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Rigid two-dimensional frameworks with three
collinear points

Bill Jackson? and Tibor Jordán ??

Abstract

Let G = (V,E) be a graph and x, y, z ∈ V be three designated vertices.
We give a necessary and sufficient condition for the existence of a rigid two-
dimensional framework (G, p), in which x, y, z are collinear. This result extends
a classical result of Laman on the existence of a rigid framework on G. Our proof
leads to an efficient algorithm which can test whether G satisfies the condition.

1 Introduction

A framework (G, p) in d-space is a graph G = (V,E) and an embedding p : V → R
d.

We say that the framework (G, p) is a realisation of graph G. The rigidity matrix of
the framework is the matrix R(G, p) of size |E| × d|V |, where, for each edge vivj ∈ E,
in the row corresponding to vivj, the entries in the d columns corresponding to vertex
i (j) contain the d coordinates of (p(vi) − p(vj)) ((p(vj) − p(vi)), respectively), and
the remaining entries are zeros. See [8] for more details. The rigidity matrix of (G, p)
defines the rigidity matroid of (G, p) on the ground set E by linear independence of
rows of the rigidity matrix. The framework is independent if the rows of R(G, p)
are linearly independent. A framework (G, p) is generic if the coordinates of the
points p(v), v ∈ V , are algebraically independent over the rationals. Any two generic
frameworks (G, p) and (G, p′) have the same rigidity matroid. We call this the d-
dimensional rigidity matroid Rd(G) = (E, rd) of the graph G. We denote the rank of
Rd(G) by rd(G).

Lemma 1.1. [8, Lemma 11.1.3] Let (G, p) be a framework in R
d. Then rankR(G, p) ≤

S(n, d), where n = |V (G)| and

S(n, d) =

{
nd−

(
d+1
2

)
if n ≥ d+ 1(

n
2

)
if n ≤ d+ 1.
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We say that a framework (G, p) in R
d is infinitesimaly rigid if rankR(G, p) =

S(n, d). This definition is motivated by the fact that if (G, p) is infinitesimally rigid
then (G, p) is rigid in the sense that every continuous deformation of (G, p) which
preserves the edge lengths ||p(u)− p(v)|| for all uv ∈ E, must preserve the distances
||p(w)−p(x)|| for all w, x ∈ V , see [8]. We say that the graph G is rigid in R

d if rd(G) =
S(n, d) holds. (In this case every generic framework (G, p) in R

d is infinitesimally rigid
and hence is rigid.) We say that G is M -independent in R

d if E is independent in
Rd(G). For X ⊆ V , let iG(X) denote the number of edges in G[X], that is, in the
subgraph induced by X in G. We use i(X) when the graph G is clear from the context.

Lemma 1.1 implies the following necessary condition for G to be M -independent.

Lemma 1.2. If G = (V,E) is M-independent in R
d then i(X) ≤ S(|X|, d) for all

X ⊆ V .

The converse of Lemma 1.2 also holds for d = 1, 2. The case d = 1 follows from the
fact that the 1-dimensional rigidity matroid of G is the same as the cycle matroid of
G, see [2, Theorem 2.1.1]. The case d = 2 is a result of Laman [4].

Theorem 1.3. [4] A graph G = (V,E) is M-independent in R
2 if and only if

i(X) ≤ 2|X| − 3 for all X ⊂ V with |X| ≥ 2. (1)

Note that Theorem 1.3 leads to efficient algorithms for testing independence (and
computing the rank) in the rigidity matroidR2(G). (For the rank function formula see
Lovász and Yemini [5].) Since rank R(G, p) = rd(G) when (G, p) is generic, Theorem
1.3 gives a necessary and sufficient condition for the existence of an infinitesimally
rigid realisation of G in R

2.

Corollary 1.4. Let H = (V, F ) be a graph. Then H has an infinitesimally rigid
realisation (H, p) in R

2 if and only if H has a spanning subgraph G = (V,E) with
|E| = 2|V | − 3, which satisfies (1).

The converse of Lemma 1.2 does not hold for d ≥ 3. Indeed, it remains an open
problem to find good characterizations and algorithms for independence or, more
generally, the rank function in the d-dimensional rigidity matroid of a graph when
d ≥ 3.

Several methods have been applied to obtain (partial) results for d = 3. One
approach is to prove that certain operations (‘reductions’ and ‘extensions’) on G
preserve independence and then apply these operations in inductive proofs, see [2,
Section 5.3],[7],[8]. Even though the goal is to characterise the generic case, the
proofs often use non-generic realisations. We believe that to verify that one version
of the ‘degree-five extension’ operation preserves independence, it would be useful
to know necessary and sufficient conditions for the existence of a framework (G, p)
on G in R

3 in which four given points are co-planar. This question (which is still
open) motivated us to first study the two-dimensional analogue: given three vertices
x, y, z ∈ V (G), when do we have a infinitesimally rigid two-dimensional framework
(G, p) in which x, y, z are collinear? In this paper we shall answer this question in
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terms of a necessary and sufficient condition and an efficient algorithm. From now
on, if not stated otherwise, we shall always assume that d = 2.

The paper is organised as follows. Section 2 contains the basic definitions and
preliminary results. In Section 3 we formulate the obstacle which precludes the exis-
tence of the required infinitesimally rigid framework and prove the main combinatorial
lemma, which shows that, roughly speaking, if G has no obstacle then we can reduce
G without creating an obstacle in the smaller graph. In Section 4 we use this lemma
to verify our main result for M -independent graphs. This is extended to arbitrary
graphs in Section 5.

