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The Path-packing Structure of Graphs?

András Sebő?? and László Szegő? ? ?

Abstract

We prove Edmonds-Gallai type structure theorems for Mader’s edge- and
vertex-disjoint paths including also capacitated variants, and state a conjecture
generalizing Mader’s minimax theorems on path packings and Cunningham and
Geelen’s path-matching theorem.

1 Introduction

Let G = (V,E) be a graph, T = {T1, . . . , Tk} a family of pairwise disjoint subsets of
V , T := T1 ∪ . . .∪ Tk. The points in T are called terminal points. A T -path is a path
between two terminal points in different members of T . Let µ = µ(G, T ) denote the
maximum number of (fully vertex-) disjoint T -paths.

A T -path is a path in G with two different endpoints in T and all other points in
V \ T . In the edge-disjoint case we will consider T -paths, and T will not be defined.
Clearly, a given set of paths in G is a set of pairwise edge-disjoint T -paths if and only
if the corresponding paths of the line-graph of G are pairwise vertex-disjoint T -paths,
where T = {Tx : x ∈ T}, Tx := {ve : e ∈ δ(x)} (x ∈ T ), and ve denotes the vertex of
the line-graph corresponding to the edge e, and δ(x) denotes the set of edges incident
to x, and in general, δ(X) = δG(X) (X ⊆ V (G)) is the set of edges with exactly one
endpoint in X, d(X) := dG(X) = |δG(X)|. The maximum number of edge-disjoint
T -paths of G will be denoted by µ∗(G, T ).

Furthermore, we will use the following notations. In a graph G = (V,E), E[X]
denotes the set of edges spanned by X for a subset X ⊆ V , and G(X) the subgraph
induced by X; G−X denotes the graph obtained from G by deleting the vertices of
X ⊆ V . For a subset F ⊆ E of edges, G− F denotes the graph obtained from G by
deleting the edges in F .
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The main result of this paper is an Edmonds-Gallai type structure theorem for
maximum sets of edge-disjoint T -paths and vertex-disjoint T -paths. What does this
mean?

A simplest example is accessibility in directed graphs: given a directed graph G =
(V,A) and x0 ∈ V , find a directed path from x0 to the other vertices of G or provide
a certificate that there is none.

Everybody knows that there is no path between x0 and x ∈ V if and only if there
is a directed cut separating x0 and x, that is, a set X ⊆ V , x0 ∈ X, x /∈ X so that
no arc of G is leaving X. The X will be called a directed cut. Let us point out the
following phenomenon.

There exists a unique set X0 which is a directed cut separating x0 at the same time
from every x ∈ V for which there is no (x0, x)-path.

Indeed, there exists an arborescence with root x0 and with a path from x0 to all
the vertices accessible from x0, so that the set X0 of vertices of this arborescence is a
directed cut. This problem is a special case of the more general problem of shortest
paths from a fixed vertex x0 of a weighted directed graph without negative directed
circuits, and of the uniquely determined potentials that certify the length of these
paths for every vertex.

In order to help the reading we provide a brief introduction to the Edmonds-Gallai
theorem. Denote by Ḡ the graph which arises from G by adding a vertex x0 and
joining x0 to all the vertices of G.

If M is a maximum matching of G, let M̄ arise from M by adding the edges x0x
where x is a vertex not saturated by M . We will call alternating path (with respect
to M̄) a path joining x0 to a vertex of G starting with an edge in M̄ , and containing
alternatively edges of M̄ and not in M̄ ; if the last edge of the path is in M̄ we will
say the path is symmetric, if not, then we will say it is asymmetric.

A set X ⊆ V (G) is called a Tutte-set, if there exists a maximum matching which
covers X and all components of G−X are fully matched within the component except
for at most one vertex. (This means that the minimum attains at X in the Tutte-
Berge formula about the maximum size of a matching.) If X is a Tutte-set of G, we
will denote by C(X) the union of the even (vertex-cardinality) components of G−X,
and by D(X) the union of the odd components of G−X.

Define now D(G) to be the set of vertices which are endpoints of symmetric paths,
and A(G) the set of vertices which are not, but are the endpoints of asymmetric
paths. Clearly, D(G) = {v ∈ V (G) : µ(G− v) = µ(G)}, A(G) is the set of neighbors
of vertices in D(G), and C(G) is the rest of the vertices.

