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The Gallai-Edmonds Decomposition for the k-Piece
Packing Problem

Marek Janata*, Martin Loebl™ and Jacint Szabd***

Abstract

Generalizing Kaneko’s long path packing problem, Hartvigsen, Hell and
Szabé [2] consider a new type of undirected graph packing problem, called the
k-piece packing problem. A k-piece is a simple, connected graph with highest
degree exactly k, so when k£ = 1 we get the classical matching problem. They
give a polynomial algorithm, a Tutte-type characterization and a Berge-type
minimax formula, but they leave open the question of a Gallai-Edmonds type
structure theorem. This paper fills this gap by describing such a decomposi-
tion. We also prove that the vertex sets coverable by k-piece packings have a
matroidal structure in a certain way.

Keywords: graph packing, Gallai-Edmonds decomposition, ma-
troid

1 Introduction

Given a set F of graphs, an F-packing of G is a subgraph G’ of G such that each
connected component of G’ is isomorphic to a member of F. An F-packing G’ is
called mazimal if there is no F-packing G” with V(G') C V(G"). An F-packing
is mazimum if it covers a maximum number of vertices of G, and it is perfect if it
covers every vertex of G. The graph packing problem is to decide if G has a perfect
F-packing, or in general, to determine the size of the maximum F-packings. (The
size of a graph is the number of its vertices.) Several polynomial F-packing problems
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Section 2. The theorems 2

are known when K, € F (for references, see [2]). In all these cases the maximal F-
packings are maximum too, the vertex sets coverable by F-packings form a matroid,
and the analogue of the Gallai-Edmonds structure theorem holds.

The first polynomial F-packing problem with K> ¢ F was considered by Kaneko
[3], who presented a Tutte-type characterization of those graphs that have a perfect
packing by long paths, i.e. paths of length at least 2. A shorter proof of Kaneko’s
theorem and a min-max formula was subsequently found by Kano, Katona and Kirdly
[4]. The long path packing problem was generalized by Hartvigsen, Hell and Szabé
[2] by introducing the k-piece packing problem, calling a simple, connected graph a
k-piece if it has highest degree exactly k. Observe that a 1-piece is just K5, thus the
1-piece packing problem is the classical matching problem. Moreover, for £ = 2, it
is immediate that the 2-piece packing problem is equivalent to the long path packing
problem. The main result of [2] is a polynomial algorithm for finding a mazimum
k-piece packing. From this algorithm a characterization of those graphs that have
a perfect k-piece packing, and a min-max result for the size of a maximum k-piece
packing are derived.

Neither the Gallai-Edmonds decomposition, nor the matroidal property is consid-
ered in [2]. This paper fills this gap by giving a canonical Gallai-Edmonds type
decomposition for the k-piece packing problem, and by showing that the vertex sets
coverable by maximal k-piece packings have a certain matroidal structure, see Section
2. This matroidal result holds also for maximum packings. It turns out, that in the
k-piece packing problem maximal and maximum packings do not coincide, and the
maximal packings are of more interest than the maximum ones.

In this paper all graphs are simple. The vertex set of G is denoted by V(G), the
edge set by E(G), the number of connected components of G by ¢(G), and the highest
degree of G by A(G). For X C V(G) the subgraph induced by X is denoted by G[X],
and the degree of v € V(G) by degg(v). If U C V(G) then I'(U) denotes the set of
vertices in V(G) — U which are adjacent to a vertex in U.

2 The theorems

In this section we introduce an important set of graphs related to the k-piece packing
problem, called ’galaxies’. After that we state the main theorems of the paper. These
theorems are generalizations of classical results of matching theory. The proofs are
contained in Section 4 (Thm. 2.4) and Section 5 (Thm. 2.5). In this section k is a
fixed positive integer.

In [2] it was revealed that galazies play a central role in the k-piece packing problem
(it will turn out in Section 4 that galaxies are the ’critical’ graphs).

Definition 2.1. [2] For an integer & > 1 the simple, connected graph H is a k-galazy
if it satisfies the followings:

e denoting by I the set of vertices of degree at least k, each component of H[I] is
a hypomatchable graph,
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Section 2. The theorems 3

e for all v € I there are exactly £ — 1 edges between v and H — I, each being a
cut edge in H.

Observe that the definition implies that a k-galaxy has no vertex of degree k£ and
that each component of H|[I] is a hypomatchable graph on at least 3 vertices. When k
is clear from the context, we shall call a k-galaxy simply a galazy. Galaxies generalize
hypomatchable graphs when k¥ = 1, and ‘suns’ [3] when £ = 2. Fig. 1 contains
examples of galaxies. The vertices of I are drawn as big dots and the edges of H|[I]
as thick lines. We cite the following important property of galaxies proved in [2]: a
k-galazy has no perfect k-piece packing. Later we concern other interesting properties
of galaxies related to k-piece packings.

a 4-galaxy
I:0 tips: O

Fig. 1. Galaxies

Now we introduce special subgraphs of galaxies, called ¢ips. The importance of this
notion will be revealed later (see e.g. Theorem 3.7). Some tips are circled by thin line
in Fig. 1.

Definition 2.2. [2] For a k-galaxy H the connected components of H — I are called
tips. Moreover, when k = 1 we call each vertex a ¢ip. The union of vertex sets of tips
is denoted by Ty C V(H).

When k > 2, a k-galaxy may consist of only a single tip (a graph with highest
degree at most k — 1), but must always contain at least one tip. When k = 1, we
defined each vertex of a hypomatchable graph to be a tip.

The generalization of the classical Gallai-Edmonds structure theorem can be stated
for the k-piece packing problem as follows. The Gallai-Edmonds theorem starts with
the set of vertices which can be missed by a maximal matching. As we shall see, here
we have to use a different formulation.

Definition 2.3. For a graph G let Ug be the set of vertices which can be missed by
a maximal k-piece packing of G.