2 Preliminaries

Throughout this paper we shall use ⊆ and ⊂ to denote set containment and proper
set containment, respectively. Let G = (V,E) be a graph. For X,Y, Z ⊂ V , let
E(X) be the set of edges of G[X], d(X,Y ) = |E(X ∪ Y ) − (E(X) ∪ E(Y ))|, and
d(X, Y, Z) = |E(X ∪ Y ∪ Z) − (E(X) ∪ E(Y ) ∪ E(Z))|. We define the degree of X
by d(X) = d(X, V − X). The degree of a vertex v is simply denoted by d(v). Let
N(v) = {u ∈ V : vu ∈ E} denote the neighbours of v. We shall need the following
equalities, which are easy to check by counting the contribution of an edge to each of
their two sides.

Lemma 2.1. Let G be a graph and X, Y ⊆ V (G). Then

i(X) + i(Y ) + d(X, Y ) = i(X ∪ Y ) + i(X ∩ Y ). (2)

Lemma 2.2. Let G be a graph and X, Y, Z ⊆ V (G). Then

i(X) + i(Y ) + i(Z) + d(X,Y, Z) = i(X ∪ Y ∪ Z) + i(X ∩ Y ) + i(X ∩ Z) +

i(Y ∩ Z)− i(X ∩ Y ∩ Z).

We shall frequently use the fact that a graph G = (V,E) is M-independent if and
only if it satisfies (1) by Theorem 1.3. If G is M -independent and |E| = 2|V |−3 then
we call G isostatic.

Henceforth in this section, we let G = (V,E) be an M -independent graph. We
call a set X ⊆ V critical if i(X) = 2|X| − 3 holds. A set X ⊆ V is semi-critical if
i(X) = 2|X| − 4.

Lemma 2.3. [3, Lemma 2.3] Let X, Y ⊂ V be critical sets in G with |X ∩ Y | ≥ 2.
Then X ∩ Y and X ∪ Y are also critical, and d(X,Y ) = 0.

Lemma 2.4. [3, Lemma 2.7] Let X,Y, Z ⊂ V be critical sets in G with |X ∩ Y | =
|X ∩ Z| = |Y ∩ Z| = 1 and X ∩ Y ∩ Z = ∅. Then X ∪ Y ∪ Z is critical, and
d(X, Y, Z) = 0.
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Let v be a vertex in a graph G with d(v) = 3 and N(v) = {u,w, z}. The operation
splitting off means deleting v (and the edges incident to v) and adding a new edge,
say uw, connecting two vertices of N(v). The resulting graph is denoted by Guw

v and
we say that the splitting is made on the pair uv, wv. (Note that v can be split off in at
most three different ways.) Splitting off v on the pair uv, wv is said to be admissible
if Guw

v is M -independent. Otherwise the splitting is non-admissible. Vertex v is
admissible if some split at v is admissible. The next lemma follows from the definition
of admissibility and criticality.

Lemma 2.5. Let v ∈ V be a vertex with N(v) = {a, b, c}. The split va, vb is admis-
sible if and only if there is no critical set X with a, b ∈ X and v /∈ X.

Lemma 2.6. Let v ∈ V be a vertex with N(v) = {a, b, c}. The splits va, vc and
vb, vc are both non-admissible if and only if there is a pair A,B of critical sets with
a ∈ A, b ∈ B, c ∈ A∩B and v /∈ A∪B. Furthermore, for any such sets A,B we have
A ∩B = {c}, d(A,B) = 0, and A ∪B is semi-critical.

Proof: The first part of the lemma follows from Lemma 2.5. To see the second part
observe that A ∪ B cannot be critical, since otherwise d(v, A ∪ B) = 3 would imply
that i(A ∪B ∪ {v}) = 2|A ∪B ∪ {v}| − 2, contradicting (1). So A ∩B = {c} follows
from Lemma 2.3. By applying (2) to the critical sets A,B, we obtain d(A,B) = 0
and i(A ∪B) = 2|A ∪B| − 4. •

For a proof of the next lemma see, for example, [3, Lemma 2.8].

Lemma 2.7. [4] Let v ∈ V .
(a) If d(v) = 2 then G− v is M-independent.
(b) If d(v) = 3 then v is admissible.

We shall also use some connectivity properties of the subgraphs induced by critical
and semi-critical sets. We call G = (V,E) essentially 3-edge-connected if G is 2-edge-
connected, and every X ⊂ V with d(X) = 2 satisfies |X| = 1 or |V − X| = 1. As
usual, Km denotes the complete graph on m vertices, for some m ≥ 1.

Lemma 2.8. [3, Lemma 2.6] Let X ⊆ V be a critical set. Then either G[X] = K2

or G[X] is 2-connected. Furthermore, if |X| ≥ 3, then G[X] is essentially 3-edge-
connected.

Note that if G = (V,E) is isostatic then V is critical. Thus it follows from Lemma
2.8 that isostatic graphs on at least three vertices are 2-connected and essentially
3-edge-connected.

Lemma 2.9. Let X ⊆ V be a semi-critical set. Then either G[X] consists of two
isolated vertices or G[X] is connected. If X = A ∪ B, |A|, |B| ≥ 2, |A ∩ B| = 1, and
d(A,B) = 0, then A and B are both critical.
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Proof: If |X| = 2, then the fact that i(X) = 2|X| − 4 implies that G[X] consists of
two isolated vertices. Hence we may assume that |X| ≥ 3.

Suppose that G[X] is disconnected and let X = A′ ∪B′ be a bipartition of X with
|A′|, |B′| ≥ 1 and d(A′, B′) = 0. By symmetry, we may assume that |A′| ≥ 2. Then
i(X) = i(A′) + i(B′) ≤ 2|A′| − 3 + 2|B′| − 2 = 2|X| − 5, contradicting the fact that X
is semi-critical. Thus G[X] is connected.

