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On factorizations of directed graphs by cycles ‡

Gyula Pap? and László Szegő??

Abstract

In this paper we present a min-max theorem for a factorization problem in
directed graphs. This extends the Berge-Tutte formula on matchings as well as
formulas for the maximum even factor in weakly symmetric directed graphs and
a factorization problem in undirected graphs. We also prove an extension to
the structural theorem of Gallai and Edmonds about a canonical set attaining
minimum in the formula. The matching matroid can be generalized to this
context: we get a matroidal description of the coverable node sets.

1 Introduction

Let G = (V,E) be a directed graph. A cycle (path) is the arc-set of a closed (unclosed)
directed walk without repetition of arcs or nodes. A path/cycle-factor is the arc-set
M ⊆ E of a subgraph of G which is a node disjoint union of paths and cycles. We
call an arc e = uv ∈ E symmetric, if vu ∈ E, otherwise e is asymmetric. A cycle
is even, if it consists of an even number of arcs; it is asymmetric, whenever it has
at least one asymmetric arc. A loop is considered to be an odd cycle of length one,
and is symmetric. Let H be a set of some cycles in G such that H contains all the
even cycles and all the asymmetric cycles. (Note that we have the freedom to drop or
include some symmetric odd cycles in H.) If we have a pair (G,H) as above, we say
G is H-symmetric. An H-factor is a path/cycle-factor such that all cycles of it are
cycles in H. Let νH(G) denote the maximum cardinality of an H-factor. We consider
the problem of determining νH(G) in view of the formula below.

Some further definitions regarding formula (1): N+
G (X) := {x ∈ V − X : ∃y ∈

X, yx ∈ E}. We say that some cycles of H cover a vertex-set C ⊆ V if these
cycles are node disjoint and the union of their node-sets is exactly C. The node-
set of a directed graph can be partitioned into strongly connected components, the
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contraction of which leaves an acyclic graph. A strongly connected component will
be called a source-component if it corresponds to a source-node in the contracted
graph (a source-node is a node with no entering arc). For a node-set X ⊆ V , let
G[X] denote the subgraph of G spanned by X. scHG[X] denotes the number of those
source components C in G[X] that cannot be covered by some H-cycles.

The main theorem of this paper is the following min-max formula for the maximum
cardinality of an H-factor.

Theorem 1.1. If G = (V,E) is an H-symmetric directed graph, then

νH(G) = min
X⊆V
|V |+ |N+

G (X)| − scHG[X]. (1)

We demonstrate the theorem with the following example:

X

N+
G (X)

Let H be the set of even cycles and asymmetric cycles in G, the graph G in the figure
is H-symmetric. The set X and N+

G (X) is indicated in the figure, the dashed parts
are the source components of G[X]. Here |V |+ |N+

G (X)|−scHG[X] = 16+1−3 = 14,
and it is easy to find an H-factor of size 14.

To see the easy direction of inequality in (1), we prove that, for any H-factor M
and any set X ⊆ V , inequality |M | ≤ |V | + |N+

G (X)| − scHG[X] holds. This implies
that the left hand side is at most the right hand side in the formula (1). We get this
inequality as the sum of the below inequalities:

|iG(X) ∩M | ≤ |X| − scHG[X], (2)

|δG(X) ∩M | ≤ |N+
G (X)|, (3)

|(iG(V −X) ∪ δG(V −X)) ∩M | ≤ |V | − |X|, (4)

where iG(X) denotes the set of the arcs of G with both ends in X and δG(X) denotes
the set of the arcs of G with tail in X and head in V −X.
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2 Preliminaries

For an introduction to matching theory see [10]; in this paper we will be supported
by the following notions. An undirected graph is called factor-critical if the deletion
of any node leaves a graph having a perfect matching (i.e. perfectly matchable). In
case of directed graphs, factor-critical means that all arcs are symmetric, and the
underlying undirected graph is factor-critical. Now, fcHG[X] denotes the number
of source components in G[X] which cannot be covered by H-cycles and are factor-
critical. Let FcHG[X] denote the union of these components. A directed graph is said
to be H-critical, if it is factor-critical, and it cannot be covered by H-cycles. Clearly,
fcHG[X] ≤ scHG[X]. The following strengthening of Theorem 1.1 will be easier to
prove:

Theorem 2.1. If G = (V,E) is an H-symmetric directed graph, then

νH(G) = min
X⊆V
|V |+ |N+

G (X)| − fcHG[X]. (5)

The proofs in the paper are going to refer to the following well-known facts from
matching theory (see [10]).

