
Egerv́ary Research Group

on Combinatorial Optimization

Technical reportS
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On constructive characterizations of (k, l)-sparse
graphs

László Szegő?

Abstract

In this paper we study constructive characterizations of graphs satisfying
tree-connectivity requirements. The main result is the following: if k and l are
positive integers and l ≤ k

2 , then a necessary and sufficient condition is proved
for a node beeing the last node of a construction in a graph having at most
k|X| − (k + l) induced edges in every subset X of nodes.

Keywords: sparse graph, constructive characterization

1 Constructive characterizations

A constructive characterization of a graph property is meant to be a building pro-
cedure consisting of some simple operations so that the graphs obtained from some
specified initial graph by these operations are precisely those having the property.
For example, a graph is connected if and only if it can be obtained from a node by
the operation: add a new edge connecting an existing node with either an existing
node or a new one. Another well-known result is the so called ear-decomposition of
2-connected graphs.

A graph is said to be k-edge-connected if the deletion of at most k−1 edges results in
a connected graph. From now on, adding an edge means adding a new edge connecting
two existing nodes. This new edge can be parallel to existing ones, but it cannot be
a loop unless otherwise stated. In 1976 Lovász [10] proved the following result.

Theorem 1.1. An undirected graph G = (V,E) is 2k-edge-connected if and only if
G can be obtained from a single node by the following two operations:

(i) add a new edge (possibly a loop),
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Section 1. Constructive characterizations 2

(ii) add a new node z, subdivide k existing edges by new nodes, and identify the k
subdividing nodes with z.

Operation (ii) is called pinching k edges.
Similar constructive characterizations for 2k + 1-edge-connectivity were given by

Mader. A directed counterpart of the previous results is also due to Mader [11]. This
kind of characterizations can be very useful. For example, Lovász used his result to
derive Nash-Williams’ theorem [12] on k-edge-connected orientations of graphs, while
Mader used his result to derive Edmonds’ theorem [2] on disjoint arborescences.
k-edge-connectivity is the common way to formulate one’s intuitive feeling for high

’edge-connection’ of an undirected graph but there may be other possibilities, as well.
An undirected graph is called k-tree-connected if it contains k edge-disjoint spanning

trees. The following constructive characterization of k-tree-connected graphs was
given by Frank in [3] by observing that a combination of a theorem of Mader and a
theorem of Tutte gives rise to the following. (For a direct proof, see Tay [14].)

Theorem 1.2. An undirected graph G = (V,E) is k-tree-connected if and only if G
can be built from a single node by the following two operations:

(i) add a new edge,

(ii) add a new node z and k new edges ending at z,

(iii) pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

Which constructive characterization can be considered to be good. Jüttner [8] gave
the following building procedure for graphs having a Hamiltonian cycle. Beginning
from K3 use the following two operations: adding a new edge between two existing
nodes and subdividing an edge incident to a node of degree 2 by a new node. It is
clear that this procedure builds up a graph G if and only if G has a Hamiltonian
cycle.

Why do not we think that this is a good constructive characterization? We did
not accept the characterization of k-tree-connected graphs by taking immediately k
edge-disjoint trees because it does not take the nodes one by one. Here it is satisfied.
The main problem of this characterization here is that it cannot be checked for a
graph in polynomial time if it can be obtained this way or not.

Nash-Williams [13] proved the following theorem concerning coverings by trees. For
a graph G = (V,E), γG(X) denotes the number of edges of G with both end-nodes in
X ⊆ V .

Theorem 1.3 (Nash-Williams). A graph G = (V,E) is the union of k edge-disjoint
forests if and only if γG(X) ≤ k|X| − k for all nonempty X ⊆ V .

In [5] two variants of the notion of k-tree-connectivity were considered. A graph G
(with at least 2 nodes) is called nearly k-tree-connected if G is not k-tree-connected
but adding any new edge to G results in a k-tree-connected graph. Let Kk−1

2 denote
the graph on two nodes with k − 1 parallel edges. (Based on the work of Henneberg
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[6] and Laman [9], Tay and Whiteley [16] gave the proof of the following theorem in
the special case of k = 2.)

Theorem 1.4. An undirected graph G = (V,E) is nearly k-tree-connected if and only
if G can be built from Kk−1

2 by applying the following operations:

(O1’) add a new node z and k new edges ending at z so that no k parallel edges can
arise,

(O2’) choose a subset F of i existing edges (1 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

Actually, we proved this result in a slightly more general form. We proved the
following conjecture in case l = 1. Let k, l be two integers such that k ≥ 2 and
k
2
≥ l ≥ 0. A graph G = (V,E) is said to be (k, l)-sparse if γG(X) ≤ k|X|− (k+ l) for

all X ⊆ V, |X| ≥ 2. (By convention the graph with one single node is (k, l)-sparse.)

