph, let e, f ∈ A, and let D′ be
obtained from D by hooking up e, f on vertex v. Suppose that the underlying graph
G′ of D′ is weakly four-connected and at least one of e, f is a loop. Then D′ is
2-connected.

Proof: Since at least one of e, f is a loop, Lemma 4.1(ii) cannot hold. Furthermore, if
Lemma 4.1(i) holds, then dG′(v, u) ≥ 3 for some u ∈ V (G′). This is impossible, since
dG′(v) = 4 and G′ is weakly four-connected. This completes the proof by Lemma 4.1. •

We shall also need a similar operation, which hooks up one arc without adding new
vertices.

Lemma 4.3. Let D = (V, A) be a 2-connected digraph with |V | ≥ 4 and suppose that
there is an arc e = xy ∈ A and a vertex v ∈ V with N+(v) = N−(v) = {x, y}. Then
D − xy + xv + vy is 2-connected.

Proof: Let D′ = D − xy + xv + vy. Since D is 2-connected, it is easy to see that
D′−w is strongly connected for all w 6= v. Thus it remains to prove that D′−v is also
strongly connected. If this is not the case, then there is a bipartition of V −v into two
non-empty sets X, Y for which x ∈ X, y ∈ Y , and, without loss of generality, the only
arc from X to Y in D is e. Since |V | ≥ 4, we may assume, by reorienting all arcs of D
and relabelling X and Y , if necessary, that |Y | ≥ 2. Now x ∈ X and N+(v) = {x, y}
imply that no arc enters Y −y in D−y, contradicting the fact that D is 2-connected. •

5 Removable cycles

A cycle C is called removable in a weakly four-connected graph G if G−E(C) is also
weakly four-connected. We shall use the following result on removable cycles.

Theorem 5.1. [1] Let G = (V,E) be a weakly four-connected graph with maximum
edge multiplicity at most two, and let y ∈ V be a designated vertex. Suppose that
d(v) ≥ 6 for all v ∈ V − y. Then there is a removable cycle C in G.
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Section 6. Orienting weakly four-connected Eulerian graphs 9

Lemma 5.2. Let (X, Y,w) be a tight mixed cut in G and suppose that C is a remov-
able cycle in G/Y with V (C) ⊆ X + w. Then C is a removable cycle in G.

Proof: Since G−E(C) can be obtained from G/Y −E(C) and G/X by the undirected
version of merging, it suffices to show that merging along a tight mixed cut preserves
weak four-connectivity. The proof of this fact is similar to the proof of Lemma 3.4,
and is left to the reader. •

Theorem 5.3. Let G = (V, E) be a weakly four-connected Eulerian graph with maxi-
mum edge multiplicity at most two. If d(v) ≥ 6 for all v ∈ V then there is a removable
cycle in G. If G is Eulerian and (X,Y, w) is a tight mixed cut with d(x) ≥ 6 for all
x ∈ X then there is a removable cycle C in G with V (C) ⊆ X + w.

Proof: The first part of the proof follows directly from Theorem 5.1. To see the second
part consider the graph G′ obtained from G by contracting Y into vertex y, and then
deleting edges between y and w to make dG′(y, w) = 2 (and hence dG′(y) = 4). Graph
G′ is weakly four-connected by Lemma 3.2 and since deleting an edge with multiplicity
more than 2 preserves weak four-connectivity. It is also clear that G′ is an Eulerian
graph with maximum edge multiplicity equal to two.

Now apply Theorem 5.1 to G′ with designated vertex y to obtain a removable cycle
C in G′. Since dG′(y) = 4, V (C) ⊆ X + w must hold. Now Lemma 5.2 implies that
C is a removable cycle in G, as required. •

6 Orienting weakly four-connected Eulerian graphs

Theorem 6.1. Let G = (V,E) be a weakly four-connected Eulerian graph. Then G
has a 2-connected Eulerian orientation.

Proof: Suppose that the theorem is false and let G = (V, E) be a counterexample
for which |V | is as small as possible, and subject to this, |E| is as small as possible.
Since the theorem trivially holds for graphs on three vertices, we have |V | ≥ 4.