Theorem 2.4. For a graph G let D = {v: |Ug—,| < |Ug|}, A = I'(D) and C =
V(G)— D — A. Now

1. the components of G| D] are k-galazies,
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2. the bipartite graph B has k-surplus (for definitions see pages 10 and 11),
3. G[C] has a perfect k-piece packing,
4. each mazimal k-piece packing P of G has the following structure:

(a) ezxactly k|A| components of G|D] are entered by P, and these components
are completely covered by P,

(b) if H is a component of G|D| not entered by P then there is a tip T of H
such that P[H| is a perfect k-piece packing of H — T,

(c) P[C] is a perfect matching of G[C|, and finally

5. for each mazimal k-piece packing P, the graph G — P has exactly ¢(G[D]) — k| A|
components.

We could also choose D = {v: Ug_, C Ug} by Theorem 4.16.

It is a well known fact in matching theory that the vertex sets which can be covered
by matchings form a matroid. In the k-piece packing problem this matroidal property
holds only in the following weaker form.

Theorem 2.5. There exists a partition m on V(G) and a matroid M on 7, such that

the mazimal vertex sets coverable by k-piece packings are exactly the vertex sets of the
form |J{X: X € n'} for a base ©' of M.

3 Preliminaries

In this section we summarize in a compact way the results and notions of [2] which are
needed in our considerations, together with an outline of the k-piece packing algorithm
of [2]. In some places we use different formulations than the original one, for sake
of simplicity. Most of the differences come from the fact that in contrast to [2], here
we do not consider k-matchings. E.g. some statements and terms are contained only
implicitly in [2] and treated in detail in [6] (which argues in formally different but, in
fact, identical way.)

For proving the properties of the galaxies we need to introduce two other class of
graphs which are 'near’ to galaxies, see Fig. 2. It is convenient to do this only for
k> 2.

Definition 3.1. For an integer k£ > 2 the simple, connected graph G is an almost
k-galazy of type 1 if it satisfies the followings:

e denoting by I the set of vertices of degree at least k£, one of the components of
G|I] is perfectly matchable and the others are hypomatchable,

e for all v € I there are exactly k£ — 1 edges between v and G — I, each being a
cut edge in G.

Definition 3.2. For an integer k£ > 2 the simple, connected graph G is an almost
k-galazy of type 2 if it satisfies the followings:
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Section 3. Preliminaries 5

e denoting by I the set of vertices of degree at least k, each component of H[I] is
a hypomatchable graph,

o there is a distinguished vertex w € I, such that for all v € I all edges between v
and G — I are cut edges in G, and the number of these edges is k — 1 for v # w
and k — 2 for w.

almost k-galaxy of type 1 almost k-galaxy of type 2
Fig. 2. Almost galaxies, £k =4

Fig. 2 shows almost k-galaxies for £ = 4. Just like in the case of galaxies, we need
to introduce the notion of the tip for the almost galaxies. Some tips are circled by
thin lines in Fig. 2.

Definition 3.3. For an almost galaxy G the connected components of G — I are
called tips.

Many properties of the galaxies are explained by the following lemma, which is
implicit in [2].

Lemma 3.4. The almost k-galazies have perfect k-piece packings.

Proof. First, let G be an almost k-galaxy of type 2. We proceed by induction on the
number of vertices. Let K be the component of G[I]| containing the specified vertex
w. K is hypomatchable so w has two neighbors w’ and w” in K with the property
that K — {w', w, w"} has a perfect matching M. For all edges uv € M let P,, be
the k-piece induced by u, v and the vertex sets of tips adjacent to {u, v}. Moreover,
let P, be the k-piece induced by w’, w, w" and the vertex sets of tips adjacent to
{w', w, w"}, after deleting the edge w'w” (if any). Deleting these k-pieces from G all
the connected components of the remaining graph are almost k-galaxies of type 2, so
we are done by induction.

Now let G be an almost k-galaxy of type 1. Let K be the perfectly matchable
component of G[I]. For all edges uv of a perfect matching of K let P,, be the k-piece
induced by u, v and the vertex sets of tips adjacent to {u, v}. Deleting these k-pieces
from G all the connected components of the remaining graph are almost k-galaxies of
type 2, so we are done by the first part of the proof. O

It is easy to see, that for k£ > 2, if we delete a tip from a galaxy, all the components
of the remaining graph are almost galaxies of type 2. Hence we proved the following
statement, which is well-known for £ = 1.
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Lemma 3.5. [2] If T is a tip of the k-galazy H, then H — T has a perfect k-piece
packing.

A further relation is considered in the following lemma (for proof, see [2]).

Lemma 3.6. [2] If P is a k-piece packing of the k-galazy H, then P do not intersect
all tips of H.

A hypomatchable graph H has the defining property, that for any vertex v € V(H)
the graph H —v has a perfect matching M,. This implies that the maximum (and also
the maximal) matchings of H are exactly the matchings M,. The analogous property
for galaxies can be stated by means of the tips in the next theorem. This important
characterization for the maximal k-piece packings of a k-galaxy is implied by Lemmas
3.5 and 3.6.

Theorem 3.7. [2] The mazimal k-piece packings of a k-galazy H are exactly the
perfect k-piece packings of H—T for a tip T'.

Another generalization of the above defining property of the hypomatchable graphs
is the next lemma, which is implicit in [2]. In Theorem 4.19 we will see that the
property stated in Lemma 3.8 is characteristic for the galaxies.

Lemma 3.8. Ifv is a verter of the k-galaxy H, then there is a k-piece packing P of
H not covering v, such that H — P s connected with highest degree at most k — 1.

Proof. The statement is trivial for £ = 1 so we assume that £ > 2. If v is contained
in a tip T then let P be a perfect k-piece packing of H — T guaranteed by Lemma
3.5.