Exclusion Lemma for matchings: If G is a graph, M is a maximum matching
and X is a Tutte-set, then

(i) there is no alternating path to the vertices of C(X), that is, C(X) ⊆ C(G),

(ii) there is no symmetric alternating path to the vertices of X, that is, X ⊆ V (G)\
D(G).

The essence of the Edmonds-Gallai theorem is that there is a unique ‘maximal’
Tutte-set in the following sense (compare the result with the containments of the
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lemma):

Theorem 1.1. For any graph G, X := A(G) is a Tutte-set, and C(X) = C(G),
D(X) = D(G).

When the Edmonds-Gallai theorem is stated in articles or books, often many other
(in our view less essential) statements are also added. Those can be useful in the
context of the various goals, but are merely easy corollaries of the above statement
which provides the main content, which is: there is a most exclusive Tutte-set that
excludes everything that can be excluded with the Exclusion Lemma.

Let us mention some uses of the Edmonds-Gallai theorem – for the generalizations
not many of these have been worked out: Linear hull of matchings, matching lattice;
Cunningham’s analysis of the ‘slither’ game; Cornuéjols, Hartvigsen and Pulleyblank’s
solution of the k-gon-free 2-matching problem [1], or of the problem of packing com-
plete graphs (equivalently edges and triangles), etc. In Lovász and Plummer’s book
[11] the theorem is applied as a basic and standard tool throughout. It is useful in
cases where the set of maximum matchings is important.

Let us list some other examples of the same kind of theorem:
A generalization of the Edmonds-Gallai theorem for (f, g)-factors (subgraphs with

upper and lower bounds and maybe parity constraints) has been proved by Lovász
[9], [10]. The relation of this generalization to the corresponding minimax theorem
(of Tutte for f -factors) is the same as the relation of the Berge-Tutte theorem for
matchings and of the Edmonds-Gallai theorem. Similarly, the minimax theorems for
the Chinese-Postman problem (T -joins) can be sharpened to provide an Edmonds-
Gallai type theorem for T -joins [17], which can be further applied to disjoint path and
cut packing problems or results on the duality gap or stronger integrality properties
in these problems. Recently, Spille and Szegő [19] have developed the corresponding
sharpening of the minimax theorems on path-matchings.

The analogous results concerning Mader’s path-packings will be worked out in this
paper. The main result concerns vertex-disjoint paths (Sect. 4). The result about
edge-disjoint paths is a consequence. However, because of its simplicity and for a more
gradual understanding of this structure, we will first give a different – much simpler
– proof for the edge-disjoint case (Sect. 3).

These structure theorems are usually consequences of the algorithms that solve the
problems. There are three problems though for which this use of structure theorems
has been reversed. This means that the assertion of the theorems is mechanically
converted into an optimality criterion. If the ‘canonical dual solution’ defined from a
list of tentative optimal solutions does not satisfy the criterion, then one of the two
following cases can happen: either a new ’optimal solution’ can be added to the list,
improving the ‘canonical dual solution’; or a better solution can be found, showing
that the solutions of the list were not optimal. Such a proof does in fact not use the
structure theorem but states it as a conjecture, and provides a new, algorithmic proof
of it. We refer to such an algorithm under the name structure algorithm.

A first structure algorithm has been provided by Lovász [11] for matchings. For
(f, g)-factors Lovász worked out the Edmonds-Gallai theorems [11]. The correspond-
ing structure algorithm has been worked out in [16] in the language of accessibility
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from a fix vertex in a bidirected graph. This algorithm contains structure algorithms
for (f, g)-factors and other factorizations or orientation problems with upper, lower
bound and parity constraints. The third generalization of Lovász’s algorithm concerns
minimum T -joins in graphs [15].

For Mader’s path packings, or path-matchings not only the structure algorithms are
missing, but there is no combinatorial algorithm solving these problems at all! The
present paper is intended to be a first step in this direction by providing the statement
of the structure theorem. The algorithms and the applications of the developed results
are yet to be found.

In this paper a path P is considered to be a set of vertices P ⊆ V (G). We will also
speak about the edges of P , and we will denote them by E(P ). If P is a family of
paths, E(P) = ∪P∈PE(P ). Therefore ‘disjoint’ paths mean pairwise vertex-disjoint
paths, unless it is specified that the paths are ‘edge-disjoint’ only.