To see the second part of the lemma consider a pair A,B with X = A ∪ B,
|A|, |B| ≥ 2, |A ∩ B| = 1, and d(A,B) = 0. Then (2) gives 2|A| − 3 + 2|B| − 3 ≥
i(A)+i(B) = i(X)+i(A∩B)−d(A,B) = 2|A∪B|−4+2|A∩B|−2 = 2|A|+2|B|−6.
Thus equality must hold everywhere, and hence A and B are both critical. •

2.1 Extensions of frameworks

We shall use the following two operations on frameworks. Let (G, p) be a framework.
The operation 0-extension (on vertices a, b ∈ V ) adds a new vertex v and two edges
va, vb to G, and determines the position pv of v in the new framework.

Lemma 2.10. [8, Lemma 2.1.3] Suppose that (G, p) is an independent framework.
Then the 0-extension of (G, p) on vertices a, b is independent for all choices pv with
pa, pb, pv not collinear.

The operation 1-extension (on edge ab ∈ E and vertex c ∈ V − {a, b}) subdivides
the edge ab by a new vertex v and adds a new edge vc, and determines the position
pv of v in the new framework.

Lemma 2.11. [8, Theorem 2.2.2] Suppose that (G, p) is an independent framework,
ab ∈ E(G), c ∈ V (G) − {a, b}, and the points pa, pb, pc are not collinear. Then the
1-extension of (G, p) on ab and c is independent if pv is any point on the line of pa, pb,
distinct from pa, pb.

Lemma 2.12. Let (G, p) be an infinitesimally rigid framework and let a ∈ V (G).
Then there is an ε > 0 such that every framework (G, p′) is infinitesimally rigid,
where p′a is such that ||p′a − pa|| < ε, and p′v = pv for all v ∈ (V (G)− {a}).
Proof: Since (G, p) is infinitesimally rigid, R(G, p) has a non-singular square sub-
matrix A of size 2|V (G)| − 3. Let pa = (xa, ya). By replacing all the entries xa, ya of
A by variables x, y, respectively, the determinant of A becomes a polynomial P (x, y).
Since P (xa, ya) 6= 0, there exists an ε > 0 for which P (x′a, y

′
a) 6= 0 for all p′a = (x′a, y

′
a)

with ||p′a − pa|| < ε. Thus replacing pa by p′a, where ||p′a − pa|| < ε, does not decrease
the rank of the rigidity matrix. Hence (G, p′) is also infinitesimally rigid. •

We say that a framework (G, p) is general if the points pv, v ∈ V , are in general
position in R

2 (i.e. no three points lie on a line). The facts that isostatic graphs are
rigid, and that generic realisations of rigid graphs are both infinitesimally rigid and
general, immediately implies the following lemma.

Lemma 2.13. Let G = (V,E) be isostatic. Then there is an infinitesimally rigid
general framework (G, p) on G.
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3 Feasible splittings

Throughout this section we suppose that G = (V,E) is M -independent, and x, y, z ∈
V are three distinct vertices. An obstacle (for the ordered triple (x, y, z)) is an ordered
triple of critical sets (X, Y, Z) for which X∩Y = {z}, X∩Z = {y}, and Y ∩Z = {x}.
It follows from Lemmas 2.1 and 2.4 and the fact that G is M -independent that if
(X, Y, Z) is an obstacle then X ∪Y ∪Z is also critical, d(X,Y, Z) = 0 holds, and each
of the sets X ∪ Y,X ∪ Z, Y ∪ Z is semi-critical.

A near obstacle (for the ordered triple (x, y; z)) is an ordered triple of sets (X,Y ;Z)
for which X,Y are critical, Z is semi-critical, X∩Y = {z}, X∩Z = {y}, Y ∩Z = {x},
and d(X, Y, Z) = 0. It follows from Lemma 2.2 and the fact that G is M -independent
that if (X,Y ;Z) is a near-obstacle then X ∪ Y ∪ Z is semi-critical. Note that the
notation reflects that the only semi-critical member of the near-obstacle is Z and that
the pair of vertices from x, y, z that Z contains is {x, y}.

Henceforth, in this section, we suppose that

there is no obstacle in G for the ordered triple (x, y, z). (3)

Note that (3) implies that there is no obstacle for all orderings of the vertices x, y, z.
Let v be a vertex of degree three in V −{x, y, z} and a, b ∈ N(v) be a non-adjacent

pair of neighbours of v. The pair va, vb is called suitable if Gab
v also satisfies (3). The

next lemma is easy to verify.

Lemma 3.1. The pair va, vb is suitable if and only if there is no near obstacle
(P,Q;R) in G with v ∈ V − (P ∪ Q ∪ R) and a, b ∈ R, for some triple (p, q; r),
such that {p, q, r} = {x, y, z}.

Lemma 3.2. Let (X, Y ;Z) be a near obstacle for (x, y; z) and let W be a critical set
with x, y ∈W . Then X ∪ Y ∪ Z ∪W is critical.

Proof: Since {x, y} ⊆ Z ∩W , we have |Z ∩W | ≥ 2. It follows from (3) that Z ∩W
is not critical, since otherwise (X,Y, Z ∩W ) would be an obstacle for (x, y, z). Using
(2) and the fact that W is critical and Z is semi-critical, we can deduce

2|Z| − 4 + 2|W | − 3 = i(Z) + i(W ) ≤ i(Z ∩W ) + i(Z ∪W ) ≤

2|Z ∩W | − 4 + 2|Z ∪W | − 3.