If v € I then let H' be the connected subgraph of H induced by v and the vertex
sets of the k — 1 tips adjacent to v. Now A(H') = k — 1. By the tree-like structure of
H it is easy to check that some components of H — H' are almost k-galaxies of type
1, and the other components are almost k-galaxies of type 2. Hence H — H' has a
perfect k-piece packing P by Lemma 3.4. O

In the investigations of the k-piece packings we frequently use the notion of a solar-
system, see Fig. 3.

Definition 3.9. A connected graph is a k-solar-system if it has a mid-vertex y with
degree k, such that G — y has k connected components, each being a k-galaxy.

Vg

k-galaxies

O

Fig. 3. A k-solar system
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Section 3. Preliminaries 7

Lemma 3.10. A k-solar-system has a perfect k-piece packing.

Proof. Let G be a k-solar-system with mid-vertex y. Denote the neighbors of y by v;
(1 <i < k) and suppose that v; is contained in the k-galaxy component H; of G — y.
Lemma 3.8 implies that for 1 < ¢ < k there exists a k-piece packing P; of H; not
covering v;, such that H; — P; is connected and A(H; — P;) < k — 1. Observe, that
G — P, —...— Py is a k-piece, so we are done. O

Now we describe the essence of the k-piece packing algorithm of [2]. The only
difference between this and the original algorithm is that here we do not consider
k-matchings for finding a maximum k-piece packing. In the description we have to
use some more statements. The comprehension of these statements are not needed
for the rest of the paper, so we omit their proofs. The algorithm maintains a special
subgraph of the input graph, called alternating structure. Let G be a graph and P a
k-piece packing of G. Let S be a subgraph of G, and A a set of vertices in S (called
the odd vertices of S). For a connected component B of S, we denote by Ap the
(possibly empty) set of odd vertices of S which belong to B.

Definition 3.11. [2] The pair (S, A) is an alternating structure with respect to P, if
for each connected component B of S the following properties hold:

1. B — Ap consists of k|Ag| + 1 k-galaxies, which are induced subgraphs of G,
2. there is no edge in B between the vertices of Ag, and

3. for all y € Ap it holds that deggz(y) = k + 1 and all these k + 1 edges are cut
edges in B.

_ k-galaxies

Fig. 4. An alternating structure, £ = 3

Fig. 4 contains an example of an alternating structure with two connected compo-
nents (when k& = 3). In Figs. 4-8 the big dots are the odd vertices.

We call the connected components of S — A the galazies of S and the connected
components of B — Ag the galazies of B. Note, that if B is a component of an
alternating structure, then deleting a galaxy from B, the remaining graph has a
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perfect k-piece packing. This is because it can be decomposed into k-solar-systems,
which have perfect k-piece packings. An alternating structure when k£ =1 is just an
alternating forest in Edmonds’ algorithm.

The k-piece packing algorithm of [2] maintains a k-piece packing P of G and an
alternating structure (S, A) with respect to P. In every step P misses at least one
vertex in each component of S, the edges of P do not leave the vertex set of S and
P[V(G—1S)] is a perfect k-piece packing of G—S. If the galaxies of S are not connected
components in G — A then either the algorithm increases S or finds a k-piece packing
covering more vertices than P.

Now we outline the steps of the algorithm.

Start: Let P = (), and let the connected components of S be the vertices of G as
single vertex galaxies (i.e. V(S) = V(G), E(S) = 0). Do one of the following steps,
until they apply.

1. Suppose that there is an edge e € E(G) between two distinct galaxies of a
component B of S. Let J be the subgraph of G induced by the vertices shown in
Fig. 5. (In Figs. 5-8 solid edges are edges of the alternating structure, while broken
edges are not.) It is proved in [2] that J is either a k-galaxy or has a perfect k-piece
packing. If J is a k-galaxy then the new galaxies of B will be J and the original
galaxies outside J. (This operation generalizes shrinking in Edmonds’ algorithm.)
Otherwise take a perfect k-piece packing of J, and take perfect k-piece packings of
the solar-systems, to which B — J can be decomposed. Delete B from S.

2. Suppose that there is an edge e € E(G) between two galaxies Hy, Hy of two
distinct components By, By of S. Let J = G[V(H;) UV (H,)], as shown in Fig. 6. It
is implicit in [2] that J is either a k-galaxy or has a perfect k-piece packing. If J is
a k-galaxy then we glue By, B, into a new component of S with galaxies J and the
original galaxies of B;, Bs outside J. Otherwise take a perfect k-piece packing of J,
and take perfect k-piece packings of the solar-systems, to which By — J and By — J
can be decomposed. Delete By, B, from S.
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Section 3. Preliminaries 9

Fig. 6. £ =3

3. Suppose that there is an edge e € E(G) between a galaxy H of a component B
and a vertex v outside S. Let the k-piece covering v be R, and let the vertex sets of
the components of R—v be Vi, Vo,..., V. Ifl=k and A(G[Vi]) <k—1for1<i<k
as shown in Fig. 7, then v will be a new odd vertex of Ap and G[V;] (1 < i < k) will
be new galaxies of B. It is proved in [2], that otherwise H U {e} U R has a perfect
k-piece packing. Add perfect k-piece packings of the solar-systems, to which B — H
can be decomposed. Delete B from S.

TN

new galaxies

Fig. 7. k=3

When terminating, in G — A each galaxy of S is a connected component, and G — S
has a perfect k-piece packing, see Fig. 8. Hence, the algorithm implies a Tutte-type
existence theorem for the k-piece packing problem.

Definition 3.12. Let k-gal(G) denote the number of those connected components of
the graph G that are k-galaxies.

Theorem 3.13. [2] A graph G has a perfect k-piece packing if and only if
k-gal(G — A) < k|A|

for every set of vertices A C V(G).
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the galaxies of S

, L, '

, , '

/' ’ 1
’ 4 !
T 7 T
’ , \

, '
4 '

,

a perfect k-piece packing

Fig. 8. The output of the k-piece packing algorithm, k = 2

Note, that this algorithm is not deterministic in the sense that it may have different
runs (depending on the choice of the edge e € E(G)), resulting in different alternating
structures when terminating. Still, in the next section we prove that in all runs the
followings are uniquely determined: A, ¢(S) and the galaxies of S.

