Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2003-11. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

A note on parity constrained orientations

Tamás Király and Jácint Szabó

A note on parity constrained orientations

Tamás Király* and Jácint Szabó*ぇ

Abstract

This note extends the results of Frank, Jordán, and Szigeti []] on parity constrained orientations with connectivity requirements. Given a hypergraph H, a non-negative intersecting supermodular set function p, and a preferred in-degree parity for every node, a formula is given on the minimum number of nodes with wrong in-degree parity in an orientation of H covering p. It is shown that the minimum number of nodes with wrong in-degree parity in a strongly connected orientation cannot be characterized by a similar formula.

1 Introduction

In [I], Frank, Jordán, and Szigeti proved that the existence of a parity-constrained k-rooted-connected orientation of a graph can be characterized by a partition-type condition. In this note it is shown that the requirement of k-rooted-connectivity can be replaced by any requirement given by a non-negative intersecting supermodular set function. We also extend the characterization to hypergraphs, and show a min-max formula on the minimal number of nodes violating the parity condition. The proof is based on the ideas in [[] . In the last chapter we show that it is not possible to give a similar characterization for parity-constrained strongly connected orientations.

For a hypergraph $H=(V, \mathcal{E})$ and a set $X \subseteq V, i_{H}(X)$ denotes the number of hyperedges of H spanned by X. For a partition $\mathcal{F}, e_{H}(\mathcal{F})$ denotes the number of cross-hyperedges of H; in other words,

$$
\begin{equation*}
e_{H}(\mathcal{F})=|\mathcal{E}|-\sum_{X \in \mathcal{F}} i_{H}(X) . \tag{1}
\end{equation*}
$$

A directed hypergraph consists of hyperarcs: hyperedges that have one node designated as head node. An orientation of a hypergraph H is a directed hypergraph obtained by selecting a node from each hyperedge of H as head node. For a directed

[^0]hypergraph $D=(V, \mathcal{A})$ and a set $X \subseteq V, \varrho_{D}(X)$ denotes the number of hyperarcs in D which have their head node inside X and have at least one node outside of X.

A set function $p: 2^{V} \rightarrow \mathbb{Z}$ is called intersecting supermodular if

$$
p(X)+p(Y) \leq p(X \cap Y)+p(X \cup Y)
$$

holds whenever $X \cap Y \neq \emptyset$. A set function $p: 2^{V} \rightarrow \mathbb{Z}$ is monotone decreasing if $p(X) \geq p(Y)$ whenever $\emptyset \neq X \subseteq Y$. We always assume that $p(\emptyset)=0$. Clearly, if $p(V)=0$ and p is monotone decreasing, then p is non-negative. For intersecting supermodular functions the converse is also true:

Claim 1.1. If p is intersecting supermodular, non-negative, and $p(V)=0$, then p is monotone decreasing.

Proof. Let $\emptyset \neq X \subsetneq Y \subseteq V$, and let $Z:=(V-Y) \cup X$. By the intersecting supermodularity and non-negativity of $p, p(Y) \leq p(Y)+p(Z) \leq p(Y \cap Z)+p(Y \cup Z)=$ $p(X)+p(V)=p(X)$.

An orientation $D=(V, \mathcal{A})$ of a hypergraph $H=(V, \mathcal{E})$ covers a set function p if $\varrho_{D}(X) \geq p(X)$ for every $X \subseteq V$. If the in-degrees of the orientation are specified, then the following is true (see e.g. [z]):

Lemma 1.2. Let $H=(V, \mathcal{E})$ be a hypergraph, $p: 2^{V} \rightarrow \mathbb{Z}_{+}$a non-negative set function, and $m: V \rightarrow \mathbb{Z}_{+}$an in-degree specification such that $m(V)=|\mathcal{E}|$. Then H has an orientation covering p such that the in-degree of each node $v \in V$ is $m(v)$ if and only if

$$
m(X) \geq i_{H}(X)+p(X) \quad \text { for every } X \subseteq V
$$

For non-negative intersecting supermodular set functions, the following can be proved using basic properties of polymatroids:

Theorem 1.3. Let $H=(V, \mathcal{E})$ be a hypergraph, and $p: 2^{V} \rightarrow \mathbb{Z}_{+}$an intersecting supermodular and non-negative set function. Then H has an orientation covering p if and only if

$$
\begin{equation*}
e_{H}(\mathcal{F}) \geq \sum_{X \in \mathcal{F}} p(X) \quad \text { for every partition } \mathcal{F} \tag{2}
\end{equation*}
$$