A half-T-path (or half path) is a path with at least one endpoint in T . The other
endpoint may or may not be in T , and the path may also consist of only one point
in T . However, if the path has more than one vertex, the two endpoints must be
different.

Both in the edge- and vertex-disjoint case the main property for classifying vertices
for the path structure is the following: given a vertex of the graph is it possible to
add a half path joining a terminal with the given vertex, so that deleting all edges,
resp. vertices of that path, the maximum number of T -paths does not change?

We will say that an edge or vertex is covered by a given set P of paths if it is
contained in a path of P . Otherwise it is uncovered.

We finish this introduction by stating Mader’s theorems.
First we consider the edge-disjoint case. Let T := {t1, t2, . . . tk}. A subpartition
A := {A1, A2, . . . Ak} of V is said to be a T -partition if ti ∈ Ai, (i = 1, . . . , k). For
X ⊆ V (G), a component K of G − X is said to be odd (even) if dG(K) is an odd
(even) number.

Theorem 1.2 (Mader [12]). The maximum number of edge-disjoint T -paths equals
to the minimum value of

|A0|+
∑
C∈C

⌊
1

2
dG(C)

⌋
, (1)

taken over all T -partitions A := {A1, A2, . . . Ak}, where A0 is the set of edges whose
two endpoints are in Ai and Aj with i 6= j; A :=

⋃k
i=1Ai, and the elements of C are

the vertex-sets of the components of the graph G− A.

A T -partition A := {A1, A2, . . . Ak} is called optimal if

val∗G,T (A) := |A0|+
∑
C∈C

⌊
1

2
dG(C)

⌋
is minimum among all T -partitions, that is, if it is equal to µ∗(G, T ).

Second we consider the vertex-disjoint case. For a surprisingly short (non-algorith-
mic) proof, see Schrijver [14].
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Theorem 1.3 (Mader [13]). The maximum number of disjoint T -paths is equal to
the minimum value of

|U0|+
n∑

i=1

⌊
1

2
|Bi|
⌋
, (2)

taken over all partitions U0, U1, . . . , Un of V such that each T -path disjoint from U0

traverses some edge spanned by some Ui. Bi denotes the set of vertices in Ui that
belong to T or have a neighbor in V − (U0 ∪ Ui).

We will use the following reformulation of Theorem 1.3. It has several advantages:
First – and this is crucial for us now – it provides the right context for a structure

theorem in the sense that the parts of a dual solution correspond exactly to the
partition provided by the structure theorem. We also think that this formulation is
more natural in view of the edge-version of Mader’s theorem (Theorem 1.2), because
it has the same form and the latter is sitting in it with a pure specialization. Third, it
makes explicit what the sentence ‘each T -path disjoint from U0 traverses some edge
spanned by some Ui’ means in Theorem 1.3. Indeed, the meaning of this sentence is
that the vertices of U0 and the edges spanned by the Ui (i = 1, . . . , k) block all the
T -paths, that is, deleting these vertices and edges each component of the remaining
graph contains vertices from at most one Ti ∈ T (i = 1, . . . , k).

If X,X0 ⊆ V are disjoint, and {X1, . . . , Xk} is a partition of X, then X :=
(X;X0, X1, X2, . . . Xk) is said to be a T -partition if Ti ⊆ X0∪Xi, (i = 1, . . . , k). The
value of this T -partition X is defined to be

valG,T (X ) := |X0|+
∑
C∈C

⌊
1

2
|C ∩X|

⌋
, (3)

where the elements of C are the vertex-sets of the components of the graph G−X0−⋃k
i=1E[Xi].

Theorem 1.4.

µ(G, T ) = min valG,T (X ) , (4)

where the minimum is taken over all T -partitions X .

It is easy to see that the two forms of Mader’s theorem are equivalent: indeed, in
the original variant Theorem 1.3, the set U0 and the edges induced by the sets Ui

(i = 1, . . . , k) block all the T -paths, that is, all the components of the remaining
graph contain terminal vertices in at most one of the Ti’s. It is straightforward now
to define the sets of Theorem 1.4, and similarly, a dual solution of the latter is easy
to define in terms of the former.

