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On constructive characterizations of (k, [)-sparse
graphs

Laszlé Szegd™

Abstract

In this paper we study constructive characterizations of graphs satisfying
tree-connectivity requirements. The main result is the following: if k and [ are
positive integers and | < %, then a necessary and sufficient condition is proved
for a node beeing the last node of a construction in a graph having at most
k| X|— (k +1) induced edges in every subset X of nodes.

Keywords: sparse graph, constructive characterization

1 Constructive characterizations

A constructive characterization of a graph property is meant to be a building pro-
cedure consisting of some simple operations so that the graphs obtained from some
specified initial graph by these operations are precisely those having the property.
For example, a graph is connected if and only if it can be obtained from a node by
the operation: add a new edge connecting an existing node with either an existing
node or a new one. Another well-known result is the so called ear-decomposition of
2-connected graphs.

A graph is said to be k-edge-connected if the deletion of at most k—1 edges results in
a connected graph. From now on, adding an edge means adding a new edge connecting
two existing nodes. This new edge can be parallel to existing ones, but it cannot be
a loop unless otherwise stated. In 1976 Lovasz [10] proved the following result.

Theorem 1.1. An undirected graph G = (V, E) is 2k-edge-connected if and only if
G can be obtained from a single node by the following two operations:

(i) add a new edge (possibly a loop),
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Section 1. Constructive characterizations 2

(i) add a new node z, subdivide k ezisting edges by new nodes, and identify the k
subdividing nodes with z.

Operation (ii) is called pinching k edges.

Similar constructive characterizations for 2k + 1-edge-connectivity were given by
Mader. A directed counterpart of the previous results is also due to Mader [I]. This
kind of characterizations can be very useful. For example, Lovasz used his result to
derive Nash-Williams’ theorem [[7] on k-edge-connected orientations of graphs, while
Mader used his result to derive Edmonds’ theorem [2] on disjoint arborescences.

k-edge-connectivity is the common way to formulate one’s intuitive feeling for high
‘edge-connection’ of an undirected graph but there may be other possibilities, as well.

An undirected graph is called k-tree-connected if it contains k edge-disjoint spanning
trees. The following constructive characterization of k-tree-connected graphs was
given by Frank in [3] by observing that a combination of a theorem of Mader and a
theorem of Tutte gives rise to the following. (For a direct proof, see Tay [I4].)

Theorem 1.2. An undirected graph G = (V, E) is k-tree-connected if and only if G
can be built from a single node by the following two operations:

(i) add a new edge,
(i) add a new node z and k new edges ending at z,

(iii) pinch i (1 < i < k — 1) existing edges with a new node z, and add k — i new
edges connecting z with existing nodes.

Which constructive characterization can be considered to be good. Jiittner [8] gave
the following building procedure for graphs having a Hamiltonian cycle. Beginning
from K3 use the following two operations: adding a new edge between two existing
nodes and subdividing an edge incident to a node of degree 2 by a new node. It is
clear that this procedure builds up a graph G if and only if G has a Hamiltonian
cycle.

Why do not we think that this is a good constructive characterization? We did
not accept the characterization of k-tree-connected graphs by taking immediately &
edge-disjoint trees because it does not take the nodes one by one. Here it is satisfied.
The main problem of this characterization here is that it cannot be checked for a
graph in polynomial time if it can be obtained this way or not.

Nash-Williams [I3] proved the following theorem concerning coverings by trees. For
a graph G = (V, ), 7¢(X) denotes the number of edges of G with both end-nodes in
XCV.

Theorem 1.3 (Nash-Williams). A graph G = (V, E) is the union of k edge-disjoint
forests if and only if vo(X) < k| X| — k for all nonempty X C V.

In [5] two variants of the notion of k-tree-connectivity were considered. A graph G
(with at least 2 nodes) is called nearly k-tree-connected if G is not k-tree-connected
but adding any new edge to G results in a k-tree-connected graph. Let K5 ' denote
the graph on two nodes with k — 1 parallel edges. (Based on the work of Henneberg
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[6] and Laman [9], Tay and Whiteley [I6] gave the proof of the following theorem in
the special case of k = 2.)