4 The Gallai-Edmonds decomposition

In this section we prove some results on the outputs of this algorithm, e.g. that the
set of odd nodes, A is a ’canonical barrier’ for the k-piece packing problem. The
investigations of the ’canonical decomposition’ result in the Gallai-Edmonds type
theorem for the k-piece packing problem, see Theorem 2.4. In this section £ > 1 is a
fixed integer.

Definition 4.1. For A C V(G) let DY (or D, for short) denote the set of vertices
belonging to the k-galaxy components of G — A. Moreover, C§{ = V(G) — D§ — A
(shortly Ca).

A is a barrier if ¢(G[Dal) > k|A|. The defect of a barrier A is def(A) = ¢(G[Da4]) —
k|Al.

Note, that def(A) = k-gal(G — A) — k|A|. The defect is defined only for barriers
so we have def(A) > 0 always. A k-piece has no vertex of degree higher than k, thus
graphs having a barrier with defect at least 1 have no perfect k-piece packings. The
k-piece packing algorithm implies that the reverse also holds, see Theorem 3.13.

For describing the properties of the outputs of the algorithm we need the following
definition.

Definition 4.2. The bipartite graph with color classes A and D has k-surplus if for
allp £A' C A
IT(A")| > k|A"| + 1.

It has k-surplus of d if [T'(A)| = k|A| +d.
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Section 4. The Gallai-Edmonds decomposition 11

The usage of this definition is tacitly meant by viewing the bipartite graph from
color class A.

For a graph G with vertex sets D, A C V(G), DN A = 0, the term ’D — A
bipartite graph’ refers to the graph BY what we get from G[DU A] after shrinking each
component of G[D] to a vertex and deleting the edges induced by A (and replacing the
parallel edge sets by single edges). For a vertexset Aletk-A={y*: yc A, 1 <i<k}.
If B is a bipartite graph with color classes A and D then k-tupling A results in the
bipartite graph with vertex set DU (k- A) and edge set {vy‘: 1 <1 < k, vy € E(B)}.
k-tupling A in BY gives the bipartite graph By,.

The following important property (in fact, characterization) of the bipartite graphs
with k-surplus is implied by k-tupling A and then applying Hall’s theorem.

Lemma 4.3. If B is a bipartite graph with color classes A and D with k-surplus,
then k - A can be matched into D — v for each vertex v € D.

Definition 4.4. Let A C V(G) be a barrier. If B+ has k-surplus (of d) then A is
said to be a barrier with k-surplus (of d). If G[C 4] has a perfect k-piece packing, then
A is said to be perfect.

Let (S, A) be the alternating structure in any output of the algorithm. Now D4 =
V(S)—Aand Cy = V(G — S), because G — S has a perfect k-piece packing so it has
no k-galaxy component. Moreover, the properties of the alternating structure implies
that B4 has k-surplus of ¢(S), hence A is a perfect barrier with k-surplus of ¢(S).
In the sequel we prove that such a vertex set A is unique, implying that ¢(S), C4 and
the galaxies of S are unique as well. For this we need an important property of the
k-galaxies.

Lemma 4.5. If H is a k-galazy and § # X C V(H) then k-gal(H — X) < k| X| - 1.

Proof. Recall the related property for hypomatchable graphs (proof: otherwise X — z
would be a barrier of defect at least 1 in H — z). It is easier to prove the statement
for a broader set of graphs, called pseudo galazies.

Definition. For an integer k£ > 2 the simple, connected graph G is a pseudo k-galazy
if denoting by I (or Ig) the set of vertices of degree at least k, for all v € I there are
exactly £k — 1 edges between v and G — I, each being a cut edge in G.

Fig. 9 shows a pseudo galaxy. The vertices of I are drawn as big dots and the
edges of G[I| as thick lines. Note, that a pseudo galaxy is just like a galaxy with
the relaxation that the components of G[I| need not be hypomatchable. What we
actually prove is the following.

Fig. 9. A pseudo galaxy, k =4
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Section 4. The Gallai-Edmonds decomposition 12

If G is a pseudo k-galaxy and () # X C V(G) with the property that each
vertex of X NI is contained in a hypomatchable component of G[I], then
k-gal(G — X) < k|X| — 1 holds.

Suppose G is a pseudo galaxy of minimum size failing this statement. Let ) # X C
V(G) be a minimal set for which k-gal(G — X) > k|X|. First, X C I holds: it is
obvious if | X| =1, and if |[X| > 2 and z € X \ I then X — z would be a smaller set
for which the statement fails.

Let F' be a hypomatchable component of G[I] with X = X NV (F) # (. Denote
the k-galaxy components of G — Xz by Hy,..., H;. It is easy to see that the other
components are pseudo k-galaxies, denoted by G1,...,G;. Let X}, (resp. X,) be the
set of vertices of X in a galaxy (resp. pseudo galaxy) component of G — Xp.

Now we bound the number of k-galaxy components of G — Xr. Let F' be a non-
hypomatchable component of F'— Xz and G’ be the component of G — X containing
F'. Now F' is a connected component of G'[I¢], hence G’ is not a galaxy. So the
related property of the hypomatchable graphs imply that the number of the galaxy
components of G — X meeting F' is at most |Xr| — 1. On the other hand, due to the
tree-like structure of GG, the number of those components of G — Xy which are disjoint
from F'is (k—1)|Xp|, because a vertex in V(F) is incident with exactly k—1 cut edges
in G and Xp CV(F). So s = k-gal(G — Xp) < |Xp| -1+ (k- 1)|Xp| = k| Xr| — 1.