Conjecture 1.5. Let 1 ≤ l < k+2
3

. An undirected graph G = (V,E) is (k, l)-sparse if
and only if G can be built from a single node by applying the following operations:

(P1) add a new node z and at most k new edges ending at z so that no k − l + 1
parallel edges can arise.

(P2) Choose a subset F of i existing edges (1 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no k − l + 1 parallel edges in the resulting graph.

(If l = 0 is allowed, then Theorem 1.2 is also a special case which has been already
verified.) By the fundamental Theorem 1.3 of Nash-Williams, a graph is (k, l)-sparse
if and only if the edge-set can be covered by k spanning trees after adding l new edges
arbitrarily.

We call a graph highly k-tree-connected if the deletion of any existing edge leaves
a k-tree-connected graph. Frank and Király [4] gave a constructive characterization
(among others) for highly 2-tree-connected graphs. In [5] this was extended for arbi-
trary k ≥ 2.

We mention a recent result of Berg and Jordán [1] who proved a conjecture of
Connelly. A 2-connected undirected graph G = (V,E) is a generic circuit if |E| =
2|V | − 2 and γG(X) ≤ 2|X| − 3 for all 2 ≤ |X| ≤ |V | − 1.

Theorem 1.6. An undirected graph G = (V,E) is a generic circuit if and only if G
can be built up from K4 by the following operation:

• subdivide an edge uv by a new node z and add an edge zw so that w 6= u, v.

These graphs have a role in rigidity theory. We also remark that Whiteley in [17]
provided some rigidity property of nearly k-tree-connected graphs.

Jackson and Jordán considers sparse graphs in connection with rigidity properties
in [7]. In [15] Tay proved for inductive reasons that a node of degree at most 2k − 1
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Section 2. Splittings for (k, l)-sparse graphs 4

either can be “split off”, or “reduced” to obtain a smaller nearly k-tree-connected
graph. Theorem 1.4 says that there always is a node which can be “split off”.

We have the following theorem which follows easily from the definition of (k, l)-
sparse graphs.

Theorem 1.7. Let 1 ≤ l ≤ k
2
. If an undirected graph G = (V,E) can be built up

from a single node by applying the operations (P1) and (P2), then G is (k, l)-sparse.

Inspired by the previous constructive characterizations we would conjecture that
the reverse of the above theorem is also true for all k and l satisfying k

2
≥ l. But as

we will show in Section 4, this is not true if l ≥ k+2
3

. We believe that Conjecture 1.5
will be proved soon.

2 Splittings for (k, l)-sparse graphs

In the definition of (k, l)-sparse graphs why do not we allow bigger l values? The
answer is that, if k

2
< l and |E| = 3k − (k + l) = 2k − l, then there is no graph on

3 nodes satisfying γG(X) ≤ k|X| − (k + l) for all X ⊆ V, |X| ≥ 2. Indeed, if there
was one G = (V,E), then |E| ≤ 3(k − l) since an edge may have multiplicity at most
k − l. Since 2k − l > 3k − 3l, we get a contradiction.

With the same reasoning the following can be proved.

Lemma 2.1. There is no graph on m ≥ 3 nodes with |E| = km − (k + l) satisfying
γG(X) ≤ k|X| − (k + l) for all X ⊆ V, |X| ≥ 2 if m−1

m+1
k < l.

Proof. Since |E| ≤ m(m−1)
2

(k − l) by the maximal multiplicity of an edge, we have

km− (k + l) = |E| ≤ m(m−1)
2

(k − l). But

km− (k + l)− m(m− 1)

2
(k − l) =

(m2 −m− 2)l − (m2 − 3m+ 2)k

2
=

(m− 2)((m+ 1)l − (m− 1)k)

2
>

1

2

(
(m+ 1)

m− 1

m+ 1
k − (m− 1)k

)
= 0,

a contradiction. 2

That is why we study here only the case of l ≤ k
2
.

In graph G splitting off a pair zu and zv of edges for distinct u and v means that
we delete these two edges and add a new edge uv (maybe parallel to the other existing
edges) to G. After applying this operation, uv is called a split edge. A splitting off
in a (k, l)-sparse graph G is admissible if the resulting graph on node set V − z is
(k, l)-sparse.
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Section 2. Splittings for (k, l)-sparse graphs 5

Definition 2.2. Let bG denote the following function for any X ⊆ V, |X| ≥ 2

bG(X) := k|X| − (k + l)− γG(X).