Theorem 1.4. An undirected graph G = (V, E) is nearly k-tree-connected if and only
if G can be built from K5~ by applying the following operations:

(O1’) add a new node z and k new edges ending at z so that no k parallel edges can
arise,

(02’) choose a subset F' of i existing edges (1 < i < k — 1), pinch the elements of F
with a new node z, and add k — 1 new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

Actually, we proved this result in a slightly more general form. We proved the
following conjecture in case [ = 1. Let k,[ be two integers such that £ > 2 and
E>1>0. Agraph G = (V, E) is said to be (k,1)-sparse if v¢(X) < k|X|— (k+1) for
all X CV,|X| > 2. (By convention the graph with one single node is (k, [)-sparse.)

Conjecture 1.5. Let 1 <1< 52 An undirected graph G = (V, E) is (k,1)-sparse if
and only if G can be built from a single node by applying the following operations:

(P1) add a new node z and at most k new edges ending at z so that no k — 1+ 1
parallel edges can arise.

(P2) Choose a subset F' of i existing edges (1 < i < k — 1), pinch the elements of F
with a new node z, and add k — 1 new edges connecting z with other nodes so
that there are no k — 1+ 1 parallel edges in the resulting graph.

(If I = 0 is allowed, then Theorem [.7 is also a special case which has been already
verified.) By the fundamental Theorem [[.3 of Nash-Williams, a graph is (k, [)-sparse
if and only if the edge-set can be covered by k spanning trees after adding [ new edges
arbitrarily.

We call a graph highly k-tree-connected if the deletion of any existing edge leaves
a k-tree-connected graph. Frank and Kirdly [4] gave a constructive characterization
(among others) for highly 2-tree-connected graphs. In [4] this was extended for arbi-
trary k > 2.

We mention a recent result of Berg and Jorddn [1] who proved a conjecture of
Connelly. A 2-connected undirected graph G = (V. E) is a generic circuit if |E| =
2|V] —2and v¢(X) <2|X|—-3forall 2 < |X|<|V|-1.

Theorem 1.6. An undirected graph G = (V, E) is a generic circuit if and only if G
can be built up from Ky by the following operation:

o subdivide an edge uv by a new node z and add an edge zw so that w # u,v.

These graphs have a role in rigidity theory. We also remark that Whiteley in [I7]
provided some rigidity property of nearly k-tree-connected graphs.

Jackson and Jordan considers sparse graphs in connection with rigidity properties
in [[4]. In [T5] Tay proved for inductive reasons that a node of degree at most 2k — 1
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Section 2. Splittings for (k,l)-sparse graphs 4

either can be “split off”, or “reduced” to obtain a smaller nearly k-tree-connected
graph. Theorem [[.4 says that there always is a node which can be “split off”.

We have the following theorem which follows easily from the definition of (k,[)-
sparse graphs.

Theorem 1.7. Let 1 <[ < g If an undirected graph G = (V, E) can be built up
from a single node by applying the operations (P1) and (P2), then G is (k,l)-sparse.

Inspired by the previous constructive characterizations we would conjecture that
the reverse of the above theorem is also true for all k£ and [ satisfying % > [. But as
we will show in Section @, this is not true if [ > % We believe that Conjecture @
will be proved soon.

2 Splittings for (k,!)-sparse graphs

In the definition of (k,[)-sparse graphs why do not we allow bigger [ values? The
answer is that, if £ <1 and |E| = 3k — (k + 1) = 2k — [, then there is no graph on
3 nodes satisfying v¢(X) < k|X| — (k +1) for all X C V,|X| > 2. Indeed, if there
was one G = (V, E), then |E| < 3(k — 1) since an edge may have multiplicity at most
k — 1. Since 2k — [ > 3k — 3l, we get a contradiction.

With the same reasoning the following can be proved.

Lemma 2.1. There is no graph on m > 3 nodes with |E| = km — (k + 1) satisfying

16(X) < k|IX| = (k+1) for all X CV,|X| > 2 if 25k <.