Thus equality holds throughout and Z ∪W is critical.
If W ∩ (X ∪ Y ) = {x, y}, then (X,Y,W ) would be an obstacle for (x, y, z), contra-

dicting (3). Thus we may assume, without loss of generality, that |W ∩Y | ≥ 2. Hence
|(Z ∪W ) ∩ Y | ≥ 2, and so Z ∪W ∪ Y is critical by Lemma 2.3. Clearly, we have
|(Z ∪W ∪Y )∩X| ≥ 2, and hence, again by Lemma 2.3, we have that X ∪Y ∪Z ∪W
is critical, as claimed. •

Lemma 3.3. Let (X,Y ;Z) be a near obstacle for (x, y; z), let v ∈ V − (X ∪ Y ∪ Z)
be a vertex with N(v) = {a, b, c}, and suppose that a, b ∈ Z. Let Z ′ be a semi-critical
set with v /∈ Z ′ and x, y, c ∈ Z ′. Then z ∈ Z ′.
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Proof: For a contradiction suppose that z /∈ Z ′. Since {y, x} ⊆ Z ∩ Z ′, we have
|Z ∩Z ′| ≥ 2. Note that c /∈ Z must hold, since otherwise Z + v would be critical and
(X, Y, Z + v) would be an obstacle for (x, y, z). The set Z ∩ Z ′ cannot be critical,
since otherwise (X,Y, Z∩Z ′) would be an obstacle for (x, y, z). The set Z∪Z ′ cannot
be critical either, since otherwise i((Z ∪ Z ′) + v) ≥ 2|(Z ∪ Z ′) + v| − 2 would follow,
contradicting the fact that G is M -independent. Thus, using the fact that Z and Z ′

are semi-critical, we can use (2) to deduce that

2|Z| − 4 + 2|Z ′| − 4 = i(Z) + i(Z ′) ≤

i(Z ∩ Z ′) + i(Z ∪ Z ′) ≤ 2|Z ∩ Z ′| − 4 + 2|Z ∪ Z ′| − 4.

Thus Z ∪ Z ′ is semi-critical, and so (Z ∪ Z ′) + v is critical.
We must have |Z ′∩(X∪Y )| ≥ 3, otherwise (X,Y, (Z∪Z ′)+v) would be an obstacle

for (x, y, z). We may assume, without loss of generality, that |Z ′ ∩ Y | ≥ 2.
The sets X ∪ Y and Z ∪Z ′ are semi-critical, and the set X ∪ Y ∪Z ∪Z ′ cannot be

critical, since d(v,X ∪ Y ∪ Z ∪ Z ′) = 3. Thus (2) gives that T := (X ∪ Y ) ∩ (Z ∪ Z ′)
is semi-critical. Furthermore, |T | ≥ 3, and, since z /∈ Z ′ and d(X, Y ) = 0, G[T ] is
disconnected. This contradicts Lemma 2.9. •

Lemma 3.4. Let (X, Y ;Z) be a near obstacle for (x, y; z) and let v ∈ V −(X∪Y ∪Z)
be a vertex with N(v) = {a, b, c} and a, b ∈ Z. Then there is no near obstacle (P,Q;R)
in G for (p, q; r) with {p, q, r} = {x, y, z}, v ∈ V − (P ∪Q ∪R) and b, c ∈ R.

Proof: Suppose that (P,Q;R) is a near obstacle for (p, q; r) with {p, q, r} = {x, y, z},
v ∈ V −(P ∪Q∪R) and b, c ∈ R. If {p, q} = {x, y} and r = z then R is a semi-critical
set with v /∈ R, x, y, c ∈ R, and z /∈ R. This contradicts Lemma 3.3.

Thus we may assume, without loss of generality, that p = z, q = x, and r = y.
Now P is a critical set with x, y ∈ P , and Y is a critical set with x, z ∈ Y . Thus
Lemma 3.2, applied to the near obstacles (X,Y ;Z) and (P,Q;R), respectively, gives
that X ∪ Y ∪ Z ∪ P and P ∪ Q ∪ R ∪ Y are both critical. Now Lemma 2.3 implies
that T := X ∪ Y ∪ Z ∪ P ∪ Q ∪ R is critical. Since d(v, T ) = 3, this contradicts the
fact that G is M -independent. •

Lemma 3.5. Let (X, Y ;Z) be a near obstacle for (x, y; z) and let v ∈ V −(X∪Y ∪Z)
be a vertex with N(v) = {a, b, c} 6= {x, y, z} and a, b ∈ Z. Suppose that the split on
va, vb is admissible. Then at least one of the splits va, vc or vb, vc is admissible.

Proof: Suppose that the splits va, vc and vb, vc are both non-admissible. By Lemma
2.6 there is a pair A,B of critical sets with v /∈ A ∪ B, A ∩ B = {c}, a ∈ A, b ∈ B,
d(A,B) = 0, such that A∪B is semi-critical. We may assume that A and B are both
maximal subject to v /∈ A ∪B, a ∈ A, b ∈ B, c ∈ A ∩B.

As above, c ∈ Z would imply that (X, Y, Z + v) is an obstacle for (x, y, z), so we
must have c /∈ Z. Observe that (A∪B)∩Z is not critical, since a, b ∈ (A∪B)∩Z and
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va, vb is an admissible pair. The set A∪B∪Z is not critical, since d(v, A∪B∪Z) = 3
and G is M -independent. Thus it follows from (2) that

2|A ∪B| − 4 + 2|Z| − 4 = i(A ∪B) + i(Z) ≤ i((A ∪B) ∩ Z) + i(A ∪B ∪ Z) ≤

2|(A ∪B) ∩ Z| − 4 + 2|A ∪B ∪ Z| − 4.

This implies that Q := A ∪ B ∪ Z and T := (A ∪ B) ∩ Z are both semi-critical.
Now G[T ] is disconnected (since d(A,B) = 0 and c /∈ Z). By Lemma 2.9 this gives
|T | = 2. Since X ∪ Y ∪ Z is semi-critical, a similar counting argument, using (2),
gives that (A ∪ B) ∩ (X ∪ Y ∪ Z) is semi-critical. Since Q is semi-critical, Q + v
is critical. This implies, by (3), that (A ∪ B) ∩ ((X ∪ Y ) − Z) 6= ∅, and hence
|(A∪B)∩ (X ∪Y ∪Z)| ≥ 3. By symmetry, we may assume that |B∩X| ≥ 2. Lemma
2.9 implies that (A∪B)∩ (X ∪ Y ∪Z) is disconnected. Using the facts that |T | = 2,
G[T ] is disconnected, and d(X, Y, Z) = 0, we deduce that T = {x, y} holds.