By this definition a graph G = (V,E) is (k, l)-sparse if and only if bG(X) ≥ 0 for
all subsets X ⊆ V, |X| ≥ 2. If bG(X) = 0 and X 6= V , then X is said to be a G-tight
set. Furthermore G is a union of k edge-disjoint spanning trees after adding arbitrary
l edges if and only if G is (k, l)-sparse and bG(V ) = 0. We will abbreviate bG by b.

Observation 2.3. Splitting off zu and zv at node z is not admissible if and only if
there exists a tight subset in V − z containing u and v.

We say that splitting off j disjoint pairs of edges (1 ≤ j ≤ k − 1) at node z is
admissible if it consists of admissible splittings. Obviously the order of the pairs in a
splitting sequence is irrelevant. The length of a splitting sequence S is the number of
its pairs and it is denoted by |S|. GS denotes the graph obtained after applying the
splitting sequence S.

An admissible splitting sequence at node z of length dG(z) − k (which number is
denoted by i) is called a full splitting for dG(z) ≥ k + 1. For the sake of convenience,
at a node z with degree at most k the inverse of operation (P1) (that is, the deletion
of z and all of its adjacent edges) is also called a full splitting. The main result of this
chapter is a necessary and sufficient condition of a node admitting a full splitting. We
hope that it will lead to a proof of Conjecture 1.5 just like in the special case of l = 1.

Note that bG(X) is an upper bound for the number of split edges induced by X ⊆
V − z provided by an admissible sequence of splittings at some node z.

The next four claims are about (k, l)-sparse graphs. (dG(X, Y ) is defined to be the
number of edges between the node-sets X and Y .)

Claim 2.4. If X, Y ⊆ V and |X ∩ Y | ≥ 2, then

b(X) + b(Y ) = b(X ∩ Y ) + b(X ∪ Y ) + d(X, Y ).

Proof. b(X) + b(Y ) = k|X| − (k + l) − γG(X) + k|Y | − (k + l) − γG(Y ) = k(|X| +
|Y |)− 2(k+ l)− (γG(X ∩Y ) + γG(X ∪Y )− dG(X, Y )) = k|X ∩Y | − (k+ l)− γG(X ∩
Y ) + k|X ∪Y | − (k+ l)− γG(X ∪Y ) + dG(X, Y ) = b(X ∩Y ) + b(X ∪Y ) + d(X, Y ). 2

Claim 2.5. If X, Y ⊆ V and |X ∩ Y | = 1, then

b(X) + b(Y ) = b(X ∪ Y )− l + d(X,Y ).

Proof. b(X)+b(Y ) = k|X|−(k+ l)−γG(X)+k|Y |−(k+ l)−γG(Y ) = k(|X|+ |Y |−
1)− (k+ l)− l− (γG(X)+γG(Y )) = k|X ∪Y |− (k+ l)− l− (γG(X ∪Y )−dG(X,Y )) =
b(X ∪ Y )− l + d(X,Y ). 2

Claim 2.6. If X1, X2, X3 ⊆ V and |Xj ∩Xm| = 1 for 1 ≤ j < m ≤ 3 and |X1 ∩X2 ∩
X3| = 0, then

b(
3⋃

j=1

Xj) ≤
3∑

j=1

b(Xj)− k + 2l.
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Section 3. Full splittings in (k, l)-sparse graphs 6

Proof. b(
⋃3

j=1Xj) = k|
⋃3

j=1Xj| − (k + l)− γG(
⋃3

j=1Xj) ≤ k(
∑3

j=1 |Xj| − 3)− (k +

l)−
∑3

j=1 γG(Xj) =
∑3

j=1(k|Xj|− (k+ l)−γG(Xj))−k+ 2l =
∑3

j=1 b(Xj)−k+ 2l. 2

Remark. Especially, all of X1, X2, X3 cannot be tight at the same time for k ≥ 2l+ 1.
If k = 2l and X1, X2, X3 are tight sets, then

⋃3
j=1Xj is also tight.

Claim 2.7. Let z ∈ V and X ⊂ V − z be a maximal tight set containing the distinct
nodes c1, c2. Let d be a node in V −X − z. If there is a tight set in V − z containing
c1 and d, then there is no tight set in V − z containing c2 and d.

Proof. According to Claim 2.4, P ∩ X = {c1} since X is maximal. By Claims 2.4
and 2.6 we obtain that there is no tight set containing c2 and d. 2

Let G be a (k, l)-sparse graph. Since
∑

v∈V dG(v) = 2|E| ≤ 2k|V |−2(k+l) < 2k|V |,
it follows that there is a node z of G with dG(z) ≤ 2k − 1.

Claim 2.8. Let G = (V,E) be a (k, l)-sparse graph. dG(u, v) ≤ k − l for any two
nodes u, v.