Proof. Since |E| < m(”;_l) (k — 1) by the maximal multiplicity of an edge, we have
km — (k+1) = |E| < ™@=U(k — ). But

km — (k +1) —W(k—l) =
(m? —m —2)l — (m* —3m + 2)k _ (m—=2)((m+ 1)l — (m —1)k) -
2 2
% ((m + 1)’2—‘11@ — (m— 1)/<;) —0,
a contradiction. O

That is why we study here only the case of [ < g

In graph G splitting off a pair zu and zv of edges for distinct v and v means that
we delete these two edges and add a new edge uv (maybe parallel to the other existing
edges) to G. After applying this operation, uv is called a split edge. A splitting off
in a (k,l)-sparse graph G is admissible if the resulting graph on node set V — z is
(k,l)-sparse.
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Section 2. Splittings for (k,l)-sparse graphs )

Definition 2.2. Let bg denote the following function for any X C V| |X| > 2
ba(X) == k|X| = (k+1) = ya(X).

By this definition a graph G = (V| F) is (k,[)-sparse if and only if b5(X) > 0 for
all subsets X C V,|X| > 2. If bg(X) =0 and X # V, then X is said to be a G-tight
set. Furthermore G is a union of k edge-disjoint spanning trees after adding arbitrary
[ edges if and only if G is (k,[)-sparse and bg (V') = 0. We will abbreviate bg by b.

Observation 2.3. Splitting off zu and zv at node z is not admissible if and only if
there exists a tight subset in V' — z containing v and v.

We say that splitting off j disjoint pairs of edges (1 < j < k — 1) at node z is
admissible if it consists of admissible splittings. Obviously the order of the pairs in a
splitting sequence is irrelevant. The length of a splitting sequence S is the number of
its pairs and it is denoted by |S|. Gs denotes the graph obtained after applying the
splitting sequence S.

An admissible splitting sequence at node z of length dg(z) — k (which number is
denoted by ) is called a full splitting for dg(z) > k + 1. For the sake of convenience,
at a node z with degree at most k the inverse of operation (P1) (that is, the deletion
of z and all of its adjacent edges) is also called a full splitting. The main result of this
chapter is a necessary and sufficient condition of a node admitting a full splitting. We
hope that it will lead to a proof of Conjecture [ just like in the special case of [ = 1.

Note that bg(X) is an upper bound for the number of split edges induced by X C
V — z provided by an admissible sequence of splittings at some node z.

The next four claims are about (k,)-sparse graphs. (dg(X,Y) is defined to be the
number of edges between the node-sets X and Y'.)

Claim 2.4. If X,)Y CV and | X NY| > 2, then
b(X) +b(Y) = (X NY) +b(X UY) +d(X,Y).

Proof. b(X) +b(Y) = k[X| = (k+1) = 16(X) + kY] = (k+1) — 76(Y) = k(| X]| +
V) =2(k+1) = (ve(XNY) +96(XUY) —de(X,Y)) = KX NY| = (k+1) —ya(X N
Y)+EXUY|=(E+1)—7(XUY)+de(X,Y)=b0(XNY)+b(XUY)+d(X,Y). O

Claim 2.5. If XY CV and | X NY| =1, then
b(X)+bY)=bXUY)—-I1+d(X,Y).

Proof. b(X)+b(Y) = k|X[—(k+1) —16(X) + kY| = (k+1) =ye(Y) = k(X[ +[V] -
D= (k+1) =1=(c(X) +76(Y)) = kX UY[=(k+1) =1 = (1c(XUY) —da(X,Y)) =
b(XUY)—-I1+d(X,Y). O

Claim 2.6. If X;, X5, X5 CV and | X;NX,,|=1for1 <j<m<3and|XiNXyN
X3| =0, then

b(o X;) < i b(X;) — k + 21.

j=1 j=1
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Section 3. Full splittings in (k,l)-sparse graphs 6

Proof. b(U7_, X;) = k|U, Xj| — (k+1) —ve(U_, X;) < k(01X —3) — (k+
D) =30 16(X) = X5 (RIXG) = (B +1) —16(X;) =k +20 = 357, b(X;) =k +20. O
Remark. Especially, all of X7, X5, X3 cannot be tight at the same time for & > 2] + 1.
If £ =2l and Xy, X5, X3 are tight sets, then U?Zl X is also tight.

Claim 2.7. Let z €V and X CV — z be a maximal tight set containing the distinct
nodes c1,co. Let d be a node in V — X — z. If there is a tight set in V — z containing
c1 and d, then there is no tight set in V — z containing cy and d.