Let X NV(G;) = X;. In G, each vertex of X; N Ig, is contained in a hypomatchable
component of G;[Ig,], since Ig, = I N V(G;). By the minimality of G we get that
k-gal(G; — X;) < k|X;| (independently of the emptiness of X;). On the other hand,
let s’ be the number of those k-galaxy components H; of G — Xy, for which X :=
X NV(H;) # (. For such a component k-gal(H; — X*) < k|X*| — 1 holds by the
minimality of G. Hence

k-gal(G — X) < k|Xy| +5s— 5 + (k| Xp| — ') <

< k|XpUX,|+5<klX — Xp|+k[Xp| —1=kX|—1.

Theorem 4.6. If A;, Ay are perfect barriers with k-surplus then A; = As.

Proof. Let D; = Dy, and C; = Cj4,. Denote by c; the number of components of
G[D;] intersecting A3 ;. We prove that ¢; = ¢ = 0. Suppose ¢; > ¢y and that
Ay = AyN Dy # 0. A, is a barrier with k-surplus, so A, is adjacent to at least
k|A,| + 1 galaxy components of G[D,]. Now A; N A, = () and in G — A; the set A)
is adjacent to at most k|A}| — ¢; galaxy components by Lemma 4.5. The remaining
¢1 + 1 components of G[D,| necessarily intersect Aj, so c2 > ¢; + 1, a contradiction.
This implies ¢; = ¢y = 0.

Suppose A; \ Ay # 0. The components of G[D;] are connected in G — A, because
A;ND; = . Let D} C V(G) be the set of vertices in those components of G[D;]| which
are adjacent to Ay \ As. By the k-surplus of A; we get that ¢(G[D]]) > k|A;\ 42| +1.
The components of G[D}] are not connected components in G — Aj, so ¢ = 0 implies
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Section 4. The Gallai-Edmonds decomposition 13

that D] U (A4; \ A2) C C,. Hence A; \ A, is a barrier of defect at least 1 in Cy, a
contradiction, because G[Cs] has a perfect k-piece packing.
So A; C A, and by symmetry, A; = A,. O

As we noted in page 11, the set of odd vertices A in any output of the algorithm
is a perfect barrier with k-surplus, so A is unique by Theorem 4.6. Hence V(S) — A
(this is D4) and V(G — S) (this is Cy) are unique, too. So the following definition is
sound:

Definition 4.7. Let (S, A) be the alternating structure in any output of the algo-
rithm. Denote by D the set of vertices in the galaxies of S, and let C = V(G — 5).
The decomposition V(G) = DU AUC is said to be canonical to the k-piece packing
problem.

From now on, the sets D, A, C' denote the canonical decomposition of G for the
k-piece packing problem. Theorem 4.6 implies also, that though the alternating struc-
ture S is not unique, the number of its components is, because A is a perfect barrier
with k-surplus of ¢(S). In Theorem 4.10 we give a characterization for the canonical
barrier by other barriers.

Definition 4.8. The maximum defect of a barrier is denoted by def(G).

By Theorem 3.13, G has a perfect k-piece packing if and only if def(G) = 0 (note,
that in that case @ is a barrier with defect 0).

Lemma 4.9. If A’ is a barrier with mazimum defect then it is perfect.

Proof. If G[C 4] has no perfect k-piece packing, then it would admit a barrier A” C Ca
with defect at least 1 by Theorem 3.13. But then A" U A” would be a barrier with
larger defect than def(G). O

Theorem 4.10. A has defect def(G), and A is the intersection of the barriers with
mazimum defect.

Proof. Let A’ be a barrier with defect d := def(G). Denote the set of components
of G[Da] by K'. Consider the following function in the bipartite graph BfZ,A': for
X C K'let f(X) = |X| — k|T'(X)|. Now f(K') =d, and f(X) < d for X C K,
because otherwise I'(X) would be a barrier of larger defect than d. Suppose, that
f(X1) = f(X3) =d for X, X, C K'. The function X — |['(X)| is submodular, so
2d = f(X1) + f(X2) < f(X1NXy) + f(X1 U X,) < 2d, implying f(X1 N X5) = d.
Hence there exists a minimum set Ky C K' with f(Kj) = d. Let Ay = I'(Kp) and let
Dy be the set of vertices contained in a component of Ky. The minimum property of
K, implies that Bffg has k-surplus of d.

Now k - (A" — Ap) can be matched into K' — K in ij,’ by Hall’s theorem: if
IT(Y)| < k|Y]| for Y C A’ — Ay then A’ — Y would be a barrier of larger defect than
d. Moreover, k|A" — Ag| = |K' — K| so this matching gives rise to a perfect k-piece
packing in G—Ca — Dy — Aq using Lemma 3.10. Moreover, by Lemma 4.9, G[C 4] has
a perfect k-piece packing, so A is a perfect barrier with k-surplus of d. Hence 4o = A
by Theorem 4.6. This implies also that A has defect d, i.e. maximum defect. 0
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Section 4. The Gallai-Edmonds decomposition 14

Note, that Theorem 4.6 and Lemma 4.9 implies that A is the only barrier with k-
surplus of maximum defect. Another characterization is the following easy corollary
of the proof of the previous theorem.

Corollary 4.11. D = (\{Dar: A’ is a barrier with mazimum defect}.

In the sequel we prove some properties and characterizations for the canonical
decomposition. First, we investigate the structure of mazimal k-piece packings of G.
In the subsequent lemmas we use the notational inaccuracy, that ’D’ may denote both
the vertex set D C V(G) and the set of components of G[D]. It will be clear from the
context which reading is meant.

Lemma 4.12. FEach mazimal k-piece packing P of G has the following structure:

1. ezactly k|A| components of G|D] are entered by P, and these components are
completely covered by P,

2. if H is a component of G[D] not entered by P then there is a tip T of H such
that P[H| is a perfect k-piece packing of H — T, and

3. P[C] is a perfect k-piece packing of G[C].

Proof. Let P be a maximal k-piece packing of G. We construct a k-piece packing P’
with V(P') D V(P), such that if P fails one of the above properties then V(P’) 2
V(P) would hold.