Proof. By the definition of (k, l)-sparse graphs, γG({u, v}) ≤ k|{u, v}|−(k+l) = k−l
for set {u, v}. 2

3 Full splittings in (k, l)-sparse graphs

In this section we derive a necessary and sufficient condition for an arbitrary specified
node to admit a full splitting.

Let k ≥ 2 and 0 ≤ l ≤ k
2
. Let G be a (k, l)-sparse graph. Consider a node z with

degree at most 2k−1 for which there is no full splitting. If dG(z) ≤ k, then the deletion
of z and its adjacent edges results in a (k, l)-sparse graph, hence dG(z) ≥ k + 1.

Assume that a longest admissible splitting sequence S at z is not full. Since z does
not admit a full splitting, |S| < i := dG(z)− k.

Let ND(w) denote the set of the neighbours of a node w in graph D.

Claim 3.1. If |NGS (z)| ≥ 2, then there exists a maximal GS-tight subset Pmax of
V − z including NGS (z).

Proof. Let za and zb denote two non-parallel edges. Since (za, zb) is not an admis-
sible splitting off, there is a GS-tight set X ⊆ V − z containing a and b. According
to Claim 2.4, there is a maximal tight set P ⊆ V − z containing a and b.

If there is another neighbour c of z which is not in P , then there is a tight set
Y ⊆ V − z containing a and c, since (za, zc) is not an admissible splitting off. Since
P is maximal, Y ∩ P = {a}. By Claim 2.7 (zb, zc) is an admissible splitting off, a
contradiction, that is, P contains all the neighbours of z. 2

Claim 3.2. If |NGS (z)| ≥ 2, then there exists a split edge which is disjoint from the
nodes of Pmax.
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Section 3. Full splittings in (k, l)-sparse graphs 7

Proof. Since there is no admissible splitting off at z in GS , according to Claim 3.1
there exists Pmax ⊆ V − z. Let j, h,m denote the number of split edges with exactly,
respectively, 2, 1, 0 end-node in Pmax. j + h+m = |S| < i since S is not full.

k|Pmax + z| − (k + l) ≥ γG(Pmax + z) = γGS (Pmax) + j + h+ dGS (z, Pmax)

= γGS (Pmax) + j + h+ (k + i− 2(j + h+m))

= γGS (Pmax) + k + (i− (j + h+m))−m > k|Pmax| − (k + l) + k −m

= k|Pmax + z| − (k + l)−m,

which implies m > 0. 2

Claim 3.3. If |NGS (z)| ≥ 2, then |NGS (z)| = 2. There is a neighbour s of z for which
dGS (z, s) = 1.

Proof. First assume that |NGS (z)| ≥ 3. Let a1, a2, a3 denote three of these nodes.
By Claim 3.2 there is a split edge uv disjoint from Pmax. Let J = {1, 2, 3}.

By Claim 2.7, S− (zu, zv)∪ (zu, zaj) is an admissible splitting sequence for at least
two elements j of J . The same is true for S−(zu, zv)∪(zv, zaj). Hence we may assume
that S − (zu, zv)∪ (zu, za1) and S − (zu, zv)∪ (zv, za2) are both admissible splitting
sequences. We claim that S ′ := S − (zu, zv) ∪ (zu, za1) ∪ (zv, za2) is an admissible
splitting sequence. If not, then there is a tight set Y in GS − z containing u, v, a1, a2.
Then, according to Claim 2.4, Pmax ∪ Y is a tight set in GS − z contradicting the
maximality of Pmax. The length of S ′ is greater than the length of S, a contradiction.

Now assume that |NGS (z)| = 2. Let s and t be the two neighbours of z and assume
that dGS (z, s) ≥ 2 and dGS (z, t) ≥ 2. By Claim 3.2 there is a split edge uv disjoint
from Pmax. According to Claim 2.7 S − (zu, zv)∪ (zu, zt) or S − (zu, zv)∪ (zu, zs) is
an admissible splitting sequence. This also holds for zv instead of zu.

Hence at least one of the following splitting sequences is admissible: S − (zu, zv)∪
(zu, zt)∪ (zv, zt),S − (zu, zv)∪ (zu, zt)∪ (zv, zs),S − (zu, zv)∪ (zu, zs)∪ (zv, zt),S −
(zu, zv) ∪ (zu, zs) ∪ (zv, zs)), a contradiction. 2

Now we prove that if dG(z) is at most k+ l, then a full splitting always exists at z.

Proposition 3.4. Let G be a (k, l)-sparse graph.If z ∈ V has degree at most k + l,
then there exists a full splitting at z.

Proof. If dG(z) is at most k, then if we delete z with its adjacent edges, then we
obviously get a (k, l)-sparse graph, that is, z admits a full splitting.