Proof. According to Claim P4, P N X = {¢;} since X is maximal. By Claims P.4
and £.§ we obtain that there is no tight set containing ¢y and d. O

Let G be a (k,1)-sparse graph. Since ), dg(v) = 2|E| < 2k|V[-2(k+1) < 2k|V],
it follows that there is a node z of G with dg(z) < 2k — 1.

Claim 2.8. Let G = (V,E) be a (k,l)-sparse graph. dg(u,v) < k —1 for any two
nodes u,v.

Proof. By the definition of (k,1)-sparse graphs, v¢({u,v}) < k[{u,v}|—(k+1) = k—1
for set {u,v}. O

3 Full splittings in (k,[)-sparse graphs

In this section we derive a necessary and sufficient condition for an arbitrary specified
node to admit a full splitting.

Let k>2and 0 <[ < g Let G be a (k,[)-sparse graph. Consider a node z with
degree at most 2k—1 for which there is no full splitting. If dg(2) < k, then the deletion
of z and its adjacent edges results in a (k,[)-sparse graph, hence dg(2) > k + 1.

Assume that a longest admissible splitting sequence S at z is not full. Since z does
not admit a full splitting, |S| < i :=dg(z) — k.

Let Np(w) denote the set of the neighbours of a node w in graph D.

Claim 3.1. If |[Ngs(2)| > 2, then there exists a mazimal Ggs-tight subset Ppa.x of
V' — z including Ng4(2).

Proof. Let za and zb denote two non-parallel edges. Since (za, zb) is not an admis-
sible splitting off, there is a Gg-tight set X C V — z containing a and b. According
to Claim £.4, there is a maximal tight set P C V — z containing a and b.

If there is another neighbour ¢ of z which is not in P, then there is a tight set
Y C V — z containing a and ¢, since (za, z¢) is not an admissible splitting off. Since
P is maximal, Y N P = {a}. By Claim P.q (2b, z¢) is an admissible splitting off, a
contradiction, that is, P contains all the neighbours of z. O

Claim 3.2. If |Ng,(2)| > 2, then there exists a split edge which is disjoint from the
nodes of Ppax.
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Section 3. Full splittings in (k,l)-sparse graphs 7

Proof. Since there is no admissible splitting off at z in G, according to Claim Bl
there exists Pp.x €V — z. Let j, h, m denote the number of split edges with exactly,
respectively, 2, 1, 0 end-node in P.y. j+ h+m = |S| < i since S is not full.

k|Pmax + Z| - (k + l) Z W/G(Pmax + Z) - /YG’S(Pmax) +] + h + ng(ZaPmax)

:’sz(PmaX)+]+h+(k+Z_2(]+h+m))
=76s(Puax) T+ (G — (G +h+m)) —m > k|Pyax| —(k+1)+k—m
= k|Ppax + 2| — (kK + 1) —m,

which implies m > 0. O

Claim 3.3. If|Ng,(2)| > 2, then |[Ngs(2)| = 2. There is a neighbour s of z for which
das(z,s) = 1.

Proof. First assume that |Ngg(z)| > 3. Let aj,as, as denote three of these nodes.
By Claim B.9 there is a split edge uv disjoint from P.. Let J = {1,2,3}.

By Claim 2.7, S — (zu, 2v) U (zu, za;) is an admissible splitting sequence for at least
two elements j of J. The same is true for S—(zu, zv)U(zv, za;). Hence we may assume
that S — (zu, 2v) U (zu, za;) and S — (zu, 2v) U (zv, zas) are both admissible splitting
sequences. We claim that &' := § — (zu, 2v) U (zu, za;) U (2v, zay) is an admissible
splitting sequence. If not, then there is a tight set Y in Gs — z containing u, v, ay, as.
Then, according to Claim 2.4, P,.c UY is a tight set in Gs — 2z contradicting the
maximality of Ppa.y. The length of &’ is greater than the length of S, a contradiction.

Now assume that [Ng.(z)| = 2. Let s and ¢ be the two neighbours of z and assume
that dgs(z,s) > 2 and dg(z,t) > 2. By Claim B.2 there is a split edge uv disjoint
from P, .. According to Claim .7 S — (zu, zv) U (zu, 2t) or S — (zu, zv) U (zu, z8) is
an admissible splitting sequence. This also holds for zv instead of zu.