For a T -partition X := (X;X0, X1, X2, . . . Xk), a component K of G − X0 −⋃k
i=1E[Xi] is said to be odd (even) if |K ∩X| is an odd (even) number. Set K ∩X

is denoted by B(K) and is called the border of K. Denote C(X ) the union of the
even components, D(X ) the union of the odd components. A T -partition X :=
(X;X0, X1, X2, . . . Xk) is called a Mader-partition if valG,T (X ) = µ(G, T ).
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t t t1 2 k

Figure 1: An optimal T -partition

2 What Does an Optimal Partition Exclude?

In every minimax theorem the optimal solutions on the ‘max’ side (primal) and the
optimal solutions on the ‘min’ side (dual) have a particular structure; this is a conse-
quence of the trivial ≤ inequality between these two, and if the equality holds, then
a bunch of equalities are also implied (complementary slackness).

We first wish to exhibit (mainly with the two joined figures) the corresponding
combinatorial structure, called ‘complementary slackness’ in linear programming, for
Mader’s theorems. Moreover, like in the special cases exhibited in the Introduction
for analogy, these conditions do imply some evident exclusions. The main goal of this
section is to state these exclusions: like for directed accessibility or matchings the
Edmonds-Gallai type structure will be the most exclusive Mader-set.

First consider the edge-disjoint case. Let P be a family of edge-disjoint T -paths
and A = {A1, . . . , Ak} be a T -partition, and

|P| = |A0|+
∑
C∈C

⌊
1

2
dG(C)

⌋
,

using the notations of Theorem 1.2.
It can be immediately checked from Mader’s theorem that P ∈ P touches only

two different Ai-s, and either it goes directly from one to the other through an edge
between the two, or it goes to an even or an odd component K of G − ∪A and has
two common edges with the cut δG(X). (See Fig. 1.)

In a maximum family P of pairwise edge-disjoint T -paths some vertices s might be
the endpoints of an additional half T -path P , edge-disjoint from all the paths in the
family. A vertex s will be called i-rooted (ti ∈ T ), if there is a family P for which the
endpoint of P in T is ti.

Theorem 2.1 (Exclusion theorem for T -paths). Let A := {A1, A2, . . . Ak} be an
optimal T -partition, A0 the set of edges whose two endpoints are in Ai and Aj respec-

tively, and i 6= j; A :=
⋃k

i=1Ai, and the elements of C are the vertex-sets of the
components of the graph G− A.

(i) If v ∈ C ∈ C, and dG(C) is even, then v is not i-rooted for any i = 1, . . . , k.
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XXX1 2 k

X0

Figure 2: A Mader-partition

(ii) If v ∈ Ai, then v is not j-rooted for j ∈ {1, . . . , k}, j 6= i.

Proof. Immediately follows from Mader’s theorem (Theorem 1.2).

Next consider the vertex-disjoint case. It is useful to look at Theorem 1.4 for
deducing the condition of equality, and then the corresponding exclusions.

Let P be a maximum family of disjoint T -paths and X be a T -partition for which
equality holds in Theorem 1.4. Then P ∈ P either goes through vertices of exactly
two different Xi, Xj (1 ≤ i < j ≤ k) and two vertices of the border of an even or odd
component, or contains exactly one vertex of X0. If P has a vertex v in X0, then the
segment of P between one end-node and v is devided into two parts. The first part
(it maybe empty) consists of the segment of P which traverse an odd component K
of X traversing exactly one node of the border of K, then a part which is included in
Xi (i > 0) and contains at most one vertex on a border of any odd components and
no vertex on a border of any even components.

Vertices s that are not covered by some maximum family of pairwise vertex-disjoint
T -paths might be the endpoints of an additional half T -path P vertex-disjoint from
all the paths in the family. Denote the endpoint of P in T by t, and let t ∈ Ti

(i ∈ {1, . . . , k}). Such a vertex s will be called i-rooted. If a vertex is not i-rooted for
any i ∈ {1, . . . , k}, we will say it is 0-rooted. If a vertex is not i-rooted, but it is in Ti

or has an i-rooted neighbor, we will say it is i-touched.
A vertex t ∈ Ti is i-rooted if and only if it is not covered by a maximum family of

vertex disjoint T -paths. If it is covered by every maximum family, then by definition,
it is i-touched.