Let D, C V(G) be the set of vertices in those components of G[D] which are entered
by an edge of P. The bipartite graph B, has a matching covering k - A (due to the
k-surplus of A), and another matching covering D, (due to P). Hence the Mendelsohn-
Dulmage theorem gives a matching M in By, covering k - A and D,. Using Lemma
3.10, M gives rise to a perfect k-piece packing P; in the subgraph induced by A and
the vertex sets of k|A| components of G[D] including the components of G[D,].

If a component H of G[D] is not entered by M then it is not entered by P either.
By Theorem 3.7 and by the maximality of P there is a tip 7" of H such that P[H]|
is a perfect k-piece packing of H — T. The union of these k-pieces is denoted by Ps.
Finally, let P; be a perfect k-piece packing of G[C] (recall, that A is a perfect barrier).
With P' = P, U P, U P; we get that V(P') D V(P).

It is easy to see that ¢(G[D.]) < k|A|. In fact, ¢(G|D,]) = k| A| holds here, because
otherwise M would enter strictly more components of G[D] than P, resulting in
V(P') 2 V(P), a contradiction. Now 1. and 2. are straightforward. For 3. observe,
that there is no edge e € E(P) from A to AUC because otherwise ¢(G[D,]) < k|A|. O

In the matching case (i.e. when k = 1) there is a strong relation between maximal
matchings and def(G), namely, each maximal matching misses exactly def(G) vertices
of G. In general, when k£ > 2, this is not the case, because a maximal k-piece packing
of a galaxy may miss an arbitrary number of vertices instead of only one (namely, the
vertices of a tip). What is salvaged, is that for each maximal k-piece packing P, the
graph G — P has exactly def(G) components. This is implied by Theorem 4.10 and
Lemma 4.12.
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Section 4. The Gallai-Edmonds decomposition 15

Note, that Lemma 4.12 (and Lemma 4.13 as well) holds also for decompositions
V(G) = Dgy U A"UCy, with the property that A’ is a perfect barrier for which & - A’
can be matched into Dy in B,iﬁ'. This observation will be needed in the proof of
Theorem 4.16.

Lemma 4.13. If P is a k-piece packing satisfying 1., 2. and 3. of Lemma 4.12, then
P is mazimal.

Proof. Recall, that def(G) = ¢(G[D]) — k|A|. Let D, C V(G) be the set of vertices
in those components of G[D]| which are entered by an edge of P. By property 1.,
¢(G[D,]) = k|A| so P misses only the vertices of def(G) tips in the def(G) components
of G[D — D,]|.

Suppose P’ is a k-piece packing covering V(P) and one more vertex v ¢ V(P).
Now v is in a tip in a galaxy H of G[D — D,.]. By property 2. and Lemma 3.6, P’
must enter H, beside the components of G[D,]. This is impossible, because a k-piece
packing cannot enter more than k|A| components of G[D]. O

These results imply a characterization for the union of the vertex sets of tips in
D. Recall, that Ug is the set of vertices which can be missed by a maximal k-piece
packing of G, and Ty C V(H) is the union of vertex sets of tips in a galaxy H.

Definition 4.14. Let Tg = |J{7x: H is a galaxy of G[D|}.
Lemma 4.15. 7 = Ug.

Proof. Lemma 4.12 implies Ug C Tg. On the other hand, let v € 75 be a vertex
contained in a tip T of a galaxy H of G[D]. The bipartite graph BY has k-surplus,
so k - A can be matched into D — H in BP,. As we have seen in the proof of Lemma
4.12, this matching M gives rise to a perfect k-piece packing in the subgraph induced
by AUU{V(H'): H' is covered by M}. Add a perfect k-piece packing of G[C] and
perfect k-piece packings of H' — Ty where H' is a component of G[D] not entered
by M and T4 is a tip of H', with Ty = T. By Lemma 4.13, this k-piece packing is
maximal. O

In the matching case, the uniqueness of the output of the (Edmonds’) algorithm is
implied by Lemma 4.15 itself (which uses only Lemmas 4.12 and 4.13). To see this,
let A be the set of odd vertices and let D = V(S) — A for the alternating structure
(S, A) in any output. The proof of Lemma 4.15 works also for decompositions V(G) =
D4 UA"UC 4, where A’ is a perfect barrier with k-surplus. Hence 7¢ is unique, which
is equal to D itself in the case k = 1. Now A = I'(D) implies that A is unique, too.
When k& > 2 the set of vertices missed by a maximal k-piece packing is merely a subset
of D, so Theorem 4.6 is needed in proving the uniqueness of the decomposition given
by the algorithm.

But how can we characterize the canonical D when & > 27 It is not true that
deleting v € D the defect of G gets smaller, even def(G — v) = def(G) + k — 2 is
possible. But something similar to the matching case is still true.

Theorem 4.16. D = {v: Ug_, C Ug} = {v: |Ug—| < |Ug|}-
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Section 4. The Gallai-Edmonds decomposition 16

Proof. The proof argues as in a stability lemma, we investigate the canonical decom-
position of the graph G — v. Lemma 4.15 is frequently applied.

1. Let v € C. Denote by D'UA'UC" the canonical decomposition of G[C' — v].
We get that DS % = DU D' and C§ % = C', so AU A’ is a perfect barrier of
k-surplus in G —v. Hence by Theorem 4.6 the canonical decomposition of G —v
is (DUD)YU(AUAYUC, 50 Ug_y =Tg—v 2 Ta = Ug.

2. Let v € A. Now A — v is a perfect barrier of k-surplus in G — v so by Theorem
4.6 the canonical decomposition of G — v is DU(A — v) UC. Hence Ug_, =
7-G—'v = 7-G = UG-

3. Finally, let v be contained in a galaxy H of G[D]. To prove that the deletion of
v decreases Tg_,, we need to show this for galaxies.