Hence at least one of the following splitting sequences is admissible: S — (zu, zv) U
(zu, zt) U (zv, 2t), S — (zu, zv) U (zu, 2t) U (20, 25), S — (zu, 20) U (zu, zs) U (20, 2t), S —
(zu, zv) U (zu, zs) U (zv, 2s)), a contradiction. O

Now we prove that if dg(z) is at most k + [, then a full splitting always exists at z.

Proposition 3.4. Let G be a (k,l)-sparse graph.If z € V has degree at most k + 1,
then there exists a full splitting at z.

Proof. If dg(2) is at most k, then if we delete z with its adjacent edges, then we
obviously get a (k,[)-sparse graph, that is, z admits a full splitting.

We claim that there always exists a full splitting at a node z with degree k+7 where
1 <4 < [. There is no G-tight set X C V — z which contains all the neighbours of z
because, if there was one, then bg(X + 2) = bg(X) +k —da(2) <0+k—(k+1) <0
which contradicts that G is (k,[)-sparse. Since there are no edges with multiplicity
greater than £ — [, the neighbour-set of z in G has at least two elements, so by
Observation 2.3 there is an admissible splitting off at z. Hence the longest admissible
splitting sequence at z has length at least 1.
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Section 3. Full splittings in (k,l)-sparse graphs 8

Let S be a longest admissible splitting sequence at z. If |S| > 4, then we are done.
If h:=|S| <i,thendgg(z) > da(2)—2(i—1)=k+i—-2i+2=k—i4+2>k—1+2.
Hence by Claim .8, [Ngs(2)| > 3 or |[Ngs(2)| = 2 and both neighbours are joined to
z by at least two edges. By Claim B.3 § is not longest, a contradiction. O

Let i :=dg(z) — k (here 2 <i < k—1). Call anode z small if k+1+1<dg(z) <
2k — 1.

Theorem 3.5. A small node z of G does not admit a full splitting if and only if z has
a neighbour t and there is a family P, of subsets of V' — z with at least two elements
such that:

XNnY ={t} for X,Y € P., (%)

(X)) <dalz,t) = (k—i) — da(z,V — 2 — UP.), (s5)

XeP.
where UP, denotes | Jyep. X

Proof. Suppose first that ¢t and P, satisfy (x), (x*) and let S be an admissible splitting
sequence. The number of split edges incident to ¢ with other end-nodes outside of
UP, is at most dg(z, V — 2z — UP,). The number of split edges incident to t with their
other end-nodes in UP, is at most »_y.p b(X). In a full splitting we would have at
least dg(z,t) — (k—1) split edges incident to ¢ which implies by (*x) that S is not full.

To see the other direction, let S be a longest admissible splitting sequence at z for
which the following pair is lexicographically maximal: (|Ngg(2)|, | Pmax|) where Ppax
denotes a maximal tight set in G which includes Ng(2) but does not contain z. If
there is no such a tight set, then let Py., := 0. Since z does not admit a full splitting,
|S| < i. From now on Gs-tight is abbreviated by tight.

By Claim B3 there are only the following two Cases. An edge not incident to t is
called t-disjoint.

CASE 1. |Ng,(2)| = 2 and z has a neighbour s for which dg (2, s) = 1.

Let u € V —t — s be an arbitrary node for which there is a t-disjoint split edge uwv.
There is a tight set X C V' —z containing u and ¢, otherwise &’ := S —(zu, zv)U(zu, zt)
is an other longest admissible splitting sequence for which if v # s, then |Ng, (2)| = 3,
if v = s and dgg(2,t) > 3, then dg, (2,1) > dag,(2,5) > 2, which is a contradiction
by Claim B.3. If v = s and dg¢(z,t) = 2 and dg4 (2, s) = 1, then by Claim B.9 there is
a split edge ab which is disjont from P,,,, U{u}. Since §* :=§ — (za, 2b) — (zu, zs) U
(za, zs) U (zb, zs) U (zu, zt) is not admissible, we have a tight set in Gg containing
a,b,t, s,u contradicting the maximal choice of P, by Claim B.§ (it also contradits
that there is no tight set containing ¢ and u). (By the previous cases and Claim P.§,
there is no tight set containing (a or b) and s.)