Lemma 2.2. Suppose s, t ∈ V are two (not necessarily distinct) nodes of the factor-
critical graph G = (V,E). Then there is a path P (s, t) on an even number of edges
such that G[V − V (P )] is perfectly matchable. If s = t, then P is an empty path.

Theorem 2.3 (Edmonds, Gallai). For any graph G′ = (V ′, E ′) there is a set A ⊆
V such that the following hold:

1. The components of G′ − A are factor-critical or perfectly matchable.

2. We construct a bipartite graph G0 = (A,D0;E0) as follows: delete the perfectly
matchable components and contract the factor-critical components of G′ − A,
and delete the edges spanned by A. Then for any v ∈ D0 there is a matching in
G0 covering A, and exposing v.

Theorem 2.4. Let G = (U, V ;E) be a bipartite graph. If there is a matching that
covers a set U ′ ⊆ U and there is a matching which covers a set V ′ ⊆ V , then there is
a matching which covers U ′ ∪ V ′.

3 Remarks

We mention two previous results which have motivated, and are special cases of The-
orem 1.1 and 2.1.

A factorization problem was addressed in [1] by Cornuéjols and Hartvigsen, and
in [2] by Cornuéjols and Pulleyblank. The so-called triangle-free 2-matching problem
was discussed in detail: they gave a formula for the maximum number of nodes that
can be covered by a node-disjoint collection of edges and odd cycles of length at least
5. The following related theorem due to M. Loebl and S. Poljak [13] characterizes a
factorization problem in undirected graphs, see also J. Szabó and Z. Király [14]:
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Theorem 3.1. Let G′ = (V ′, E′) be an undirected graph, and H′ be a set of some
(maybe none) odd cycles in G′. Let νH

′
(G′) denote the maximum number of nodes

that can be covered by a node-disjoint collection of edges and H′-cycles. Then

νH
′
(G) = min

X⊆V
|V | − cH′

(X) + |X| (6)

where cH
′
(X) denotes the number of factor-critical components of G−X that cannot

be covered by edges and H′-cycles (i.e. H′-critical components).

Each symmetric directed graph is H-symmetric for any H containing the even
cycles. For symmetric directed graphs Theorem 1.1 is equivalent to Theorem 3.1
applied to the underlying undirected graph. For completeness we include a proof of
Theorem 3.1 first published by M. Loebl and Poljak [13].

Proof. It is easy to check one direction of inequality, thus we only show the existence
of a set X and a factor that give equality in formula (6).

Take the set A from Theorem 2.3. Let P ⊆ D0 be the set of nodes in G0 which
correspond to a factor-critical component of G− A that cannot be covered by edges
and H′-cycles; let Q := D0 − P . By Hall’s theorem there is a set Z ⊆ P and a
matching M in G0 that exposes |Z| − |ΓG0(Z)| nodes in P . By part 2. of Theorem
2.3 there is a matching in G0 that covers A, thus by Theorem 2.4 there is a matching
M ′ that covers A, and exposes at most |Z| − |ΓG0(Z)| nodes in P .

We can construct a factor M ′′ that exposes at most |Z| − |ΓG0(Z)| nodes of G′

as follows. We extend M ′ by using perfect matchings and near-perfect matchings in
components of G′ − A; except for nodes in Q exposed by M ′, use a cover by edges
and H′-cycles. Then M ′′ and X = ΓG0(Z) gives equality in formula (6).

Let G be a directed graph such that the odd cycles are symmetric, we call such a
graph “hardly symmetric” (see [12, 5]). Let Heven be the set of even cycles of G, an
even factor is by definition an Heven-factor. Notice, that a directed graph is hardly
symmetric if and only if it is Heven-symmetric. These notions were introduced by

W.H. Cunningham in [5]. In [12] Pap and Szegő gave a formula for νHeven(G) for any
hardly symmetric graph G, that formula is a special case of formula 1.1. We mention
that M. Makai recently gave a TDI description of a polyhedron corresponding to
even factors in a weakly symmetric graph [11]. We also mention that the following

theorems can be deducted from the formula in [12] for νHeven(G): Dilworth’s theorem
on the maximum number of independent elements in a partially ordered set, Menger’s
theorem on disjoint paths, a theorem of Gallai and Milgram on minimum number of
directed path to cover all nodes in a directed graph, a theorem of S. Felsner in [6] on
maximum number of arcs in a path/cycle-factor, a formula in [7] for path-matchings.
For proofs, see [12].