Since N(v) 6= {x, y, z} we have c 6= z. Since |B ∩X| ≥ 2, and B and X are critical,
and {v, a} ∩ (X ∪ B) = ∅, Lemma 2.3 and the maximality of B implies X ⊆ B. If
|B∩Y | ≥ 2 then B∪Y is critical, which is impossible (since G is M -independent and
d(v,B ∪ Y ) ≥ 3). Thus B ∩ Y = {z}. Since c 6= z, we have c ∈ B − Y . Similarly,
if |A ∩ Y | ≥ 2, then Y ⊆ A follows from the maximality of A. This would imply
{z, c} ⊂ A ∩ B, contradicting the fact that A ∩ B = {c}. So A ∩ Y = {x}. Since
A,B, Y are all critical, |A∩Y | = 1, |B ∩Y | = 1, and |A∩Y | = 1, Lemma 2.2 implies
that A ∪ B ∪ Y is also critical. But d(v, A ∪ B ∪ Y ) = 3, contradicting the fact that
G is M -independent. This proves the lemma. •

A split at v is feasible if it is admissible and suitable.

Lemma 3.6. Let v ∈ V − {x, y, z} be a vertex with d(v) = 3 and N(v) 6= {x, y, z}.
Then there is a feasible split at v.

Proof: Let N(v) = {a, b, c}. It follows from Lemma 2.7 that there is an admissible
split, say va, vb, at v. If this split is suitable then the lemma follows. Otherwise, by
Lemma 3.1, there is a near obstacle (X,Y ;Z) for (x, y; z) with a, b ∈ Z. By Lemma
3.5 we may assume that the split va, vc is also admissible. If this split is suitable,
we are done. Otherwise, by Lemma 3.1, there is a near obstacle (P,Q;R) for (p, q; r)
with {p, q, r} = {x, y, z}, v ∈ V − (P ∪Q∪R) and b, c ∈ R. This contradicts Lemma
3.4. •

For two vertices x, y ∈ V in an isostatic graph let Cx,y denote the (unique) minimal
critical set which contains the pair x, y. Since the graph is isostatic, V is critical.
Thus Cx,y exists for all pairs x, y. Uniqueness follows from Lemma 2.3. Since each set
in an obstacle (X, Y, Z) is critical, we can deduce the following characterisation.

Lemma 3.7. Let x, y, z ∈ V be three distinct vertices in an isostatic graph G =
(V,E). Then there exists an obstacle for (x, y, z) if and only if |Cxy ∩ Cxz| = |Cxy ∩
Cyz| = |Cxz ∩ Cyz| = 1.

Note that Cx,y is the set of vertices induced by the edges in the unique circuit of
the rigidity matroid R2(G).
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Section 4. Infinitesimally rigid realizations with collinear vertices 9

4 Infinitesimally rigid realizations with collinear

vertices

Throughout this section let G = (V,E) be an isostatic graph and let x, y, z ∈ V
be distinct vertices. We say that v ∈ V is special if d(v) = 3, v /∈ {x, y, z} and
N(v) 6= {x, y, z}. In the inductive proof of our main result we shall either delete
vertices of degree two or use splitting off (and Lemma 3.6) at some special vertex to
reduce the graph, unless the graph and the triple x, y, z forms one of the following
four exceptional configurations Gi, 3 ≤ i ≤ 6.

Let Ks,t denote the complete bipartite graph on s+ t vertices, s, t ≥ 1. Recall that
Km denotes the complete graph on m vertices. In the first special configuration G3

we have G = K3 with V (G) = {x, y, z}. In the second one, denoted by G4, the graph
is obtained from K4 by deleting an edge, and G[{x, y, z}] = K1,2. The graph of G5

is obtained from K2,3 by adding an edge (connecting two vertices of degree two), and
G[{x, y, z}] = K2. Finally, the graph of G6 is K3,3, and E(G[{x, y, z}]) = ∅.

Lemma 4.1. Let G = (V,E) be isostatic with |V | ≥ 3 and let x, y, z ∈ V be distinct
vertices of G. Then at least one of the following holds:
(a) there is a special vertex in G,
(b) there is a vertex v with d(v) = 2 and v /∈ {x, y, z},
(c) d(x) = d(y) = d(z) = 2 and E(G[{x, y, z}]) = ∅,
(d) G and x, y, z form a Gi configuration for some 3 ≤ i ≤ 6.

Proof: A vertex v with d(v) = 3 and N(v) = {x, y, z} will be called bad. Observe
that G has at most three bad vertices, since otherwise G has a K3,4 subgraph, whose
vertex set violates (1). Let Di denote the number of vertices of degree i in G. Since
G is isostatic, we have

∑
v∈V d(v) = 4|V | − 6 and d(v) ≥ 2 for all v ∈ V . Thus

2D2 +D3 ≥ 6. (4)

We shall verify the lemma for each possible value of D3 by partitioning the alternatives
into four subcases.

D3 ≥ 6. Now either (a) holds or we have exactly three bad vertices, d(x) = d(y) =
d(z) = 3, and G = K3,3. In the latter case (d) must hold.