2 Main result

Let $H=(V, \mathcal{E})$ be a hypergraph, $T \subseteq V$ a fixed set, and $p: 2^{V} \rightarrow \mathbb{Z}$ a set function such that $p(V)=0$. An orientation of H is called (p, T)-feasible if it covers p and the in-degree of $v \in V$ is odd if and only if $v \in T$. A set $X \subseteq V$ is called even if $|X \cap T|+i_{H}(X)+p(X)$ is even; X is called odd if $|X \cap T|+i_{H}(X)+p(X)$ is odd (the notion of odd and even sets will be used with respect to different H, T, and p values, but the actual meaning will always be clear from the context). Clearly,
$\varrho_{D}(X) \geq p(X)+1$ must hold for an odd set X in a (p, T)-feasible orientation of H. We define the following set function:

$$
p^{T}(X):= \begin{cases}p(X) & \text { if } X \text { is even } \tag{3}\\ p(X)+1 & \text { if } X \text { is odd }\end{cases}
$$

Note that p^{T} depends on H too. The definition implies that

$$
\begin{equation*}
p^{T}(X) \equiv|X \cap T|+i(X) \quad \bmod 2 \tag{4}
\end{equation*}
$$

for every $X \subseteq V$. Given a partition \mathcal{F}, the value

$$
\mu_{T}(\mathcal{F}):=\sum_{Z \in \mathcal{F}} p^{T}(Z)-e_{H}(\mathcal{F})
$$

is called the deficiency of \mathcal{F}, which depends also on H and p.
Claim 2.1. For given H, T, and p, the deficiency of every partition has the same parity.

Proof. According to (1), the deficiency of a partition \mathcal{F} has the same parity as $|\mathcal{E}|+$ $\sum_{Z \in \mathcal{F}} i_{H}(Z)+\sum_{Z \in \mathcal{F}} p^{T}(Z)$, which by (4) has the same parity as $|\mathcal{E}|+|T|$.

It is easy to see that if an orientation D of H is (p, U)-feasible for some $U \subseteq V$, then $|T \Delta U| \geq \max \left\{\mu_{T}(\mathcal{F}): \mathcal{F}\right.$ is a partition $\}$. The main result of this note is that if p is non-negative, intersecting supermodular, and there exists an orientation covering p, then equality can be attained.

Theorem 2.2. Let $H=(V, \mathcal{E})$ be a hypergraph, $T \subseteq V$ a fixed set, and $p: 2^{V} \rightarrow$ \mathbb{Z}_{+}an intersecting supermodular and non-negative set function for which $p(V)=0$. Suppose that H has an orientation covering p, i.e. (2)) holds. Then there exists a set $U \subseteq V$ such that

$$
\begin{equation*}
|T \Delta U|=\max \left\{\mu_{T}(\mathcal{F}): \mathcal{F} \text { is a partition }\right\} \tag{5}
\end{equation*}
$$

and H has a (p, U)-feasible orientation.
Proof. Indirectly, let us consider a counterexample where $|V|+|\mathcal{E}|$ is minimal. A partition \mathcal{F} is called non-trivial if $\mathcal{F} \neq\{V\}$. Let $\mu:=\max \left\{\mu_{T}(\mathcal{F}): \mathcal{F}\right.$ is a non-trivial partition $\}$. If μ is negative and odd, then the deficiency of the trivial partition is 1 . Let us delete an arbitrary hyperedge from H. By induction, the remaining hypergraph has a (p, T)-feasible orientation. By adding the deleted hyperedge oriented arbitrarily, we get an orientation satisfying (5) .

If μ is negative and even, then we delete an arbitrary hyperedge e from H, and let $T^{\prime}:=T \Delta\{v\}$ for some $v \in e$. By induction, this hypergraph has a $\left(p, T^{\prime}\right)$-feasible orientation. By adding the hyperarc e with head v, we get a (p, T)-feasible orientation.