Much of this research was motivated by the notions path-matching and even factors
introduced by W.H. Cunningham and J.F. Geelen (see [5, 4, 7]). They gave good
characterizations, as well as an algorithm based on the following algebraic method.
For a directed graph G = (V,E), we define a V ×V matrix M = M(G) of commuting,
algebraically independent indeterminates:
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Mu,v := 0 if uv /∈ E(G),
Mu,v := xu,v if uv ∈ E(G) and vu /∈ E(G),
Mu,v := xu,v and Mv,u := −xu,v if uv ∈ E(G) and vu ∈ E(G).

Take an undirected graph G′, let G′′ be constructed from G′ by replacing each edge
uv in E(G′) by arcs uv and vu. The matching number of an undirected graph G′

can be determined as half the rank of a matrix M(G′′). Thus, for symmetric directed
graphs we have a combinatorial description for the rank of M . More generally, in case

of G being hardly symmetric we have rk(M) = νHeven(G).
Geelen discovered an algorithm to calculate the rank rk(M) of matrix M for any

directed graph G [8]. Since the rank is equal to the rank for some rational evalua-
tion of the indeterminates, one has to find a nice evaluation. We get a randomized
algorithm due to L. Lovász [9], if we put uniformly distributed independent values
from {1, . . . , |V |}. Geelen’s algorithm is a derandomization for this algorithm, which
yields an algorithm to calculate the maximum cardinality of an even factor, and also
to determine a maximum even factor, see [8].

Let G be an arbitrary graph, and let Heven and asym. be the collection of even cycles
and asymmetric cycles. It is easy to see that

rk(M) = νHeven and asym.(G).

The above cited method gives a polynomial algorithm to compute this number. The-
orem 1.1 gives a formula for a more general case: the only constraint to the set H
is Heven and asym. ⊆ H. Of course one does not expected to have a polynomial algo-
rithm in this generality. Theorem 1.1 is not a good characterization, since it would
require to decide whether some G[C] can be covered by some cycles of H. Suppose,
we have an oracle to decide for any factor-critical subgraph G[C], if it can be covered
by some cycles of H, and it shows one covering, if any. Then Theorem 2.1 is a good
characterization, and we may hope for a polynomial time algorithm.

Consider the following statement (for a proof see Cornuéjols, Hartvigsen and Pul-
leyblank [3]). If a factor-critical (undirected) graph can be factorized by edges and
some cycles of H′, then there is a factorization which uses exactly one odd cycle of
H′. Thus, Theorem 2.1 is a good characterization in the case when the odd cycles of
H can be listed in polynomial time. This is the case, if the length of odd cycles in H
is bounded.

We get another case when an oracle exists by the following lemma:

Lemma 3.2 (Cornuéjols, Pulleyblank, [2]). Given an undirected graph G′ and
suppose H′ is a set of odd cycles in G′ such that the complement of H′ has only
triangles. Then G′ is H′-critical if and only if it is a triangle cluster of triangles not
in H′.

A triangle cluster is the single node graph, and each graph we get by the following
operation: choose an old node a, add new nodes b, c and arcs ab, bc, ca to the graph.
A directed graph is called a triangle cluster, if it is symmetric, and the underlying
undirected graph is a triangle cluster.
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Theorem 3.3. Suppose G = (V,E) is a directed graph, such that each directed cycle
of three arcs is symmetric. Then the maximum number of arcs in a path/cycle-factor
without three-arc cycles is

min
X⊆V
|V |+ |N+

G (X)| − tcG[X] (7)

where tcG[X] is the number of source components of G[X] which are triangle clusters.

4 Proof

We extend the proof in [12] to prove Theorem 2.1. The proof of Theorem 2.1 will be
presented in the following structure: A dividing procedure is presented in CASE 4
which gives two smaller graphs, and proves the formula by induction for most pairs
G,H. Cases where the dividing procedure does not lead to graphs with less edges will
be discussed in the first three cases.