D3 ∈ {4, 5}. In this case D2 ≥ 1 by (4), so either (b) holds, or, without loss of
generality, we have d(z) = 2. In the latter case we have at most two bad vertices.
If D3 = 5 then this implies (a). So suppose D3 = 4. Then we must have two bad
vertices v1, v2, and d(x) = d(y) = 3. If, in addition, xy ∈ E then (d) holds. If xy /∈ E
then V − S 6= ∅ and d(S) = 2, where S = {x, y, z, v1, v2}. Now either |V − S| = 1,
which implies |E| = 2|V | − 4, or |V − S| ≥ 2, which implies that G is not essentially
3-edge-connected. Both cases contradict the fact that G is isostatic.

D3 ∈ {2, 3}. In this case D2 ≥ 2 by (4), so either (b) holds, or, without loss of
generality, d(y) = d(z) = 2. In the latter case we have at most two bad vertices. So
either (a) holds, or each vertex of degree three is either bad or is equal to x. Suppose
(a) does not hold. If D3 = 3 then G has two bad vertices v1, v2, d(x) = 3, G[S] = K2,3,
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Section 4. Infinitesimally rigid realizations with collinear vertices 10

V − S 6= ∅, and d(S) = 1, where S = {x, y, z, v1, v2}. This contradicts the fact that
G is 2-connected. Hence we may assume that D3 = 2. Then G has at least one bad
vertex v1. If d(x) = 2 then there must be another bad vertex v2 and hence G = K2,3

must hold. This contradicts the fact that G is isostatic.
Suppose d(x) = 3. Then either V = S, where S = {x, y, z, v1} (in which case we

have a G4 configuration, and hence (d) holds), or V − S 6= ∅. If |V − S| = 1 then we
can deduce that |V | = 5 and |E| = 6. If |V − S| ≥ 2 then we get |E(G[V − S])| =
2|V |−3−i(S)−d(S) ≥ 2|V −S|−2. Both cases contradict the fact that G is isostatic.

Thus we may assume that d(x) ≥ 4. Then G has two bad vertices v1, v2, G[S] =
K2,3, where S = {x, y, z, v1, v2}, V −S 6= ∅, and d(S−{x}, V −S) = 0, contradicting
the fact that G is 2-connected.

D3 ≤ 1. Now D2 ≥ 3 by (4). Hence either (b) holds or d(x) = d(y) = d(z) = 2.
In the latter case, since G is essentially 3-edge-connected, we can deduce that either
(c) holds or G = G3 = K3, in which case (d) holds. This completes the proof of the
lemma. •

A framework (G, p) is nearly general (with respect to x, y, z ∈ V ) if for every collinear
triple pa, pb, pc we have {a, b, c} = {x, y, z}. We also say that (G, p) is nearly general
when the set {x, y, z} is clear from the context. Let (p1, p2, p3) be an ordered triple
of three points of R

2 and let λ ∈ R − {0, 1}. We say that the triple is λ-collinear, if
(p3 − p2) = λ(p3 − p1).

Theorem 4.2. Let G = (V,E) be an isostatic graph, let x, y, z ∈ V be distinct ver-
tices, and let λ ∈ R − {0, 1}. Then G has an infinitesimally rigid realisation (G, p),
which is nearly general with respect to x, y, z and for which (px, py, pz) are λ-collinear
if and only if G contains no obstacle for the triple (x, y, z).

Proof: First we prove the ‘only if’ direction. We prove the stronger statement that if
G has an obstacle for the triple (x, y, z) then G has no infinitesimally rigid realisation
such that px, py, pz are collinear. To see this suppose that (G, p) is an infinitesimally
rigid realisation of G such that px, py, pz are collinear, and, for a contradiction, suppose
also that (X, Y, Z) is an obstacle for (x, y, z) in G. Since X ∪ Y ∪ Z is critical,
H = G[X ∪ Y ∪ Z] is isostatic. Since G is isostatic, it follows that the restriction
(H, p) is an infinitesimally rigid realisation of H. On the other hand, R(H, p) has
rank at most 2|V (H)| − 4. This can be seen by defining ‘instantaneous velocities’
v : V (H) → R

2 as follows. Let v(a) = 0 for all vertices of Y (in particular, let
v(z) = v(x) = 0), let v(y) 6= 0 be orthogonal to the line of px, py, pz, and let us
choose the other vectors so that vertices of X and Z rotate about points pz and px,
respectively. Since (X, Y, Z) is an obstacle, it is easy to see that this is possible. Thus
R(H, p)v = 0. Since v is not identically zero and leaves at least two points fixed, it
follows that v does not correspond to a ‘rigid congruence’ of R

2. Hence R(H, p) has
rank at most 2|V (H)| − 4. Thus (H, p) is not infinitesimally rigid, a contradiction.

Next we prove the ‘if’ direction by induction on |V |. To this end let G = (V,E)
be an isostatic graph, let x, y, z ∈ V be distinct vertices, and suppose that G has
no obstacle for (x, y, z). Since G is isostatic and has no obstacle for (x, y, z), we
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can deduce that |V | ≥ 4, and that if |V | = 4 then, without loss of generality, we
have V = {x, y, z, w} and E = {xw,wy, yx, zx, zw}. The required infinitesimally
rigid framework (G, p) can be obtained by taking three non-collinear points px, py, pw

for x, y, w, and then choosing pz in such a way that the framework is λ-collinear
with respect to (x, y, z). Clearly, pz will not be on the line of px, pw, and hence
the framework is indeed infinitesimally rigid by Lemma 2.10 (and the fact that any
non-collinear realization of K3 is infinitesimally rigid). It is clearly nearly general as
well.

Now we turn to the induction step. Consider an isostatic graph G = (V,E) with
|V | ≥ 5. This graph must satisfy one of the four alternatives (a),(b),(c),(d) of Lemma
4.1. Since |V | ≥ 5, we only have to consider G5 and G6 when (d) holds. We shall
verify the theorem for each of these alternatives.