We claim that there always exists a full splitting at a node z with degree k+i where
1 ≤ i ≤ l. There is no G-tight set X ⊆ V − z which contains all the neighbours of z
because, if there was one, then bG(X + z) = bG(X) + k− dG(z) ≤ 0 + k− (k+ 1) < 0
which contradicts that G is (k, l)-sparse. Since there are no edges with multiplicity
greater than k − l, the neighbour-set of z in G has at least two elements, so by
Observation 2.3 there is an admissible splitting off at z. Hence the longest admissible
splitting sequence at z has length at least 1.
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Section 3. Full splittings in (k, l)-sparse graphs 8

Let S be a longest admissible splitting sequence at z. If |S| ≥ i, then we are done.
If h := |S| < i, then dGS (z) ≥ dG(z)− 2(i− 1) = k+ i− 2i+ 2 = k− i+ 2 ≥ k− l+ 2.
Hence by Claim 2.8, |NGS (z)| ≥ 3 or |NGS (z)| = 2 and both neighbours are joined to
z by at least two edges. By Claim 3.3 S is not longest, a contradiction. 2

Let i := dG(z)− k (here 2 ≤ i ≤ k− 1). Call a node z small if k + l+ 1 ≤ dG(z) ≤
2k − 1.

Theorem 3.5. A small node z of G does not admit a full splitting if and only if z has
a neighbour t and there is a family Pz of subsets of V − z with at least two elements
such that:

X ∩ Y = {t} for X, Y ∈ Pz, (∗)

∑
X∈Pz

b(X) < dG(z, t)− (k − i)− dG(z, V − z − ∪Pz), (∗∗)

where ∪Pz denotes
⋃

X∈Pz
X.

Proof. Suppose first that t and Pz satisfy (∗), (∗∗) and let S be an admissible splitting
sequence. The number of split edges incident to t with other end-nodes outside of
∪Pz is at most dG(z, V − z−∪Pz). The number of split edges incident to t with their
other end-nodes in ∪Pz is at most

∑
X∈Pz

b(X). In a full splitting we would have at
least dG(z, t)− (k− i) split edges incident to t which implies by (∗∗) that S is not full.

To see the other direction, let S be a longest admissible splitting sequence at z for
which the following pair is lexicographically maximal: (|NGS (z)|, |Pmax|) where Pmax

denotes a maximal tight set in GS which includes NGS (z) but does not contain z. If
there is no such a tight set, then let Pmax := ∅. Since z does not admit a full splitting,
|S| < i. From now on GS-tight is abbreviated by tight.

By Claim 3.3 there are only the following two Cases. An edge not incident to t is
called t-disjoint.
CASE 1. |NGS (z)| = 2 and z has a neighbour s for which dGS (z, s) = 1.

Let u ∈ V − t− s be an arbitrary node for which there is a t-disjoint split edge uv.
There is a tight set X ⊆ V −z containing u and t, otherwise S ′ := S−(zu, zv)∪(zu, zt)
is an other longest admissible splitting sequence for which if v 6= s, then |NGS′

(z)| = 3,
if v = s and dGS (z, t) ≥ 3, then dGS′ (z, t) ≥ dGS′ (z, s) ≥ 2, which is a contradiction
by Claim 3.3. If v = s and dGS (z, t) = 2 and dGS (z, s) = 1, then by Claim 3.2 there is
a split edge ab which is disjont from Pmax ∪{u}. Since S∗ := S − (za, zb)− (zu, zs)∪
(za, zs) ∪ (zb, zs) ∪ (zu, zt) is not admissible, we have a tight set in GS containing
a, b, t, s, u contradicting the maximal choice of Pmax by Claim 2.5 (it also contradits
that there is no tight set containing t and u). (By the previous cases and Claim 2.8,
there is no tight set containing (a or b) and s.)

Let Pu be such a tight set containing minimal number of t-disjoint split edges which
is inclusion-wise maximal. Similarly, there is a tight set X ⊆ V −z containing s and t,
otherwise S ∪ (zs, zt) is a longer admissible splitting sequence than S. Let Ps be such
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Section 3. Full splittings in (k, l)-sparse graphs 9

a tight set containing minimal number of t-disjoint split edges which is inclusion-wise
maximal.

Let Pz := {X ⊆ V − z : ∃u ∈ V incident to a t-disjoint split edge such that
X = Pu or X = Ps}. For nodes u 6= v, Pu can be equal to Pv, but there is only one
copy of them in Pz. Now we prove some essential properties of Pz.

X1
Xm

s t

z

X2

Figure 1: A set-system Pz.

Proposition 3.6. There is no t-disjoint split edge in any member X of Pz.