Theorem 2.2 (Exclusion theorem for T -paths). Let X := (X;X0, X1, X2, . . .
Xk) be a Mader-partition, and C the set of components with cardinality at least 2
of the graph G−X0 −

⋃k
i=1E[Xi].

(i) If v ∈ C ∈ C, where C is an even component, or v ∈ X0, then v is not i-rooted for
any i = 1, . . . , k.

(ii) If v ∈ Xi and is not in a border of an odd component, then for j ∈ {1, . . . , k},
j 6= i, v is neither j-rooted nor j-touched.

(iii) If v ∈ Xi and is in a border of an even component, then for j ∈ {1, . . . , k}, j 6= i,
v is not j-touched.
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Section 3. Edge-disjoint Paths 8

(iv) If v ∈ Xi and is in a border of an odd component, then for j ∈ {1, . . . , k}, j 6= i,
v is not j-rooted.

Proof. Immediately follows from Mader’s theorem (Theorem 1.4).

3 Edge-disjoint Paths

In this section we prove the structure theorem for maximum sets of edge-disjoint
paths.

The terms and notations we introduce here are local in this section. (We will use
the same or similar terminology in the rest of the paper, but in a different sense: in
the definition of the terms ‘edge-disjoint’ will be replaced by ‘vertex-disjoint’.)

The reader who aims at a quick direct understanding of the most general claims can
skip this section: the results we are proving will be particular cases of the theorems
on vertex-disjoint paths in the following section. However, it may be helpful to see
the occurrence of the main ideas in a particular case.

Let T = {t1, t2, . . . , tk}. The set of vertices that are i-rooted and not j-rooted if
j 6= i will be denoted by Vi. Let us denote the vertices that are both i-rooted and
j-rooted for some i 6= j by V∞. Vertices that are not i-rooted for any i ∈ T are
called 0-rooted. V0 denotes the union of these vertices. Let V denote the T -partition
{V1, . . . , Vk}.

By using Mader’s Theorem 1.2, we will prove the following structure theorem.

Theorem 3.1 (Structure theorem of edge-disjoint paths). The set V is an op-
timal T -partition,
V∞ is the union of the odd components of V and V0 is the union of the even com-

ponents of V.

Proof. Let X := {X1, X2, . . . Xk} be an optimal T -partition (i.e., whose value is µ∗)
for which the cardinality of the union of the odd components is minimal and among
these minimize the cardinality of the union of

⋃k
i=1Xi. By Mader’s Theorem 1.2 such

a T -partition exists.
We will prove that V = X . Let D(X ) (C(X )) denote the union of the odd (resp.

even) components of X .
V − T is partitioned by the three sets C(X ),∪k

i=1Xi − T,D(X ), and on the other
hand it is also partitioned by the three sets V0,∪k

i=1Vi, V∞. We will prove the following
three containment relations

(1)∗ C(X ) ⊆ V0,

(2)∗ Xi ⊆ Vi for 1 ≤ i ≤ k,

(3)∗ D(X ) ⊆ V∞.

It follows that each of the three classes of the first partition is contained in a
corresponding class of the second partition, hence equalities follows througout, that
is, in (1)∗, (2)∗ and (3)∗ as well.
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(1)∗ follows by Mader’s theorem immediately. (See Theorem 2.1 (i).)
Now we prove (2)∗.
If there are edges between Xi and Xj, then subdivide them with single nodes, so

we may assume that there are no edges between Xi and Xj for 1 ≤ i < j ≤ k (by
Mader’s theorem these vertices of degree 2 are always covered by a maximum set of
edge-disjoint T -paths).

Now we define graph G∗ = (V ∗, E∗). V ∗ is obtained by shrinking the components
of V −

⋃k
i=1Xi to single nodes and E∗ is obtained by deleting the loops after the

shrinkings.
Let us define the auxiliary graph G′ = (V ′, E ′) and capacities on the edges. Let

V ′ := V ∗∪{r, s}, E ′ := E∗∪{rti : 1 ≤ i ≤ k}∪{ct : c is a node of G∗−
⋃k

i=1Xi}. Let

the capacity of the new edges incident to r be infinity, of an edge cs be 2 ·
⌊

dG∗ (c)
2

⌋
,

and of the other edges be one.
Let Y be the minimal (r, s)-cut in G′ for which the cardinality of Y is minimum.