(a) In this case G has a special vertex v. By Lemma 3.6 there is a feasible splitting
at v which yields an isostatic graph Gv with no obstacle for (x, y, z). By induction,
Gv has a nearly general infinitesimally rigid realisation (G, p) such that px, py, pz are
λ-collinear. Since v is special, NG(v) 6= {x, y, z}. Thus we can use Lemma 2.11 to
add vertex v and determine pv by a 1-extension such that the resulting realisation of
G is infinitesimally rigid. By applying Lemma 2.12 to pv we can make the realisation
nearly general and preserve rigidity, as required. (Note that to ensure near generality,
we only have to make sure that pv avoids a set of finitely many lines.)

(b) Now there is a vertex v ∈ V − {x, y, z} with d(v) = 2. Since G has no obstacle
for (x, y, z), G− v has no obstacle for (x, y, z) either. Since G is isostatic, Lemma 2.7
implies that G− v is also isostatic. Hence, by induction, G− v has a nearly general
infinitesimally rigid realisation (G − v, p) where the triple (px, py, pz) is λ-collinear.
Now we can use Lemma 2.10 to add vertex v and determine pv by a 0-extension in
such a way that the resulting framework is nearly general and infinitesimally rigid, as
required.

(c) In this case x, y, z are pairwise non-adjacent vertices of degree two. Thus H =
G−{x, y, z} is isostatic by Lemma 2.7. By Lemma 2.13, H has a general infinitesimally
rigid realisation (H, p). Now we can apply Lemma 2.10 three times to add vertices
x, y, z and determine the points px, py, pz so that the resulting realization of G is
nearly generic, infinitesimally rigid, and the triple (px, py, pz) is λ-collinear. (This can
be done by choosing a small enough ball B such that each point in B is in general
position together with the points of H, fixing px as an arbitrary point in B, then
choosing a line L through px so that it contains no other points of H, and then fixing
py, pz on L ∩B so that (px, py, pz) are λ-collinear.)

(d) As remarked above, we have two subcases to consider when Lemma 4.1(d) holds.
First suppose G and x, y, z form a G5 configuration on five vertices {x, y, z, a, b}, with
xy ∈ E. We choose the points px, py, pz so that they are λ-collinear, and choose pa so
that it is not on the line of px, py. Then we choose pb, not on the px, py line, so that
the intersection of the line of pa, pb and the line of px, py is different from px, py, pz.
We claim that with these positions the framework (G, p) is infinitesimally rigid. This
follows from the fact that it can be built from the framework of the triangle x, y, a
(with the chosen positions px, py, pa) by a 0-extension, which adds b on the vertices
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x, y, and another 0-extension, which adds z on the vertices a, b. It follows from Lemma
2.10 and the choice of p that the resulting framework (G, p) is infinitesimally rigid,
nearly general, and (px, py, pz) are λ-collinear.

The last subcase is when we have a G6 configuration. Then G = K3,3 and x, y, z
are pairwise non-adjacent. Let V (G) = {x, y, z, a, b, c}. We fix the points of the
framework as follows. First we choose px, py, pz so that (px, py, pz) are λ-collinear, and
then we choose distinct points pa, pb, pc so that pb is not on the line of px, py; pa is on
the line of pb, px; and pc is on the line of pb, pz. We claim that with these positions
(G, p) is infinitesimally rigid. This follows from the fact that the framework can be
built by 0- and 1-extensions, starting from the triangle a, b, y (with the fixed positions
pa, pb, py): first we add vertex c on vertices b, y by a 0-extension, then vertex x on
edge ab and vertex c by a 1-extension, and finally vertex z on edge bc and vertex a
by a 1-extension. The choice of the points and Lemmas 2.10 and 2.11 guarantee that
(G, p) is infinitesimally rigid and (px, py, pz) are λ-collinear. Then we can use Lemma
2.12 to move the points pb and pc and hence find the required infinitesimally rigid
framework which is nearly general with respect to x, y, z. This completes the proof of
the theorem. •

Theorem 4.2 has the following corollaries. A direct proof for the first one appears
to be non-trivial.

Corollary 4.3. Let G = (V,E) be an isostatic graph, let x, y, z ∈ V be distinct
vertices, and let λ ∈ R − {0, 1}. Then G has a infinitesimally rigid realisation in
which px, py, pz are collinear if and only if it has an infinitesimally rigid realisation in
which (px, py, pz) are λ-collinear.

The next corollary extends (the difficult part of) Theorem 1.3. Note that every
isostatic graph on at least four vertices contains non-adjacent pairs of vertices.

Corollary 4.4. Let G = (V,E) be isostatic with |V | ≥ 4 and let x, y ∈ V be non-
adjacent vertices. Then there is a vertex z ∈ V − {x, y} such that G has an infinites-
imally rigid realisation in which px, py, pz are collinear.

Proof: Consider Cx,y (the unique minimal critical set containing the pair x, y). Since
G[Cx,y] is not complete, there is a vertex z ∈ Cx,y−{x, y}. Now it follows from Lemma
3.7 that there is no obstacle for the triple (x, y, z) in G, and hence G has the required
realisation by Theorem 4.2. •

5 Rigid graphs

In this section we extend Theorem 4.2 to arbitrary (rigid) graphs G. Since G has an
infinitesimally rigid realisation if and only if G has an isostatic spanning subgraph
H with an infinitesimally rigid realisation, Theorem 4.2 implies that we need to find
necessary and sufficient conditions for the existence of an isostatic spanning subgraph
H which contains no obstacle for a given set of three vertices.
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To state (and prove) this condition, it will be convenient to use matroidal methods
and terminology. (We refer the reader to [6] for the basic concepts of matroid theory.)
Let G be a graph. A subgraph H = (W,C) is said to be an M-circuit in G if C is a
circuit (i.e. a minimal dependent set) in R2(G). In particular, G is an M-circuit if E
is a circuit in R2(G). It is easy to deduce from (1) that G is an M -circuit if and only
if |V | ≥ 2, |E| = 2|V | − 2 and i(X) ≤ 2|X| − 3 for all X ⊆ V with 2 ≤ |X| ≤ |V | − 1.
Since G is rigid if E has rank 2|V | − 3 in R2(G), M -circuits are rigid.