Lemma 4.17. Each component of H — v is either a k-galaxy or has a perfect
k-piece packing. Moreover, | J{Tr: F is a k-galaxy component of H— v} C Tg.

Proof. The statement is trivial for £ = 1 so assume k£ > 2. Due to the tree-
like structure of a galaxy, the following considerations are easy to check. If v
is contained in a tip then each component of H — v is either a k-galaxy or an
almost k-galaxy of type 2. Moreover, the union of the vertex sets of tips in all
components is exactly 7g — v. On the other hand, if v € I then H — v consists
of k-galaxies (the number of which is £ — 1), and almost galaxies of type 1, the
number of which is at least 1. Moreover, the union of the vertex sets of tips in
all components is 7y and each almost galaxy of type 1 contains at least one tip
of H. Using Lemma 3.4, we get the statement. O

In H — v let Cy denote the set of vertices in components with perfect k-piece
packings, and let Dy denote the set of vertices in k-galaxy components. Now
DY = (D\V(H))UDyg and C$™" = C U Cy. Since G[C U Cy] has a perfect
k-piece packing and A is a barrier with k-surplus in GG, we get that A is a perfect
barrier of G — v with the property that k- A can be matched into Df’”. So, as
mentioned in page 15, the statement of Lemma 4.12 holds for A as well. Denote
by 7" the vertices of tips of galaxies in G[D$*]. By Lemma 4.12 each maximal
packing of G — v misses only vertices in 77, i.e. Ug_, C 7. On the other hand,
T' C T¢ by the above property of the galaxies, so Ug_, C Tg = Ug.

]
Theorem 4.16 easily implies a characterization for the galaxies.
Theorem 4.18. The followings are equivalent for a graph G.
1. G is a k-galaxy.
2. |Ug_v| < |Ug| for all v € V(G).
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Section 5. The matroidal property and maximum packings 17

3. Ug—y C Ug for allv € V(G).

At this point, the proof of Theorem 2.4 is straightforward using the results of this
section.

In the graph packing terminology a graph K is called critical to the F-packing
problem, if it does not have a perfect F-packing, but K —v has one for allv € V(K). In
the previous polynomial graph-packing problems K, € F implies that a critical graph
is hypomatchable. In the k-piece packing problem the k-galaxies play the role of the
critical graphs. This is because each k-galaxy H satisfies the following two properties.
Actually, the Gallai-Edmonds theorem for the k-piece packing problem implies that
these properties give another characterization for the k-galaxies, see Lemma 4.19.

1. H has no perfect k-piece packing, and

2. for each v € V(H) there is a k-piece packing P of H not covering v, such that
H — P is connected with highest degree at most & — 1.

Theorem 4.19. A graph H satisfies properties 1. and 2. if and only if H is a k-
galazy.

Proof. If H is a k-galaxy, then 1. is implied by Theorem 3.7, and 2. by Lemma 3.8.
For the reverse direction, suppose that H satisfies the above properties. By The-
orem 2.4 property 1. implies that H is either a k-galaxy or its canonical barrier A
is nonempty. Assuming the latter case to be true, choose a vertex v € A and let
P be the k-piece packing of H guaranteed by property 2. Let W be a new set of
k — degp(v) isolated vertices. Connect each vertex of W to v resulting in the new
graph H'. Now P together with the new edges and vertices is a perfect k-piece packing
of H', contradicting to the fact that A is still a barrier of H' of defect def(H) > 1. O

When k = 1, property 2. is equivalent to the defining property of hypomatchable
graphs H: the graph H — v has a perfect matching for each v € H. This implies
property 1. as well by parity arguments (parity has no consequence when k > 2).

By the Gallai-Edmonds theorem for the k-piece packing problem, every simple
graph has a sequence of ’canonical’ decompositions V(G) = Dy U Ay U Cy, one for
each £ > 1. Here D; U A; UC; is the classical Gallai-Edmonds structure. Observe,
that Ay = Cy =0 if Kk > A(G) + 1, and Dy = Ay = 0 if Kk = A(G). Besides, there
does not seem to be any interesting relation among the decompositions for different
k-s.

5 The matroidal property and maximum packings

Loebl and Poljak conjectures [5] that if the F-packing problem is polynomial and
K, € F, then the vertex sets coverable by F-packings form a matroid. This conjecture
is still open. The previous considerations directly imply, that the k-piece packing
problem is not matroidal when k£ > 2 (see the counterexample in [2]). Still, the k-
piece packing problem has the matroidal property in a slightly weaker form. Hence
it gives another support for the validity of the conjecture of Loebl and Poljak.
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Section 6. The (I, u)-piece packing problem 18

Theorem. 2.5. There ezists a partition m on V(G) and a matroid M on m, such
that the maximal vertex sets coverable by k-piece packings are exactly the verter sets of
the form J{X : X € n'} for a base ' of M. Moreover, the co-rank of M is def(G).

Proof. Lemmas 4.12, 4.13 and 4.15 imply that the following considerations hold.
The elements of 7 are the vertex sets of the tips of the galaxy components in G|D],
together with the vertices outside T as single element vertex sets. For v ¢ T¢g the
element {v} € 7 is a bridge in M. As for the tips, denote the transversal matroid on
the components of G[D] in B, by N. Now for each component H of G[D] replace
H in N by a series set consisting of the tips of H. This gives the matroid M. O

So each maximal k-piece packing P is ’compatible’ to 7, i.e. each vertex set in 7 is
either fully covered or fully missed by P (and the number of the latter sets is def(G)).