First we use our reduction lemmas to deduce some structural properties of G.
Suppose that (X,Y, z) is a non-trivial mixed cut, which is either tight or narrow. By
Lemma 3.2 G/X and G/Y are both weakly four-connected graphs on a smaller set of
vertices. They are Eulerian, too. Since G is a minimal counterexample, this implies
that each of G/X and G/Y has a 2-connected Eulerian orientation. Now Lemma 3.5
implies that G also has a 2-connected Eulerian orientation, a contradiction. Thus

Every tight or narrow mixed cut in G is trivial. (1)

Suppose that (X + v, Y + u, z) is a special mixed cut in G. By Lemma 3.3 and (1) it
follows that G/X and G/(Y + u) are both weakly four-connected graphs on a smaller
set of vertices. They are Eulerian, too. Since G is a minimal counterexample, this
implies that each of G/X and G/(Y +u) has a 2-connected Eulerian orientation. Now
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Lemma 3.6 implies that G also has a 2-connected Eulerian orientation, a contradiction.
Thus

There is no special mixed cut in G. (2)

Now suppose G has a removable cycle C. Since G− E(C) is weakly four-connected,
Eulerian, and has fewer edges than G, the minimal choice of G implies that G−E(C)
has a 2-connected Eulerian orientation D′. By adding (a directed version of) cycle C
to D′ we obtain a 2-connected Eulerian orientation of G, a contradiction. Thus

There is no removable cycle in G. (3)

This implies that G contains no loops, and, since deleting two copies of an edge with
multiplicity at least four preserves weak four-connectivity, it gives that the maximum
edge multiplicity in G is at most three.

Suppose that G contains a narrow mixed cut (X,Y, z). By (1) we may assume
that X = {v} for some v ∈ V . Since G is weakly four-connected and Eulerian, the
maximum edge multiplicity is at most three, and d(v, Y ) = 3, we must have d(v, z) =
3. Let u be the unique neighbour of v in Y . It is easy to see that G′ = G−vz−vu+zu
is weakly four-connected. Furthermore, G′ is Eulerian and has fewer edges than G.
Thus, by the minimal choice of G, G′ has a 2-connected Eulerian orientation D′.
Clearly, N+

D′(v) = N−D′(v) = {z, u}, and – without loss of generality – zu ∈ A(D′).
Thus Lemma 4.3 implies that D′− zu + zv + vu is a 2-connected Eulerian orientation
of G. This contradiction implies that

There is no narrow mixed cut in G. (4)

Suppose that dG(u, v) = 3 for some pair u, v ∈ V . It follows from (3) that G−{uv, uv}
is not weakly four-connected. By Lemma 1.1 this implies that there is a narrow mixed
cut in G, which contradicts (4). Thus

The maximum edge multiplicity in G is at most two. (5)

Next suppose there is a vertex v ∈ V with d(v) = 4 and |N(v)| = 2. Let N(v) =
{u, w}. Since G is weakly four-connected, we have d(v, u) = d(v, w) = 2. By Lemma
2.2 G′ = G − v + uw + uw, obtained from G by a complete splitting at v, is weakly
four-connected. It is also Eulerian. So the minimality of G implies that G′ has a
2-connected Eulerian orientation D′. If dG(u) = 4 then dG′(u) = 4 and dG′(u, w) = 2.
Moreover, the two parallel edges between u and w must be oppositely oriented in D′.
Now Lemma 4.1 implies that hooking up the arcs uw, wu on v in D′ results in a
2-connected Eulerian digraph D. Since D is an orientation of G, this contradicts our
assumption. Thus dG(u) ≥ 6. By symmetry, we also have dG(w) ≥ 6.

If G′′ = G − v is weakly four-connected then the minimality of G implies that G′′

has a 2-connected Eulerian orientation D′′. This can be extended to a 2-connected
Eulerian orientation of G by adding the arcs {vu, uv, vw,wv}, a contradiction. Thus
G′′ is not weakly four-connected.