In a subgraph G′ of G, if we use the letter H, that means the truncation of H to
those cycles of G that are also cycles in G′. This is legitimate since in this sense G′ is
H-symmetric.

A set X ⊆ V will be called a cut. A cut X is called tight if it minimizes |V | +
|N+

G (X)| − fcHG[X]. A cut X is called trivial if one of the following holds:

(i) The source components of G[X] are single nodes, V = X ∪N+
G (X) and there is

no arc uv such that u ∈ N+
G (X).

(ii) X is a stable set in G, and there is no arc uv such that u ∈ X and v ∈ V −X.

We have already proved in the introduction, that the left hand side is at most the
right hand side in the formula (1). The proof that there is a cut X and an H-factor
K such that |K| = |V |+ |N+

G (X)| − fcHG[X] goes by induction on |E|+ |V |. Take a
counterexample with |E|+ |V | minimum. Without loss of generality we may assume
that G is weakly connected, that is, its underlying undirected graph is connected.

Observation 4.1. X = V is the only possibility for a tight cut of type (i).

Proof. If X 6= V is a tight cut of type (i), then since G is weakly connected, |N+
G (X)| >

0. Thus |V |+ |N+
G (X)| − fcHG[X] > |V | − fcHG[V ], a contradiction.

CASE 1. G is symmetric.
In this case formula (1.1) follows from Theorem 3.1. Thus from now on we may

assume that G is not symmetric. For better reading in the forthcoming part, we
use τHG (X) := |V | + |N+

G (X)| − fcHG[X] for the value of cut X in G. Let τHG :=
minX⊆V τ

H
G (X) be the value of a tight cut in G. Let uv = e ∈ E be an arc such that

vu /∈ E. We observe that G− e is an H-symmetric digraph. For any cut X

τHG−e(X) ≤ τHG (X) ≤ τHG−e(X) + 1 (8)

with τHG (X) = τHG−e(X) + 1 if and only if for e = uv either
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A) u ∈ X and v ∈ V −X −N+
G−e(X) or

B) u ∈ X and v ∈ FcH(G− e)[X].
CASE 2. There exits a trivial tight cut of type (ii).

Claim 4.2. If there is a trivial tight cut of type (ii), then the formula holds.

Proof. Take an arc e = uv such that vu /∈ E. If τHG−e = τHG , then we are done by
induction. Otherwise (8) implies that for any tight cut X in G

τHG = τHG (X) = τHG−e(X) + 1.

Take a tight cut X in G. By assumption, X is a trivial cut in G. Arc e accords to A)
or B), so X cannot be of type (ii), a contradiction.

CASE 3. Every tight cut is trivial.
Take a tight cut X in G. By assumption, X is a trivial cut in G, and by Claim 4.2

it must be of type (i). By Claim 4.1 X = V .
Now X = V is a tight cut of type (i), so there must be at least one source-node

in G. Take arc e′ = u′v′ such that {u′} is a source-node in G. e′ = u′v′ must be of
type B), and then V − u′ is a tight cut in G. By assumption, V − u′ is tight and by
Observation 4.1 it can only be of type (ii), a contradiction.

CASE 4. In any other case, let us consider a minimal nontrivial tight cut X.

Claim 4.3. Each source component of G[X] is H-critical.

Proof. If a source component C of G[X] can be covered with cycles in H, then X−C
is also a tight cut. If X − C is nontrivial, then this contradicts the minimality of X.
Thus X −C is trivial, by Observation 4.1 X −C is of type (ii), and by Claim 4.2 we
are done.

Suppose a source component G[C] of G[X] cannot be H-factorized, but is not
factor-critical. C 6= V , thus G[C] has less arcs, than G has. Then by induction there
is a subset Y ⊆ C with value τHG[C](Y ) ≤ |C| − 1. Since G[C] is not factor-critical,

τHG[C](C) = |C| and τHG[C](∅) = |C|, thus Y is a proper nonempty subset of C. It is
easy to see that X − C ∪ Y is a tight cut in G. C is strongly connected, therefore
X−C∪Y must be entered as well as left by arcs of G. Then X−C∪Y is a nontrivial
tight cut, a contradiction.