Let P, be such a tight set containing minimal number of ¢-disjoint split edges which
is inclusion-wise maximal. Similarly, there is a tight set X C V — 2z containing s and ¢,
otherwise SU (zs, zt) is a longer admissible splitting sequence than S. Let P; be such
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Section 3. Full splittings in (k,l)-sparse graphs 9

a tight set containing minimal number of t-disjoint split edges which is inclusion-wise
maximal.

Let P, := {X C V —z: 3Ju € V incident to a t-disjoint split edge such that
X = P, or X = P;}. For nodes u # v, P, can be equal to P,, but there is only one
copy of them in P,. Now we prove some essential properties of P,.

z

X

Figure 1: A set-system P,.

Proposition 3.6. There is no t-disjoint split edge in any member X of P,.

Proof. First let us assume that X = P,. Let us suppose indirectly that there is a
t-disjoint split edge ab in P;. &' := S — (za, zb) U (zt, zs) is an admissible splitting
sequence with three remaining neighbours of z in G/, which is a contradiction by
Claim B33.

Now let us assume X = P, and u # s. By the definition of P, we have a t-disjoint
split edge uv. Let us suppose indirectly that there is a t-disjoint split edge ab in P,.
We may suppose that b # .

If v # s, thenov ¢ P, (if v € P,, then S — (zu, zv) U (2t, zu) is an admissible
splitting sequence with the same length but with one more remaining neighbour of z).
P,N P, = {t} according to Claim B.4. S — (za, 2b) — (zu, zv) U (2t, zu) U (zv, za) is an
other longest splitting sequence with one more remaining neighbour of z, so it cannot
be admissible, that is, there is a set Y C V' — 2 containing a, u, v, t, which is tight in
Gs. Y does not contain b, hence the tight set Y N P, contains a smaller number of
split edges than P,, a contradiction. If v = s and v ¢ P,, then the proof is the same.

Suppose that v = s and v € P,. Let us consider a split edge cd which is disjoint
from P.x and hence from P, (such an edge exists according to Claim B.2). By
the previous paragraph tight sets P. and P; do not contain t-disjoint split edges.
According to Claim R.4, P. N Pyax = {t}.

According to Claim B, &' := S — (z¢, zd) U (z¢, zs) is an admissible splitting
sequence. For 8" := &' — (zu, zv) U (2t, zu), the cardinality of Ng,(2) = {t,s,d} is
3, hence §” cannot be admissible, that is, there is a tight set Y C V — z containing
¢, s,u,t in Ggr. Y U Ppax (in Gs/) contradicts the choice of S by the maximality of
Prax- O

Now it follows that (*x) holds for P,.
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Section 3. Full splittings in (k,l)-sparse graphs 10

Claim 3.7. Let X,Y be two distinct members of P,. X NY = {t}.

Proof. Let us suppose X = P, and Y = P, for some u,v € V. By Proposition B.0,
P, ¢ P, 1f |P,N P, > 2, then by Claim P.4 dg (P,, P,) = 0 and P, U P, is tight.
Since it does not contain any t-disjoint split edge, it contradicts the maximal choice
of P,. O

Hence (x) holds for P,.
CASE 2. |Ng,(2)| = 1. Let t denote the only neighbour of z in Gs.

Claim 3.8. There exists a t-disjoint split edge.

Proof. Let [ and m be the number of split edges incident to, respectively, not incident
to t. Since S is not full, I +m = |S| < i. In the original graph G by Claim P.§:

k—1>dg(z,t) =dg(z)—l—2m=k+i—1l—-2m=k+(i—1l—m)—m >k —m,

which implies that m > 1. O

Since S is not a full splitting: dgs(2) > k+i—2(i—1) =k —1i+2 > 3. Now we
define P,. Let u € V —t be an arbitrary node for which there is a t-disjoint split edge
uv. There is a tight set X C V' — 2z containing u and ¢, otherwise &' := S — (zu, zv) U
(zu, zt) is an other longest admissible splitting sequence for which [Ng, ()| = 2, which
contradicts the choice of S. Let P, be such a tight set containing minimal number of
t-disjoint split edges which is inclusion-wise maximal. Let P, :={X CV —z:Ju eV
incident to a t-disjoint split edge such that X = P,}. (The only difference to Case 1.
is that there is no set P, here.)