This implies that either there is a set ∅ 6= X ⊂ V (G′′) with dG′′(X) ≤ 3 or there is
a mixed cut (X,Y, z) in G′′ with dG′′−z(X,Y ) ≤ 1. In the former case we must have
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dG′′(X) = 2 (since G′′ is Eulerian) and |X|, |V (G′′)−X| ≥ 2 (since dG(u), dG(w) ≥ 6
and G is loopless). It follows that (X, V (G′′)−X, v) is a non-trivial tight mixed cut
in G, which contradicts (1). In the latter case we must have |X|, |Y | ≥ 2 by (5). We
may assume that w ∈ Y . Then either (X + v, Y, z) is a non-trivial tight mixed cut or
(X + v, (Y − w) + w, z) is a special mixed cut in G, which contradicts (1) and (2).
Thus

There is no vertex v ∈ V with d(v) = 4 and |N(v)| = 2. (6)

It follows from (3), (5), and Theorem 5.3 that G as well as each mixed fragment of
G contains a vertex of degree four. This property and Theorem 2.3 imply that G
contains an admissible vertex v with d(v) = 4. By (6) we have |N(v)| ≥ 3. Since v
is admissible in G, we can obtain a weakly four-connected Eulerian graph Gv by a
complete splitting off at v. The minimality of G implies that Gv has a 2-connected
Eulerian orientation Dv. If hooking up the arcs e, f , corresponding to the split edges,
on vertex v in Dv preserves 2-connectivity, then it yields a 2-connected Eulerian
orientation of G, a contradiction. Thus

Hooking up e, f in Dv does not preserve 2-connectivity. (7)

Suppose that |N(v)| = 4. Then it follows from (7) and Lemma 4.1 that there is a
bipartition X, Y of V (Dv) with |X|, |Y | ≥ 2, and such that the set of arcs entering Y
in Dv equals {e, f}. Since Dv is Eulerian, we also have dDv(Y,X) = 2. Then (X, Y, v)
is a non-trivial tight mixed cut in G, contradicting (1). So |N(v)| = 3 must hold.

Let N(v) = {u, x, y} with dG(v, u) = 2. There are two possibilities: either Gv =
G− v + uu + xy or Gv = G− v + ux + uy. If Gv = G− v + uu + xy then e or f is a
loop. Since G is weakly four-connected, this contradicts (7) by Lemma 4.2. Thus the
admissible complete splitting at v is unique and Gv = G− v + ux + uy.

Next we prove that dG(u) ≥ 6. For a contradiction suppose that dG(u) = 4. By (6),
and since dG(v, u) = 2, we have |N(u)| = 3. Let NG(u) = {a, b, v}. If u and v have a
common neighbour, say b = x, then dGv(u, x) = 2 and ux, xu are oppositely oriented
arcs in Dv (since dGv(u) = 4 and Dv is 2-connected). Hence, by reorienting all arcs in
Dv, if necessary, we may assume that the split edges correspond to ux, yu ∈ A(Dv).
This contradicts (7) by Lemma 4.1. Thus

a, b, x, y are pairwise distinct. (8)

We claim that G∗ = Gv − u + ab + xy, obtained by splitting off u in Gv, is weakly
four-connected. Suppose not. Then at least one of the three alternatives of Lemma
2.1 holds for Gv and u.

First consider the case when there is a set ∅ 6= X ⊆ V (Gv)−{u, a, b} with dGv(X) =
4 and x, y ∈ X. Let Y = V (Gv) − X − u. Then a, b ∈ Y and, since a 6= b by (8),
|Y | ≥ 2 follows. This implies that (X + v, Y, u) is a non-trivial tight mixed cut in G,
contradicting (1).

Next consider the case when there is a vertex w ∈ V (Gv) − u and a set ∅ 6= X ⊆
V (Gv)− {u,w, a, b} with dGv−w(X) ≤ 3 and x, y ∈ X. Let Y = V (Gv)− u− w −X.
Then either (X + v, Y + u, w) is a non-trivial tight mixed cut in G (if dGv−w(X) = 2),
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or (X + v, Y + u, w) is a special mixed cut in G (if dGv−w(X) = 3). This contradicts
(1) or (2).

Finally, suppose that there is a set ∅ 6= X ⊆ V (Gv)−{u, y, a, b} with dGv−y(X) = 2
and x ∈ X. Let Y = V (Gv)−X − u− y. Then a, b ∈ Y , and hence (Y + u,X + v, y)
is a special mixed cut in G, contradicting (2). Thus G∗ is weakly four-connected (and
Eulerian), as claimed.