In the following we assume that μ is non-negative. Let $\mathcal{F}^{*}=\left\{V_{1}, \ldots, V_{t}\right\}$ be a nontrivial partition of maximal cardinality for which $\mu_{T}\left(\mathcal{F}^{*}\right)=\mu$ holds. Let $H_{*}=\left(V_{*}, \mathcal{E}_{*}\right)$
denote the hypergraph obtained by contracting each partition member V_{i} to a node v_{i}, let p_{*} denote the contracted set function, and let $T_{*} \subseteq V_{*}$ consist of the nodes v_{i} for which $\left|V_{i} \cap T\right|+i_{H}\left(V_{i}\right)$ is odd (thus $p_{*}^{T_{*}}\left(v_{i}\right)=p^{T}\left(V_{i}\right)$ for every i). It follows from the choice of \mathcal{F}^{*} that $\sum_{v \in X} p_{*}^{T_{*}}(v)-p_{*}^{T_{*}}(X)-i_{H_{*}}(X)$ is non-negative and even for every $X \subseteq V_{*}$.

First we transform T into a set U such that $|T \Delta U|=\mu, \sum_{i=1}^{t} p_{*}^{U_{*}}\left(v_{i}\right)=\left|\mathcal{E}_{*}\right|$, and $\sum_{v \in X} p_{*}^{U_{*}}(v)-p_{*}^{U_{*}}(X)-i_{H_{*}}(X) \geq 0$ for every $X \subseteq V_{*}$. If $\mu=0$ then $U:=T$ is appropriate, so suppose that $\mu>0$. An even set $X \subseteq V_{*}$ is called critical if $\sum_{v \in X} p_{*}^{T_{*}}(v)-p_{*}^{T_{*}}(X)-i_{H_{*}}(X)=0$; thus every even singleton is critical. By the intersecting supermodularity of p, the intersection and union of intersecting critical sets are critical. If every node of V_{*} is covered by a critical even set, then there is a partition of V_{*} consisting of critical even sets, which induces a partition on V that violates (22). Thus there is an odd singleton $v_{i} \in V_{*}$ that is not covered by a critical even set. Let $T^{\prime}:=T \Delta\{v\}$ for an arbitrary $v \in V_{i}$. Then $\sum_{i=1}^{t} p_{*}^{T_{*}^{\prime}}\left(v_{i}\right)=\left|\mathcal{E}_{*}\right|+\mu-1$, and $\sum_{v \in X} p_{*}^{T_{*}^{\prime}}(v)-p_{*}^{T_{*}^{\prime}}(X)-i_{H_{*}}(X) \geq 0$ holds for every $X \subseteq V_{*}$. If we repeat the above procedure μ times, we obtain the required U.
Claim 2.3. There exists a $\left(p_{*}, U_{*}\right)$-feasible orientation D_{*} of H_{*} for which the indegree of v_{i} is $p_{*}^{U_{*}}\left(v_{i}\right)(i=1, \ldots, t)$.
Proof. We know that $\sum_{i=1}^{t} p_{*}^{U}\left(v_{i}\right)=\left|\mathcal{E}_{*}\right|$. Lemma 1.2 implies that a good orientation exists if and only if $\sum_{v \in X} p_{*}^{U_{*}}(v) \geq p_{*}^{U_{*}}(X)+i_{H_{*}}(X)$ for every $X \subseteq V_{*}$. This is satisfied due to the way U was constructed.

Let D_{*} be a fixed $\left(p_{*}, U_{*}\right)$-feasible orientation of H_{*}, and let D_{0} denote the directed hypergraph on V corresponding to the hyperarcs of D_{*}. From now on, the parity of sets is determined with respect to U or U_{*}. The next step is to show that it is possible to obtain a directed hypergraph D_{*}^{\prime} by deleting exactly one hyperarc entering each odd singleton $\left\{v_{i}\right\}$, such that $\varrho_{D_{*}^{\prime}}(X) \geq p_{*}(X)$ still holds for every $X \subseteq V_{*}$. Let $\left\{v_{i}\right\}$ be an odd singleton. If a hyperarc a with head v_{i} cannot be deleted, then there exists an even set $X_{a} \subseteq V_{*}$ such that a enters X_{a} and $\varrho_{D_{*}}\left(X_{a}\right)=p_{*}\left(X_{a}\right)$. We call such a set tight - notice that every tight set is even. Since D_{*} is a feasible orientation and p_{*} is intersecting supermodular, the intersection and union of intersecting tight sets are also tight sets. Thus if no hyperarc with head v_{i} can be deleted, then there exists a tight set $X \subseteq V_{*}$ such that every hyperarc of D_{*} with head v_{i} enters X. But this is impossible, since $\varrho_{D_{*}}(X)=p_{*}(X) \leq p\left(V_{i}\right)<p^{U}\left(V_{i}\right)=\varrho_{D_{*}}\left(v_{i}\right)$ by the monotone decreasing property of p and the fact that V_{i} is an odd set. Therefore we can delete a hyperarc a with head v_{i}, and change U_{*} by adding/deleting v_{i}, so that $\left\{v_{i}\right\}$ becomes an even set.