Proof. First let us assume that X = Ps. Let us suppose indirectly that there is a
t-disjoint split edge ab in Ps. S ′ := S − (za, zb) ∪ (zt, zs) is an admissible splitting
sequence with three remaining neighbours of z in GS′ , which is a contradiction by
Claim 3.3.

Now let us assume X = Pu and u 6= s. By the definition of Pu we have a t-disjoint
split edge uv. Let us suppose indirectly that there is a t-disjoint split edge ab in Pu.
We may suppose that b 6= u.

If v 6= s, then v /∈ Pu (if v ∈ Pu, then S − (zu, zv) ∪ (zt, zu) is an admissible
splitting sequence with the same length but with one more remaining neighbour of z).
Pv ∩Pu = {t} according to Claim 2.4. S − (za, zb)− (zu, zv)∪ (zt, zu)∪ (zv, za) is an
other longest splitting sequence with one more remaining neighbour of z, so it cannot
be admissible, that is, there is a set Y ⊆ V − z containing a, u, v, t, which is tight in
GS . Y does not contain b, hence the tight set Y ∩ Pu contains a smaller number of
split edges than Pu, a contradiction. If v = s and v /∈ Pu, then the proof is the same.

Suppose that v = s and v ∈ Pu. Let us consider a split edge cd which is disjoint
from Pmax and hence from Pu (such an edge exists according to Claim 3.2). By
the previous paragraph tight sets Pc and Pd do not contain t-disjoint split edges.
According to Claim 2.4, Pc ∩ Pmax = {t}.

According to Claim 2.7, S ′ := S − (zc, zd) ∪ (zc, zs) is an admissible splitting
sequence. For S ′′ := S ′ − (zu, zv) ∪ (zt, zu), the cardinality of NGS′′ (z) = {t, s, d} is
3, hence S ′′ cannot be admissible, that is, there is a tight set Y ⊆ V − z containing
c, s, u, t in GS′ . Y ∪ Pmax (in GS′) contradicts the choice of S by the maximality of
Pmax. 2

Now it follows that (∗∗) holds for Pz.
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Section 3. Full splittings in (k, l)-sparse graphs 10

Claim 3.7. Let X, Y be two distinct members of Pz. X ∩ Y = {t}.

Proof. Let us suppose X = Pu and Y = Pv for some u, v ∈ V . By Proposition 3.6,
Pu 6⊂ Pv. If |Pu ∩ Pv| ≥ 2, then by Claim 2.4 dGS (Pu, Pv) = 0 and Pu ∪ Pv is tight.
Since it does not contain any t-disjoint split edge, it contradicts the maximal choice
of Pu. 2

Hence (∗) holds for Pz.

CASE 2. |NGS (z)| = 1. Let t denote the only neighbour of z in GS .

Claim 3.8. There exists a t-disjoint split edge.

Proof. Let l and m be the number of split edges incident to, respectively, not incident
to t. Since S is not full, l +m = |S| < i. In the original graph G by Claim 2.8:

k − 1 ≥ dG(z, t) = dG(z)− l − 2m = k + i− l − 2m = k + (i− l −m)−m > k −m,

which implies that m > 1. 2

Since S is not a full splitting: dGS (z) ≥ k + i− 2(i− 1) = k − i + 2 ≥ 3. Now we
define Pz. Let u ∈ V − t be an arbitrary node for which there is a t-disjoint split edge
uv. There is a tight set X ⊆ V − z containing u and t, otherwise S ′ := S − (zu, zv)∪
(zu, zt) is an other longest admissible splitting sequence for which |NGS′ (z)| = 2, which
contradicts the choice of S. Let Pu be such a tight set containing minimal number of
t-disjoint split edges which is inclusion-wise maximal. Let Pz := {X ⊆ V −z : ∃u ∈ V
incident to a t-disjoint split edge such that X = Pu}. (The only difference to Case 1.
is that there is no set Ps here.)

Proposition 3.9. There is no t-disjoint split edge in an arbitrary element of Pz.

Proof. Assume X = Pu. By the definition of Pu we have a t-disjoint split edge uv.
Let us suppose indirectly that there is a t-disjoint split edge ab in Pu. We may suppose
that b 6= u. v /∈ Pu, otherwise S−(zu, zv)∪(zt, zu) is an admissible splitting sequence
with the same length but with one more remaining neighbour of z. Pv ∩ Pu = {t}
according to Claim 2.4. S − (za, zb)− (zu, zv)∪ (zt, zu)∪ (zv, za) is an other longest
splitting sequence with one more remaining neighbour of z, so it cannot be admissible,
that is, there is a set Y ⊆ V − z containing a, u, v, t, which is tight in GS . Y does not
contain b, hence the tight set Y ∩ Pu contains a smaller number of split edges than
Pu, a contradiction. 2

Now it follows that (∗∗) holds for Pz.