Proposition 3.9. There is no t-disjoint split edge in an arbitrary element of P,.

Proof. Assume X = P,. By the definition of P, we have a t-disjoint split edge uv.
Let us suppose indirectly that there is a t-disjoint split edge ab in P,. We may suppose
that b # u. v ¢ P,, otherwise S — (zu, zv)U(zt, zu) is an admissible splitting sequence
with the same length but with one more remaining neighbour of z. P, N P, = {t}
according to Claim R.4. § — (za, 2b) — (zu, zv) U (2t, zu) U (zv, za) is an other longest
splitting sequence with one more remaining neighbour of z, so it cannot be admissible,
that is, there is a set Y C V — z containing a, u, v, t, which is tight in Gs. Y does not
contain b, hence the tight set Y N P, contains a smaller number of split edges than
P,, a contradiction. O

Now it follows that (xx) holds for P,.
Claim 3.10. Let X,Y be two distinct members of P,. X NY = {t}.

Proof. Let us suppose X = P, and Y = P, for some u,v € V. By Proposition B.G,
P, ¢ P, If |P,N P, > 2, then by Claim P.4 dg.(P,, P,) = 0 and P, U P, is tight.
Since it does not contain any ¢-disjoint split edge, it contradicts the maximal choice
of P,. O

Hence () holds for P,.
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Section 4. Counterexamples 11

We have showed that if a small node z does not admit a full splitting, then the
neighbour ¢ of z and set-system P, satisfy both (x) and (). 0o

We state the following easy consequence of Theorem B.5. The neighbour ¢ of z in
Theorem B.j is called the blocking node of z.

Corollary 3.11. Let z be a small node in a (k,1)-sparse graph G. If z does not admit
a full splitting, then the blocking node t of z is uniquely determined.

4 Counterexamples

In this section we give a (k,[)-sparse graph for any k& > 2, % <l < g which cannot
be obtained by the operations of Theorem [[.7. This is surprising because we managed
to prove almost all the ingredients of the proof of the constructive characterization
of (k,1)-sparse graphs also for these graphs. We remark that, for the given graph
Gy = Ve, Egy)s |Viey| = 15k — 51 4 10, which is 60 in the smallest case (4,2)
and 85 in case (6, 3).

Let us consider m := 3k — [ + 2 copies of the following graph G; = (V1, E1) and let
the subscripts go from 1 to m. Graph Gy has |Vi| = 5 nodes and | E;| = k|Vi|—(k+1) =
4k—1 edges. Edges a,dy, bidy, c1dy, 21dy have multiplicity k—1, by 21, c121 has [, a;b; has
[ —1, ayz; has 1, and all the other edges multiplicity 0. See Figure B, the multiplicity
of the edges are shown in the figure.

Figure 2: Graph G,

It is easy to see, that G is (k,1)-sparse since it can be obtained by the operations
(1e 21, dl, C1, bl, CL1).
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Section 4. Counterexamples 12

Let G(M) = (V(k:,l)7 E(M)) where V(k,l) = U}”:lvj, E(k,l) = UTZlEj U E* and E* :=
K1 U KQ U Kg U KLQ U K372 U Klyg, where

Ky ={aa;:1<i<j<k+1}

Ky={cic; : 2k —1+3<j<3k—1+2}U{ccj:2k—1+3<i<j<3k—1+2}
Ky={bbj :k+2<j<2k—1+2}U{bb; :k+2<i<j<2k—1+2}
Kip={ba;j:2<i<k+1,k+2<j<2k—10+2}

Kso={bic; : 2k —14+3<i<3k—1+2,k+2<j<2k—1+2}
Kig={ca;:2<i<k+12k—-1+3<j<3k—-1+2}

See Figure B. We will use the following two facts about E*
o dp«(v) <kforallveV,
o dg,,(Vi,V;) =1forall 1 <i<j<3k—1+2.