By repeating the above operation for every odd singleton $\left\{v_{i}\right\}$ (always considering the updated parameters when deciding the parity of sets), we get a directed hypergraph D_{*}^{\prime}. Let D_{0}^{\prime} denote the directed hypergraph on V corresponding to the hyperarcs of D_{*}^{\prime}, let H^{\prime} denote the hypergraph obtained from H by deleting the hyperedges corresponding to hyperarcs in $D_{0}-D_{0}^{\prime}$, and let U^{\prime} be the new parity requirement set, i.e. $U^{\prime}:=U \Delta\left\{v: \varrho_{D_{0}-D_{0}^{\prime}}(v)=1\right\}$. It is easy to see that $\varrho_{D_{0}^{\prime}}(X) \geq p(X)$ holds if X is the union of some members of \mathcal{F}^{*}, and $\varrho_{D_{0}^{\prime}}\left(V_{i}\right)=p\left(V_{i}\right)=p^{U^{\prime}}\left(V_{i}\right)$ for every i.

Furthermore, if D_{0}^{\prime} can be extended to a $\left(p, U^{\prime}\right)$-feasible orientation of H^{\prime}, then D_{0} can be extended similarly to a (p, U)-feasible orientation of H.

In the following we construct an orientation of $H\left[V_{i}\right]$ for every i, which together with D_{0}^{\prime} will give a $\left(p, U^{\prime}\right)$-feasible orientation of H^{\prime}. Let $p_{i}: 2^{V_{i}} \rightarrow \mathbb{Z}$ be defined as

$$
p_{i}(X):=p(X)-\varrho_{D_{0}^{\prime}}(X) \quad\left(X \subseteq V_{i}\right)
$$

Then p_{i} is intersecting supermodular, monotone decreasing, and $p_{i}\left(V_{i}\right)=0$ since $\varrho_{D_{0}^{\prime}}\left(V_{i}\right)=p\left(V_{i}\right)$. We define $U_{i} \subseteq V_{i}$ by

$$
U_{i}:=\left(U^{\prime} \cap V_{i}\right) \Delta\left\{v \in V_{i}: \varrho_{D_{0}^{\prime}}(v) \equiv 1 \quad \bmod 2\right\} .
$$

Let $p_{i}^{U_{i}}: 2^{V_{i}} \rightarrow \mathbb{Z}$ be the set function defined similarly to (3) but with respect to $H\left[V_{i}\right], p_{i}$, and U_{i}.
Claim 2.4. The following holds for each V_{i} and for every partition \mathcal{F} of V_{i} :

$$
\begin{equation*}
e_{H\left[V_{i}\right]}(\mathcal{F}) \geq \sum_{Z \in \mathcal{F}} p_{i}^{U_{i}}(Z) \tag{6}
\end{equation*}
$$

Proof. Suppose that there is a partition \mathcal{F} for which the inequality does not hold. Then $e_{H\left[V_{i}\right]}(\mathcal{F}) \leq \sum_{Z \in \mathcal{F}} p_{i}^{U_{i}}(Z)-2$ by Claim 2.1. We define the following partition of $V: \mathcal{F}^{i}:=\mathcal{F} \cup \mathcal{F}^{*}-\left\{V_{i}\right\}$. We consider the original deficiency of $\mathcal{F}^{i}: \mu_{T}\left(\mathcal{F}^{i}\right)=\mu_{T}\left(\mathcal{F}^{*}\right)-$ $p^{T}\left(V_{i}\right)+\sum_{Z \in \mathcal{F}} p^{T}(Z)-e_{H\left[V_{i}\right]}(\mathcal{F}) \geq \mu_{T}\left(\mathcal{F}^{*}\right)+\sum_{Z \in \mathcal{F}} p_{i}^{U_{i}}(Z)-e_{H\left[V_{i}\right]}(\mathcal{F})-2 \geq \mu_{T}\left(\mathcal{F}^{*}\right)=$ μ, since $\sum_{Z \in \mathcal{F}} p_{i}^{U_{i}}(Z) \leq \sum_{Z \in \mathcal{F}} p^{T}(Z)-\varrho_{D_{0}^{\prime}}\left(V_{i}\right)+1 \leq \sum_{Z \in \mathcal{F}} p^{T}(Z)-p^{T}\left(V_{i}\right)+2$. Thus \mathcal{F}^{i} would be a partition of deficiency μ with more elements than \mathcal{F}^{*}, in contradiction with the way \mathcal{F}^{*} was chosen.