By the minimality of G, G∗ has a 2-connected Eulerian orientation D∗. By renaming
the neighbours of u and v, if necessary, we may assume that ab, xy ∈ A(D∗). It is
easy to verify that by hooking up ab, xy on u in D∗, and then hooking up xu, uy
on v in the resulting digraph, we obtain a 2-connected Eulerian digraph D, which is
an orientation of G, a contradiction. (To see that D is 2-connected, observe that it
can also be obtained from D∗ by subdividing ab with vertex u, then subdividing xy
with vertex v, and then adding two arcs uv, vu. Since a 6= x and b 6= y by (8), this
operation preserves 2-connectivity.) Thus

d(u) ≥ 6. (9)

Since G′v = G − v + uu + xy is not weakly four-connected, at least one of the three
alternatives of Lemma 2.1 holds for G and v.

First suppose that there is a set ∅ 6= X ⊆ V − v− u with dG(X) = 4 and x, y ∈ X.
Let Y = V − X − v. It follows from (9) and u ∈ Y that |Y | ≥ 2. We also have
|X| ≥ 2, since |N(v)| = 3 implies x 6= y. Hence (X, Y, v) is a non-trivial tight mixed
cut in G, contradicting (1).

Next consider the case when there is a vertex w ∈ V − v and a set ∅ 6= X ⊆
V − {v, w, u} with dG−w(X) ≤ 3 and x, y ∈ X. Let Y = V − X − v − w. Since
dG(v, u) = 2, we have u 6= w and u ∈ Y . Now (9) and (5) imply that Y − u 6= ∅.
Hence either dG−w(X) = 2, and then (X + v, Y, w) is a non-trivial tight mixed cut in
G, or dGv−w(X) = 3 and then (X + v, (Y − u) + u, w) is a special mixed cut in G.
This contradicts (1) or (2).

Finally, suppose that there is a set ∅ 6= X ⊆ V − {v, y, u} with dG−y(X) = 2 and
x ∈ X. Let Y = V −X−v−y. Clearly, u ∈ Y . If |X| ≥ 2 then (X, Y +v, y) is a non-
trivial tight mixed cut in G, contradicting (1). If X = {x} then dG(x) = 4 must hold
by (5). Thus N(x) = {v, y, q} for some q ∈ Y and dG(x, y) = 2. Since |NG(x)| = 3, it
follows from Lemma 2.2 that x is admissible in G. Thus either Gx = G− x + yy + vq
or G′x = G− x + yv + yq is weakly four-connected (and Eulerian), and hence, by the
minimal choice of G, it has a 2-connected Eulerian orientation, denoted by Dx or D′x,
respectively.

If Dx is 2-connected then Lemma 4.2 implies that hooking up yy and vq (or qv)
results in a 2-connected Eulerian orientation of G, a contradiction. So there is a 2-
connected Eulerian orientation D′x of G′x. Since dG′

x
(v, y) = 2 and dG′

x
(v) = 4, we

must have vy, yv ∈ A(D′x). Thus, by reorienting all arcs in D′x, if necessary, we may
assume that the split edges correspond to arcs yq, vy in D′x. Now Lemma 4.1 implies
that hooking up yq, vy on x in D′x gives a 2-connected Eulerian orientation of G, a
contradiction. This completes the proof of the theorem. •
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7 Concluding remarks

The proof of our main result can be used to show that one can obtain a 2-connected
Eulerian orientation D of a given weakly four-connected Eulerian graph G in polyno-
mial time. The algorithm iteratively reduces the problem to smaller graphs by con-
tractions, splittings, and deleting cycles or vertices. Then it builds up a 2-connected
orientation of G from 2-connected orientations of the smaller graphs by merging,
hooking up arcs, and adding directed cycles or new vertices. One can show that the
number of smaller graphs is polynomial, and that each of the following objects, if they
exist, can be found efficiently: (a) non-trivial tight, narrow, or special mixed cuts, (b)
an admissible vertex v and an admissible complete splitting at v, (c) the removable
cycles used in the proof [1]. We omit the details.
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