The ground set of this matroid is a partition of V(G) to different cardinality sets.
Hence, in the k-piece packing problem, a mazimal packing is not necessarily mazi-
mum, as it is the case in the previous polynomial packing problems. Still, the vertex
sets missed by mazimum packings admit a similar matroid: take the maximum weight
bases of M with the weight function w(X) := | X | for X € 7. Though this observation
characterizes the size of the maximum k-piece packings, [2] proves a more compact
Berge-Tutte type formula. After finding the canonical decomposition of the graph,
the k-piece packing algorithm described in [2] has a second phase, which makes trans-
formations on the alternating structure, imitating a method for finding a maximum
weight base in the transversal matroid N of ByY,. From this method the follow-
ing Berge-Tutte type theorem can be derived (with a little additional work). Here
k-gal,(G) denotes the number of k-galaxy components H of the graph G with the
property that each tip of H has size at least 1.

Theorem 5.1. [2] If G is a graph of size n, then the size of the mazimum k-piece
packings of G is

n— maXZ (k-gal,(G — A;) — k|4;]),
=1
taken over all sequences of vertex sets V(G) D A1 D Ay D ... D A,.

We mention that A; can be chosen to be the canonical barrier A. The theorem
refers to sequences of vertex sets because of the related structure of the maximum
weight bases of the transversal matroid.

When k£ = 1 we get Berge’s theorem on maximum matchings [1]. The case k = 2
was proved by Kano, Katona and Kirdly [4].

6 The (/,u)-piece packing problem

As a generalization of the k-piece packing problem, the (I, u)-piece packing problem
is introduced in [2]. In this section we investigate the matroidal property and the
canonical decomposition for this problem, using the reduction to the k-piece packing
problem [2]. As one may expect, it turns out that this problem is essentially the same
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Section 6. The (I, u)-piece packing problem 19

as the k-piece packing problem, and all the above results can be directly applied with
straightforward modifications.

Let two integer bounds u(v) > I(v) > 0 be given for each vertex v € V(G). A
connected subgraph P of G is an (I, u)-piece if degp(v) < u(v) holds for each v € V(P)
and there exists at least one vertex w € V(P) with degp(w) > I(w). Note, that if
l = u = k we get the k-piece packing problem.

Galaxies and tips change in the following way:

Definition 6.1. Given the bounds l,u: V(H) — N, the simple, connected graph H
is an (I, u)-galazy if it satisfies that

e denoting by I the set of vertices v with degg(v) > I(v), each component of H|[I]
is a hypomatchable graph,

e [(v) =wu(v) >1forvel,and

e for all v € I there are exactly I(v) — 1 edges between v and H — I, each being
a cut edge in H.

The tips are the connected components of H — I together with the vertices v € I
with I(v) = u(v) = 1, as single vertex subgraphs.

The new tips still have the important property of Theorem 3.7, i.e. the maximal
(1, u)-piece packings of an (I, u)-galaxy are exactly the perfect (I, u)-piece packings of
H—-TforatipT.

The difference in the definition of the galaxies and tips can be explained by the
following reduction to the k-piece packing problem, described in [2]. Let k& = 1 +
max{u(v): v € V(G)}. For each vertex v € V(G) let M,, N, be disjoint sets of new
vertices with |M,| = u(v) —l(v) + 1 and |N,| = k — u(v) — 1. Now for v € V(G)
take a complete graph on M, and connect the vertices of M, U N, to v. Denote
the new graph by Gg. It is easy to see that Gy has a perfect k-piece packing if and
only if G has a perfect (I,u)-piece packing, and G is an (I, u)-galaxy if and only if
Gy is a k-galaxy. Actually, with the help of this reduction we can see that all the
above considerations for the k-piece packings hold in the (I, u)-case as well, with the
necessary modifications. For illustrating the essence of this equivalence, we briefly
describe how to get the canonical decomposition of G for the (I,u)-piece packing
problem.

Let V(Gy) = Dy U Ay UCy be the canonical decomposition of Gy for the k-piece
packing problem. Due to the k-surplus of A, each vertex of A; has degree at least
k + 1 in Gg. Because the new vertices of Gy (i.e. the vertices in V(Gg) — V(G))
have degree at most u(v) —I(v) + 1 < k, we get that Ay C V(G). So, the deletion
of the new vertices yields in a natural way a partition V(G) = DUAUC (where
D =D;NV(G), A= A} and C = C, N V(G)). This partition has all the properties
listed in Theorem 2.4, e.g. the components of G[D] are (I, u)-galaxies, the BY bipartite
graph has u-surplus (i.e. [['(A")] > u(A’) + 1 for § # A’ C A), and C has a perfect
(I, u)-piece packing. The uniqueness of this decomposition can be shown easily: If
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V(G) = D'UA'UC" is another partition with this property, then in Gy the set A’ is
a perfect barrier with k-surplus, hence by Theorem 4.6 it equals to A.

This Gallai-Edmonds type theorem in the case [(v) =1 < u = u(v) for all v € V(G)
becomes quite compact, so we include this. Here an (I, u)-packing is a packing with
connected graphs F with [ < A(F) < u. Call such a packing an (I < u)-packing. The
simplicity of this structure theorem comparing to the general (I, u)-case is due to the
fact that here an (I, u)-galaxy is just a graph with highest degree at most I — 1. So it
always consists of only one tip.

Theorem 6.2. For a graph G let D consists of the vertices which can be missed by a
maximal (I < u)-packing. Let A=T(D) and C =V (G) — D — A. Now

1 AGID) <1-1,
the bipartite graph B has u-surplus, and

G[C] has a perfect (I < u)-packing,

™

for each mazimal (I < u)-packing P, the graph G — P has ezactly ¢(G[D]) — u|A|
components.

We remark that with a bit additional work all the above results can be generalized
to the following packing problem. Given two bounds I, u: V(G) — N, I < u, and
a set F consisting of hypomatchable subgraphs of G, decide if G has a spanning
subgraph each component of which is either an (I, u)-piece or an (I, u)-galaxy H such
that H|[I] is connected and belongs to F. We do not go into details.
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