By induction, Theorem 2.2 is true for $H\left[V_{i}\right], p_{i}$, and U_{i}. Thus Claim 2.4 implies that there is an orientation D_{i} of $H\left[V_{i}\right]$ such that $\varrho_{D_{i}}(X) \geq p_{i}(X)$ for every $X \subseteq V_{i}$, and $\varrho_{D_{i}}(v)$ is odd if and only if $v \in U_{i}$.

Let D^{\prime} be the directed hypergraph obtained as the union of D_{0}^{\prime} and D_{1}, \ldots, D_{t}. The above property means that $\varrho_{D^{\prime}}(X) \geq p(X)$ if $X \subseteq V_{i}$ for some i, and $\varrho_{D^{\prime}}(v)$ is odd if and only if $v \in U^{\prime}$. The construction method of D_{0}^{\prime} implies that $\varrho_{D^{\prime}}(X) \geq p(X)$ also holds if X is the union of some members of \mathcal{F}^{*}.

Suppose that there are sets for which $\varrho_{D^{\prime}}(X)<p(X)$; let X be such a set, with the property that $X \subseteq V_{i}$ or $V_{i} \subseteq X$ or $X \cap V_{i}=\emptyset$ holds for a maximum number of members of \mathcal{F}^{*}. There must be a member V_{i} of \mathcal{F}^{*} for which none of those relations are true, since X is neither a subset of a member of \mathcal{F}^{*}, nor the union of some members of \mathcal{F}^{*}. Since $\varrho_{D^{\prime}}\left(V_{i}\right)=p\left(V_{i}\right)$, the intersecting supermodularity of p implies that either $\varrho_{D^{\prime}}\left(X \cap V_{i}\right)<p\left(X \cap V_{i}\right)$ or $\varrho_{D^{\prime}}\left(X \cup V_{i}\right)<p\left(X \cup V_{i}\right)$. But both cases are impossible due to the way X was chosen.

We obtained that D^{\prime} is a $\left(p, U^{\prime}\right)$-feasible orientation of H^{\prime}. This means that if D is the directed hypergraph obtained as the union of D_{0} and D_{1}, \ldots, D_{t}, then D is a (p, U)-feasible orientation of H. This completes the proof of Theorem 2.2

3 Remarks

The Berge-Tutte formula on the size of a maximum matching in a graph $G=(V, E)$ easily follows from Theorem 2.2. To see this, we define the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by adding one node v_{e} to V for every $e \in E$, and by replacing every edge $e=u v$ in E by edges $u v_{e}$ and $v v_{e}$. For $v \in V$, let $p(\{v\}):=d_{G}(v)-1$, and let $p(X):=0$ on every other set. Let T consist of the nodes in V for which $d_{G}(v)-1$ is odd. It is easy to see that every orientation of G^{\prime} covering p determines a matching of G (an edge $e=u v$ is in the matching if the orientation contains the directed edges $u v_{e}$ and $v v_{e}$), and the number of nodes not covered by the matching equals the number of nodes that do not match the parity-specification T. Therefore Theorem 2.2 implies that if \mathcal{F} is a partition of V^{\prime} for which $\mu_{T}(\mathcal{F}):=\sum_{Z \in \mathcal{F}} p^{T}(Z)-e_{G^{\prime}}(\mathcal{F})$ is maximal, then $2 \nu(G) \geq|V|-\mu_{T}(\mathcal{F})$. The following Claim proves the Berge-Tutte formula.
Claim 3.1. Let $W:=\{v \in V:\{v\} \in \mathcal{F}\}$. then

$$
\begin{equation*}
\mu_{T}(\mathcal{F}) \leq \operatorname{odd}_{G}(W)-|W| \tag{7}
\end{equation*}
$$

where odd ${ }_{G}(W)$ denotes the number of components of $G[V-W]$ having an odd number of nodes. Thus $2 \nu(G) \geq|V|+|W|-\operatorname{odd}_{G}(W)$.