Claim 3.10. Let X,Y be two distinct members of Pz. X ∩ Y = {t}.

Proof. Let us suppose X = Pu and Y = Pv for some u, v ∈ V . By Proposition 3.6,
Pu 6⊂ Pv. If |Pu ∩ Pv| ≥ 2, then by Claim 2.4 dGS (Pu, Pv) = 0 and Pu ∪ Pv is tight.
Since it does not contain any t-disjoint split edge, it contradicts the maximal choice
of Pu. 2

Hence (∗) holds for Pz.
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Section 4. Counterexamples 11

We have showed that if a small node z does not admit a full splitting, then the
neighbour t of z and set-system Pz satisfy both (∗) and (∗∗). 2 2

We state the following easy consequence of Theorem 3.5. The neighbour t of z in
Theorem 3.5 is called the blocking node of z.

Corollary 3.11. Let z be a small node in a (k, l)-sparse graph G. If z does not admit
a full splitting, then the blocking node t of z is uniquely determined.

4 Counterexamples

In this section we give a (k, l)-sparse graph for any k ≥ 2, k+2
3
≤ l ≤ k

2
which cannot

be obtained by the operations of Theorem 1.7. This is surprising because we managed
to prove almost all the ingredients of the proof of the constructive characterization
of (k, 1)-sparse graphs also for these graphs. We remark that, for the given graph
G(k,l) = (V(k,l), E(k,l)), |V(k,l)| = 15k − 5l + 10, which is 60 in the smallest case (4, 2)
and 85 in case (6, 3).

Let us consider m := 3k− l+ 2 copies of the following graph G1 = (V1, E1) and let
the subscripts go from 1 to m. Graph G1 has |V1| = 5 nodes and |E1| = k|V1|−(k+l) =
4k−l edges. Edges a1d1, b1d1, c1d1, z1d1 have multiplicity k−l, b1z1, c1z1 has l, a1b1 has
l− 1, a1z1 has 1, and all the other edges multiplicity 0. See Figure 2, the multiplicity
of the edges are shown in the figure.

a d c

b

z

1

1

1 1

1

1

l

k-l
l

k-l k-l

k-ll-1

Figure 2: Graph G1

It is easy to see, that G1 is (k, l)-sparse since it can be obtained by the operations
(i.e. z1, d1, c1, b1, a1).
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Section 4. Counterexamples 12

Let G(k,l) = (V(k,l), E(k,l)) where V(k,l) := ∪m
j=1Vj, E(k,l) := ∪m

j=1Ej ∪ E∗ and E∗ :=
K1 ∪K2 ∪K3 ∪K1,2 ∪K3,2 ∪K1,3, where

K1 = {aiaj : 1 ≤ i < j ≤ k + 1}

K2 = {c1cj : 2k − l + 3 ≤ j ≤ 3k − l + 2} ∪ {cicj : 2k − l + 3 ≤ i < j ≤ 3k − l + 2}

K3 = {b1bj : k + 2 ≤ j ≤ 2k − l + 2} ∪ {bibj : k + 2 ≤ i < j ≤ 2k − l + 2}

K1,2 = {biaj : 2 ≤ i ≤ k + 1, k + 2 ≤ j ≤ 2k − l + 2}

K3,2 = {bicj : 2k − l + 3 ≤ i ≤ 3k − l + 2, k + 2 ≤ j ≤ 2k − l + 2}

K1,3 = {ciaj : 2 ≤ i ≤ k + 1, 2k − l + 3 ≤ j ≤ 3k − l + 2}

See Figure 3. We will use the following two facts about E∗

• dE∗(v) ≤ k for all v ∈ V ,

• dG(k,l)
(Vi, Vj) = 1 for all 1 ≤ i < j ≤ 3k − l + 2.

a1 c11b

a

a

a

c

c

c

2

3

k+1

k+2 k+3 2k-l+2

2k-l+3

2k-l+4

3k-l+2

b b b

Figure 3: A subgraph of G(k,l)

It is clear that |V(k,l)| = 5m = 5(3k − l + 2) = 15k − 5l + 10 and |E(k,l)| =
m|E1|+ |E∗| = m(4k− l) + 1

2
m(3k− l+ 1). In G(k,l) we have the following degrees for

any 1 ≤ j ≤ m
d(aj) = d(bj) = d(bj) = 2k,

d(dj) = 4(k − l) ≥ 4
k

2
= 2k,

d(zj) = k + l + 1.
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Section 4. Counterexamples 13

Hence the only small nodes are zj-s. Since {aj, dj}, {bj, dj}, {cj, dj} are tight sets, there
is no full splitting at zj, hence graph G(k,l) cannot be obtained by the operations.