Delete the arc-set F := {uv ∈ E : u ∈ V − X, v ∈ N+
G (X)} and contract each

component of FcG(X) to a node. Let GQ = (VQ, EQ) denote the graph obtained this
way. Q denotes the set of new nodes, define XQ := X − FcHG[X] ∪Q.

Let G1 = (V1, E1) denote the graph having node set V1 := XQ∪N+
G (X) and arc set

E1 := {uv ∈ EQ : u ∈ XQ}.
Let G2 = (V2, E2) denote the graph having node set V2 := Q ∪ (VQ −XQ) and arc

set E2 := {uv ∈ EQ : v ∈ V2 −N+
G (X)}.

The cycles in G1 and G2 are also cycles in G. When using H for Gi, it stands for the
truncation of H to Ei. Clearly, G1 and G2 are H-symmetric. Since X is nontrivial,
|E1| < |E| and |E2| < |E|.
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Claim 4.4. Suppose K1, K2 are H-factors in G1, G2, respectively. Then G has an
H-factor K with cardinality |K| = |K1|+ |K2|+ (|FcHG[X]| − fcHG[X]).

Proof. Let K ′ denote the set of arcs of G corresponding to K1 ∪K2. We claim that
K ′ can be completed in G so that it has the desired cardinality. To this end let C
denote a component of FcHG[X], and let c denote its corresponding node in GQ. By
Claim 4.3, C is H-critical.
K ′ has at most one arc in δG(C): choose t ∈ C as the tail of this arc if present,

otherwise choose t arbitrarily. K ′ has at most one arc in %G(C): choose s ∈ C as the
head of this arc if present, otherwise choose s arbitrarily. By Lemma (2.2), there is
an path/cycle-factor KC in G[C] of size |C| − 1, consisting of two-arc cycles and an
s− t path on an even number of arcs.
K := K ′ ∪

⋃
c∈QKC is a path/cycle-factor with cardinality |K| = |K1 ∪ K2| +

(|FcHG[X]| − |Q|). We only have to check, if the cycles traversing FcHG[X] are in
H:

Suppose that a cycle W ⊆ K is not in H. Let WQ be the cycle in GQ corresponding
to W . All arcs in W are symmetric in G, hence WQ has no arc from Q to X−Q, and
from V −X −N+

G (X) to X. By the definition of G2, WQ has no arc from V −X to
N+

G (X)∪ (X −Q). Then WQ can only be a cycle alternating between Q and N+
G (X),

thus WQ, W are even cycles, W is in H.

Claim 4.5. G1 has an H-factor K1 with cardinality |V1| − fcHG[X].

Proof. By induction, it is enough to prove that τG1(Y ) ≥ |V1|− fcHG[X] holds for all
Y ⊆ V1.
τG1(Y ) ≥ τG1(Y ∪ N+

G (X)), hence we suppose that N+
G (X) ⊆ Y ⊆ V1. Let S :=

{v ∈ N+
G (X) : there is no arc uv with u ∈ Y −N+

G (X)}.
We have N+

G1
(XQ ∩ Y ) = N+

G1
(Y ) ∪ (N+

G (X)− S), thus

|N+
G1

(XQ ∩ Y )| ≤ |N+
G1

(Y )|+ |N+
G (X)| − |S|, (9)

fcHG1[Y ]− |S| = fcHG1[XQ ∩ Y ]. (10)

Let YG denote the set we get from Y after replacing the nodes of Y ∩ Q by the
corresponding nodes in G. Since X is a tight cut in G,

|V |+ |N+
G (X)| − fcHG[X] ≤ |V |+ |N+

G (X ∩ YG)| − fcHG[X ∩ YG]. (11)

It is easy to see, that fcHG[X] = |Q| = fcHG1[XQ], N+
G (X ∩ YG) = N+

G1
(XQ ∩ Y ),

and fcHG[X ∩ YG] = fcHG1[XQ ∩ Y ]. Then by inequality (11) we get

|N+
G (X)| − fcHG1[XQ] ≤ |N+

G1
(XQ ∩ Y )| − fcHG1[XQ ∩ Y ]. (12)

By adding up (9), (10) and (12)

fcHG1[Y ]− fcHG1[XQ] ≤ |N+
G1

(Y )|. (13)

Thus,

|V1| − fcHG[X] = |V1| − fcHG[XQ] ≤ |V1|+ |N+
G1

(Y )| − fcHG1[Y ] = τG1(Y ). (14)
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Section 5. Structural description 9

Claim 4.6. G2 has an H-factor K2 with cardinality |V2| − |Q|.