Given a matroidM = (E, r), we can define a relation on E by saying that e, f ∈ E
are related if e = f or if there is a circuit C inM with e, f ∈ C. It is well-known that
this is an equivalence relation. The equivalence classes are called the components of
M. If M has at least two elements and only one component then M is said to be
connected. We say that a graph G = (V,E) is M-connected if R2(G) is connected.
Then M -connected graphs are also rigid (see [3, Lemma 3.1]). For more details on
these concepts and for examples see [3].

Lemma 5.1. Let C1, C2 be M-connected graphs with |V (C1) ∩ V (C2)| ≥ 2. Then
C1 ∪ C2 is M-connected.

Proof: Since the M -connected components of C1 ∪ C2 are pairwise edge-disjoint,
we only need to show that there exists an M -circuit C with E(C) ∩ E(C1) 6= ∅ 6=
E(C) ∩ E(C2). If there is an edge f in G[V (C1) ∩ V (C2)] then we can simply choose
M -circuits Di in Ci with e ∈ E(Di), i = 1, 2, and apply the circuit axiom1 to D1, D2

and e. Otherwise pick two vertices a, b ∈ V (C1) ∩ V (C2), let e = ab, and consider
C1 + e. Since C1 is M -connected, and hence rigid, C1 + e is also M -connected. Simi-
larly, C2 +e is M -connected. Now we may choose two M -circuits Di in Ci +e, i = 1, 2,
as above, and use the circuit axiom to deduce the existence of the required M -circuit
in C1 ∪ C2. •

In what follows we shall consider a rigid graph G = (V,E) with three designated
vertices x, y, z ∈ V . For a subgraph H with x, y, z ∈ V (H) we use H∗ to denote
H + xy, yz, zx. Note that, if there exists an edge in H between x, y, z, then H∗ will
contain a pair of parallel edges which will induce an M -circuit in H∗.

Lemma 5.2. Let G = (V,E) be rigid. Then each isostatic spanning subgraph H of
G has an (x, y, z)-obstacle if and only if the edges xy, yz, zx belong to three different
M-connected components in G∗.

Proof: First we prove the theorem in the special case when G is isostatic. Sup-
pose that G has an (x, y, z)-obstacle. Then we have three edge-disjoint M -circuits
C1, C2, C3 in G∗ with xy ∈ E(C1), yz ∈ E(C2) and zx ∈ E(C3) by Lemma 3.7. For a
contradiction suppose that there is an M -circuit C in G∗ with |E(C)∩{xy, yz, zx}| ≥
2. If {xy, yz, zx} ⊂ E(C) then the circuit axiom, applied to C and C3, gives an
M -circuit C ′ with E(C ′) ⊆ E(C)∪E(C3) and zx /∈ E(C ′). Since C1 (resp. C2) is the
unique M -circuit in G + xy (G + yz, resp.), C1, C2, C3 are edge-disjoint, and E(Ci)

1If C, C ′ are circuits of matroidM and x ∈ C ∩C ′ then there exists a circuit C ′′ inM such that
C ′′ ⊂ C ∪ C ′ and x /∈ C ′′.
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cannot be a subset of E(C) for i = 1, 2, we must have xy, yz ∈ E(C ′). Thus we may
assume that E(C) contains xy and yz but not zy. As above, the circuit axiom applied
to C and C2 implies that there is an M -circuit C ′′ with E(C ′′) ⊂ E(C) ∪ E(C2) and
yz /∈ E(C ′′). Hence C ′′ is an M -circuit in G + xy, C ′′ = C1, and E(C1) ⊆ E(C)
follows, a contradiction.

Now suppose that G has no (x, y, z)-obstacle. By Lemma 3.7 we may assume
that there exist two M -circuits C1, C2 in G∗ with xy ∈ E(C1), yz ∈ E(C2) and
|V (C1) ∩ V (C2)| ≥ 2. Then xy and yz belong to the same M -connected component
of G∗ by Lemma 5.1. This completes the proof when G is isostatic.

In the rest of the proof we consider an arbitrary rigid graph G. Suppose that there
is an M -circuit C in G∗ with xy, yz ∈ E(C). Let H be an isostatic spanning subgraph
of G obtained by extending E(C) − {xy, yz, zx} to a basis of R2(G). Since xy and
yz belong to the same M -connected component of H∗, it follows from the first part
of the proof that H has no (x, y, z)-obstacle.

Conversely, suppose that the edges xy, yz, zx belong to three different M -connec-
ted components in G∗. Then they belong to different M -connected components in
H∗ for each isostatic spanning subgraph H of G. So it follows from the first part of
the proof that there is an (x, y, z)-obstacle in each isostatic spanning subgraph of G. •

Our main result is the following theorem. It follows from Theorem 4.2 and Lemma
5.2.

Theorem 5.3. Let G = (V,E) be a rigid graph, let x, y, z ∈ V be distinct vertices,
and let λ ∈ R − {0, 1}. Then G has a infinitesimally rigid realisation (G, p), which
is nearly general with respect to x, y, z and for which (px, py, pz) are λ-collinear if and
only if there is an M-connected component C of G∗ with |E(C) ∩ {xy, yz, zx}| ≥ 2.

There exist efficient algorithms for finding the M -connected components of a graph
G. See [1] for a recent O(|V |2) algorithm and related results. Thus the necessary and
sufficient condition in Theorem 5.3 can be tested in O(|V |2) time.
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