It is remained to see that G(k,l) is (k, l)-sparse for the given k and l. We are going
to prove that b(X) ≥ 0 for all X ⊆ V(k,l). It can be shown easily that if X ⊆ V(k,l)

includes at least two nodes of Vj for some j, then b(X) ≥ b(X∪Vj). Hence it is enough
to prove the condition for subsets X either including Vj or having the cardinality of
the intersection with it at most 1 for all j.

Let n denote the number of Vj’s that are included entirely in X and r denote the
number of Vj’s having a one-element intersection with X. |X| = 5n + r, hence we
must prove

|E[X]| ≤ k|X| − (k + l) = k(5n+ r)− (k + l) = 5kn+ kr − k − l. (1)

We have

|E[X]− E∗| = n|E1| = n(4k − l).

|E[X] ∩ E∗| ≤ n(n+ r − 1) + rk

2
,

since d(Vi, Vj) = 1 and d(ai, V − Vi) = d(ci, V − Vi) = k, d(bi, V − Vi) = k − l + 1 < k
for all i, j. Hence

|E[X]| = |E[X]− E∗|+ |E[X] ∩ E∗| ≤ n(4k − l) +
n(n+ r − 1) + kr

2
. (2)

We will prove that the difference of the right hand side of (1) and (2) is at least 0,
which will finish the proof that G is (k, l)-sparse. Let us compute, but first multiply
by 2,

2(5kn+ kr − k − l)− 2

(
n(4k − l) +

n(n+ r − 1) + kr

2

)
=

(10kn+ 2kr − 2k − 2l)− (8kn− 2ln+ n2 + nr − n+ kr) =

10kn+ 2kr − 2k − 2l − 8kn+ 2ln− n2 − nr + n− kr =

2kn+ kr − 2k − 2l + 2ln− n2 − nr + n =

(n+ r)(k − n) + n(k + 2l + 1)− 2(k + l). (3)

If 2 ≤ n ≤ k, then (3) is obviously at least 0. n+ r ≤ m = 3k − l + 2. If n > k, then
we continue the computation:

≥ m(k − n) + n(k + 2l + 1)− 2(k + l) =
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Section 5. Open problems 14

(3k − l + 2)(k − n) + n(k + 2l + 1)− 2(k + l) =

(3k − l + 2)k + n(3l − 2k − 1)− 2(k + l) ≥

since 3l − 2k − 1 < 0,

≥ (3k − l + 2)k + (3k − l + 2)(3l − 2k − 1)− 2(k + l) =

(3k − l + 2)(3l − k − 1)− 2(k + l) =

(3k − l + 2)(3l − k − 2) + (3k − l + 2)− 2k − 2l =

(3k − l + 2)(3l − k − 2) + (k − 3l + 2) =

(3k − l + 1)(3l − k − 2). (4)

Since l ≥ k+2
3

, that is, 3l ≥ k+2, (4) is at least 0. If n = 1 or 0, E[X] ≤ k|X|−(k+l)
can be shown with a much shorter computation. Hence we proved that G is really
(k, l)-sparse.

5 Open problems

The main problem is proving Conjecture 1.5 in the remaining cases. Another im-
portant question is finding an appropriate constructive characterization theorem for
(k, l)-sparse graphs if k+2

3
≤ l ≤ k

2
. One possibility if the following. If we allow i = k

in (P2), is the reverse of Theorem 1.7 true?
This operation can be allowed in the cases which are already proved, of course, but

it is not necessary.
Are the examples of Section 4 the graphs with the smallest number of nodes? We

think they are.
Give a constructive characterization for (k, l)-sparse graphs, if k

2
≤ l ≤ k. We may

have to allow operations which glue together bigger graphs and the nodes are not
considered one by one.

A graph is said to be [k,m]-sparse, if 0 ≤ m ≤ k and γG(X) ≤ k|X| − m for all
X ⊆ V, |X| ≥ 2. These graphs have not a direct connection to covering by trees but
may have a similar construction.

References

[1] A.R. Berg, T. Jordán, A proof of Connelly’s conjecture on 3-connected cir-
cuits of the rigidity matroid, J. Combinatorial Theory, Ser. B. 88 (2003) 77–97.

EGRES Technical Report No. 2003-10



References 15

[2] J.R. Edmonds, Edge disjoint branchings. in: B. Rustin, ed., Combinatorial
Algorithms (Academic Press, New York, 1973) 91–96.

[3] A. Frank, Connectivity and network flows, in: R. Graham, M. Grötschel and L.
Lovász, eds., Handbook of Combinatorics (Elsevier Science B.V., 1995) 111–177.
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