a h ¢
g, Carcle2
% .
", Corcl+a
%1 Cortra

QGZ QGB b2k-|+2

Figure 3: A subgraph of G

It is clear that |Vigy| = 5m = 53k — 1+ 2) = 15k — 50 + 10 and [Eyy| =
m|Ey| + |E*| = m(4k — 1) + 3m(3k — 1+ 1). In G ;) we have the following degrees for
any 1 <j3<m

d(a;) = d(b;) = d(b;) = 2k,

k
d(d;) = 4(k — 1) = 45 = 2%,
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Section 4. Counterexamples 13

Hence the only small nodes are z;-s. Since {a;,d;},{b;,d;},{c;, d;} are tight sets, there
is no full splitting at z;, hence graph G(;;) cannot be obtained by the operations.

It is remained to see that G, is (k,1)-sparse for the given k and [. We are going
to prove that b(X) > 0 for all X C V(3. It can be shown easily that if X C Vi
includes at least two nodes of V; for some j, then b(X) > b(X UV}). Hence it is enough
to prove the condition for subsets X either including V; or having the cardinality of
the intersection with it at most 1 for all j.

Let n denote the number of V;’s that are included entirely in X and r denote the
number of V;’s having a one-element intersection with X. |X| = 5n + r, hence we
must prove

|EX]| <klX|—(k+1)=k(Bn+1r)—(k+1)=5kn+kr—k—1. (1)
We have
|E[X] — E*| = n|Ey| = n(4k = 1).
nn+r—1)+rk
2 )

since d(V;,V;) =1 and d(a;, V = V;) =d(¢;, V = V;) =k, d(b;,V = V;) =k —1+1<k
for all 7, 7. Hence

[EIX]NE"] <

n+r—1)+kr
S )

We will prove that the difference of the right hand side of ([l) and (B) is at least 0,
which will finish the proof that G is (k,[)-sparse. Let us compute, but first multiply
by 2,

BX]| = |B(X] - B*| + |BIX] 0 B*| < n(4k— 1) +

2(5kn+kr-k-l>-2(n(4k_g)+”(n+'f’—1)+kr)

2
(10kn + 2kr — 2k — 21) — (8kn — 2ln 4+ n* + nr —n + kr) =
10kn + 2kr — 2k — 2l — 8kn +2ln —n?* —nr +n — kr =
2kn + kr — 2k — 2l +2ln —n® —nr +n =

(n+7r)(k—n)+nk+20+1)—2(k+1). (3)

If 2 < n <k, then (f) is obviously at least 0. n+r <m =3k — 1+ 2. If n > k, then
we continue the computation:

>m(k—n)+nk+20+1)—2k+1) =
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Section 5. Open problems 14

Bk —14+2)k—n)+nk+20+1)—2(k+1) =

Bk —1+2)k+nBl—2k—1)—2(k+1) >
since 3l — 2k — 1 <0,

> Bk —1+2)k+ Bk —1+2) 3l —2k—1) —2(k+1) =
Bk —1+2)(3l —k—1) —2(k+1) =
3k —1+2) 3l —k —2) + (3k — 1 +2) — 2k — 2l =
(Bk—1+2)(3l—k—2)+ (k—31+2) =

3k —1+1)(3l — k —2). (4)

Since | > £2 that is, 3 > k+2, ([]) is at least 0. If n = 1 or 0, E[X] < k|X|—(k+1)
can be shown with a much shorter computation. Hence we proved that G is really
(k,1)-sparse.

5 Open problems

The main problem is proving Conjecture [[J in the remaining cases. Another im-
portant question is finding an appropriate constructive characterization theorem for
(k,l)-sparse graphs if % <1 <% One possibility if the following. If we allow i = k
in (P2), is the reverse of Theorem [.7 true?

This operation can be allowed in the cases which are already proved, of course, but
it is not necessary.

Are the examples of Section f the graphs with the smallest number of nodes? We
think they are.

Give a constructive characterization for (k,[)-sparse graphs, if % <! < k. We may
have to allow operations which glue together bigger graphs and the nodes are not
considered one by one.

A graph is said to be [k, m]-sparse, if 0 < m < k and y5(X) < k|X| — m for all
X CV,|X| > 2. These graphs have not a direct connection to covering by trees but
may have a similar construction.
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