Proof. By induction, it is enough to prove that τG2(Z) ≥ |VQ| − |XQ| holds for all
Z ⊆ V2.
τG2(Z) ≥ τG2(Z ∪ Q), hence we suppose that Q ⊆ Z ⊆ V2. Let ZG denote the set

we get from Z after replacing the nodes of Q by the corresponding nodes in G.
We have N+

G (X ∪ ZG) = (N+
G (X)− (Z ∩N+

G (X))) ∪N+
G2

(Z), thus

|N+
G (X ∪ ZG)| = |N+

G (X)| − |Z ∩N+
G (X)|+ |N+

G2
(Z)|. (15)

Since X is tight in G,

|V |+ |N+
G (X)| − fcHG[X] ≤ |V |+ |N+

G (X ∪ ZG)| − fcHG[X ∪ ZG]. (16)

Now we prove inequality (17). Consider the H-critical source components of G2[Z].
These are all the nodes in Z ∩ N+

G (X) as single node components and some other
components disjoint from N+

G (X). The latter type components give H-critical source
components of G[X ∪ ZG], too. This proves

fcHG2[Z]− |Z ∩N+
G (X)| ≤ fcHG[X ∪ ZG]. (17)

By adding up (15), (16) and (17)

fcHG2[Z]− |Q| = fcHG2[Z]− fcHG[X] ≤ |N+
G2

(Z)|. (18)

Thus,
|V2| − |Q| ≤ |V2|+ |N+

G2
(Z)| − fcHG2[Z].

By Claims 4.4, 4.5 and 4.6, G has an H-factor K of cardinality |V | + |N+
G (X)| −

fcHG[X]. This completes the proof in CASE 4.

5 Structural description

Theorem 5.1 (Structure Theorem). Let G = (V,E) be an H-symmetric graph.
Let D := {v ∈ V : there exists a maximum H-factor K such that δK(v) = 0}.

1. ν(G) = |V |+ (|N+
G (D)| − fcHG[D]), and

2. the source components of G[D] are H-critical.

Proof. Let X be a tight cut such that |X| is minimum. We are going to prove that
X = D. It follows from Claim 4.3 that each source component of G[X] is H-critical.
First we prove that D ⊆ X. Take any node v ∈ D. Let Kv be an even factor of size
|Kv| = τG = τG(X), with δKv(v) = 0. For K = Kv, we must have equality in (2)-(4).
From equality in (4) we get that v /∈ V −X.

Now we prove X ⊆ D. Consider GQ, G1 and G2 which were defined for any tight
cut in the proof of Theorem 2.1. By Claims 4.4 and 4.6, the following claim finishes
the proof of Theorem 5.1.
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Claim 5.2. For any v ∈ XQ, there is an H-factor K1 with cardinality |V1|−fcHG[X]
such that δK1(v) = 0.

Proof. Let G′1 denote the H-symmetric graph obtained from G1 by deleting the arcs
coming out of v. We have to prove that there is a H-factor in G′1 of cardinality
|V1| − fcHG[X].

We are going to prove, that τG1(Y ) ≥ |V1|−fcHG[X] + 1 for any Y ⊆ V1−v. Then
by Theorem 2.1 we will be done, since τG′

1
(Y +v) ≥ τG1(Y )−1 for any set Y ⊆ V1−v.

If Y ⊆ V1 − v, then τG1(Y ) ≥ τG1(Y ∪N+
G (X)), hence we suppose, that N+

G (X) ⊆
Y ⊆ V1 − v. Let S := {w ∈ N+

G (X) : there is no arc uw with u ∈ Y −N+
G (X)}. We

have N+
G1

(XQ ∩ Y ) = N+
G1

(Y ) ∪ (N+
G (X)− S), thus

|N+
G1

(XQ ∩ Y )| ≤ |N+
G1

(Y )|+ |N+
G (X)| − |S|, (19)

fcHG1[Y ]− |S| = fcHG1[XQ ∩ Y ]. (20)