Proof. Let \mathcal{F}^{\prime} consist of the members of \mathcal{F} which are not singletons in W. Then $p(X)=0$ for every $X \in \mathcal{F}^{\prime}$. We can assume that there is no edge between two members of \mathcal{F}^{\prime}, otherwise we can replace them by their union. By this assumption, the number of sets $X \in \mathcal{F}^{\prime}$ for which $p^{T}(X)=1$ is at $\operatorname{most}^{T} \operatorname{odd}_{G}(W)$. Thus $\mu_{T}(\mathcal{F})=$ $\sum_{Z \in \mathcal{F}} p^{T}(Z)-e_{G^{\prime}}(\mathcal{F})=\sum_{v \in W}\left(d_{G}(v)-1\right)+\sum_{Z \in \mathcal{F}^{\prime}} p^{T}(Z)-e_{G^{\prime}}(\mathcal{F}) \leq \operatorname{odd}_{G}(W)-$ $|W|$.

It the next paragraphs we describe a few negative results concerning possible generalizations of Theorem [2.2. First, let us state a corollary which follows easily from Theorem [2.2.

Corollary 3.2. Let $H=(V, \mathcal{E})$ be a hypergraph, $T \subseteq V$ a fixed set, and $p: 2^{V} \rightarrow$ \mathbb{Z}_{+}an intersecting supermodular and non-negative set function for which $p(V)=0$. Suppose that there exists an orientation of H covering p^{T} (as defined in (3)). Then there exists a (p, T)-feasible orientation of H.

One may try to extend this corollary to more general set functions. A possibility is to include upper bounds on the in-degrees of the nodes (which may violate intersecting supermodularity). However, Frank, Sebő, and Tardos [3] showed that if p consists of lower and upper bounds on the in-degrees of nodes, then the equivalent of Corollary 3.2 is not necessarily true.

Another problem that is not contained in the intersecting supermodular case is to find a strongly connected orientation of a graph. In this case $p(X)$ equals 1 for every $\emptyset \neq X \subsetneq V$. In the following we describe an example where the equivalent of Corollary 3.2 for strongly connected orientations does not hold.

Let G be the graph on the left side of Figure $\mathbb{1}$, let T be the set of black nodes. Then G has no (p, T)-feasible orientation (i.e. it has no strongly connected orientation where

Figure 1
T is the set of nodes with odd in-degree). To see this, observe that in a (p, T)-feasible orientation every node of X must have at least 2 in-edges, every node of Z must have at least 2 out-edges, and every node of Y must either have an in-edge coming from X, or an out-edge going to Z. Thus the graph must have at least $2|X|+2|Z|+|Y|=38$ edges, but it has only 36 .

On the other hand, G has an orientation covering p^{T}, as shown on the right side of Figure 1. It is easy to check that the orientation is strongly connected, and the in-degree parity is incorrect only at the nodes of Y. Thus it suffices to show that the in-degree of every set separating Y is at least 2 . This can be seen by checking that there are 2 edge-disjoint paths from s to any $v \in Y$, there are 2 edge-disjoint paths from any $v \in Y$ to t, and there are 2 edge-disjoint paths from t to s.

References

[1] A. Frank, T. Jordán, Z. Szigeti, An orientation theorem with parity conditions, Discrete Applied Mathematics 115 (2001), 37-45.
[2] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discrete Applied Mathemathics 131 No. 2 (2003), 385-400.
[3] A. Frank, A. Sebő, É. Tardos, Covering directed and odd cuts, Mathematical Programming Study 22 (1984), 99-112. 385-400.

[^0]: *MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. e-mail: tkiraly@cs.elte.hu . Supported by the Hungarian National Foundation for Scientific Research, OTKA T037547 and OTKA N034040.
 **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. e-mail: jacint@cs.elte.hu . The author is a member of the MTA-ELTE Egerváry Research Group (EGRES). Supported by the Hungarian National Foundation for Scientific Research, OTKA T037547 and OTKA N034040.