Let YG denote the resulting set after replacing the nodes of Y ∩Q by the corresponding
source components of G[X] in Y . Since X is a minimum tight cut in G,

|V |+ |N+
G (X)| − fcHG[X] + 1 ≤ |V |+ |N+

G (X ∩ YG)| − fcHG[X ∩ YG]. (21)

It is easy to see, that fcHG[X ∩ YG] = fcHG1[XQ ∩ Y ], then by inequality (21):

|N+
G (X)| − fcHG[X] + 1 ≤ |N+

G1
(XQ ∩ Y )| − fcHG1[XQ ∩ Y ]. (22)

By adding up (19), (20) and (22) we get

fcHG1[Y ]− fcHG[X] + 1 ≤ |N+
G1

(Y )|,

thus,

|V1| − fcHG[X] + 1 ≤ |V1|+ |N+
G1

(Y )| − fcHG1[Y ] = τG1(Y ).

6 Matroidal description

In an undirected graph, the system of node-sets which can be covered by a matching
gives the independent sets of the so-called matching matroid. The Tutte-matrix gives
a linear representation of the matching matroid. As a generalization, we give a ma-
troid corresponding to an H-symmetric graph G, however we could not give a linear
representation so far.

For an H-factor M define V+(M) := {v ∈ V : δM(v) = 1}.

Theorem 6.1. Let G = (V,E) be an H-symmetric graph. The following family is
the family of independent sets of a matroid:

I(G,H) := {I ⊆ V : there is a maximum H -factor M

such that I ⊆ V+(M)}. (23)
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To show a version of the matroid exchange axiom, it suffices to prove the following
lemma:

Lemma 6.2. Suppose M1 and M2 are H-factors with |M1| < |M2|. Then there is an
H-factor M ′

1 such that V+(M1) ⊂ V+(M ′
1) and V+(M ′

1)− V+(M1) ⊆ V+(M2).

Proof. Consider the H-symmetric graph G′ we get by deleting all arcs uv ∈ E(G) for
u ∈ V − (V+(M1) ∪ V+(M2)). It is clear that M1 and M2 are H-factors in G′.

Let k := |V+(M2) − V+(M1)| − 1. We construct the H-symmetric graph G′′ from
G′ as follows. We add a set U of k new nodes, that is V (G′′) := V (G′) ∪ U . We add
k · (k+ 1) new arcs, each possible arc uv for u ∈ V+(M2)−V+(M1) and v ∈ U . We are
going to prove that there is anH-factor M in G′′ with |M1|+k+1 = |V+(M2)∪V+(M1)|
arcs. If there is such an M ⊆ E(G′′), then M ′

1 := M ∩ E(G) will do.
Suppose for a contradiction that νH(G′′) ≤ |M1| + k. Then νH(G′′) = |M1| + k,

since we can add to M1 k disjoint arcs from V+(M2)−V+(M1) to U . By Theorem 5.1
we get for D′′ = D(G′′)

|M1|+ k = |V (G′′)| − fcHG′′[D′′] + |N+
G′′(D

′′)|. (24)

Since there is no arc leaving any node in U we get U ⊆ D′′, thus N+
G′′(D′′) = N+

G′(D′′−
U). For each node v in V+(M2) − V+(M1) one can construct an H-factor in G′′ of
|M1|+ k arcs with no arc leaving v, thus V+(M2)− V+(M1) ⊆ D′′. Then the source-
components in G′′[D′′] are disjoint from U , thus fcHG′′[D′′] = fcHG′[D′′ − U ].

τHG′(D′′ − U) = |V (G′)| − fcHG′[D′′ − U ] + |N+
G′(D

′′ − U)| =
= |V (G′′)| − k − fcHG′′[D′′] + |N+

G′′(D
′′)| = νH(G′′)− k = |M1| (25)

τHG′(X) is an upper bound for the cardinality of any H-factor in G′, then there cannot
be any greater than |M1|. This is in contradiction with the existence of M2.
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[12] G. Pap and L. Szegő, On the Maximum Even Factor in Weakly Symmetric
Graphs, Journal of Combinatorial Theory Ser. B, to appear

[13] M. Loebl and S. Poljak, Efficient Subgraph Packing, Journal of Combinatorial
Theory Ser. B, 59 (1993), 106–121.
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