Obviously, it has capacity 2val∗G,T (X ) = 2µ∗.

Claim 3.2. Xi ⊆ Y for all 1 ≤ i ≤ k.

Proof. Since Y is a minimal minimum cut, it is clear that Y does not contain any node
c which was obtained by shrinking an even component, furthermore if node c ∈ Y and
c was obtained by shrinking an odd component, then every edge e ∈ E ∩ E ′ incident
to c has other endnode in Y ∩

⋃k
i=1Xi.

Suppose indirectly that v ∈ Xi is not in Y . Then let XY := {Xi ∩ Y : 1 ≤ i ≤ k}.
XY is a T -partition and |

⋃
X∈XY

X| is strictly smaller than |
⋃

X∈X X|. Let l denote
the number of nodes of G′ in Y obtained by shrinking an odd component of X . Let
qG∗(XY ) denote the number of odd components of T -partition XY in G∗.

Now we have

2µ∗ = dG′(Y ) =
k∑

i=1

dG′(Xi ∩ Y )− l ≥

k∑
i=1

dG∗(Xi ∩ Y )− qG∗(XY ) = 2val∗G∗,T (XY ) ≥ 2µ∗.

Hence equivality holds throughout, in particular, val∗G∗,T (XY ) = µ∗ and furthermore

l = qG∗(
⋃k

i=1Xi), that is, after blowing up the shrinked components, T -partition XY

contradicts the choice of X .
Proof of (2)∗. Suppose indirectly that u ∈ Xi is not in Vi. Let e denote a new edge
us. Then the maximum value of an (r, s)-flow in G′ does not change, hence there is
a minimum cut Z which does not contain u. Since Y ∩ Z is also a minimum cut, it
contradicts to Claim 3.2.
Proof of (3)∗. We may assume that Xi = {ti} for all i and G − T is a single odd
component C.

Let v be a vertex in C. We may suppose that there is a node ti such that after
adding edge e = vti to G, µ∗G+e,T = µ∗G,T = dG(C)−1

2
, that is, by Mader’s Theorem 1.2,

there is a T -partition F such that valG,T (F) = dG(C)−1
2

= dG+e(C)−2

2
. Since the union
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Section 4. Vertex-disjoint Paths 10

of the odd components of F is strictly smaller than |C|, it contradicts the choice of
X .

4 Vertex-disjoint Paths

In this section we state and prove the structure theorem of vertex-disjoint paths.
We first complete the (uniquely determined) classification of the vertices – started in
Sect. 2 that leads to such a theorem.

In order to avoid a superfluous distinction of cases, it might be useful to note
that the above distinction of touched terminal and non-terminal points is not really
necessary: for every t ∈ T introduce two new vertices, t1, t2 and join both to t and
to nothing else. Replace t ∈ Ti by {t1, t2} for all t ∈ Ti, to get T ′i , and do this for
all i = 1, . . . , k. Now every terminal point is i-rooted for some i (that is, it is in V +,
which will be defined soon), and the status of the points in G did not change. In
particular, if t ∈ Ti, then t certainly has the i-rooted neighbors t1, t2, so it is at least
i-touched, and it is i-rooted if and only if it was before, that is, if and only if t is
not covered by every maximum path packing. (The gadget does not do anything else
than realize physically what the definition provides anyway.)

Clearly, if v ∈ V is i-rooted, then µ(G, T1, . . . , Tj ∪ {v}, . . . , Tk) = µ(G, T ) + 1 for
all j 6= i. If X is an optimal T -partition, and v ∈ Xi, then the statement is reversible,
since then v cannot be rooted in any other class but Ti.

Define the following sets of vertices.

– C∗ := {v ∈ V : v is 0-rooted and is not i-touched for any i}

– D∗ := {v ∈ V : v is both i-rooted and j-rooted for some i 6= j}

– V0 := {v ∈ V : v is 0-rooted, and is both i-touched and j-touched for some
i 6= j}

– V ∗i := {v ∈ V : v is i-rooted and neither j-rooted, nor j-touched for any j 6= i}

– V C
i := {v ∈ V : v is 0-rooted, i-touched, and not j-touched for any j 6= i}

– V D
i := {v ∈ V : v is i-rooted, not j-rooted for all j 6= i, and j-touched for some
j 6= i}

– Vi := V ∗i ∪ V C
i ∪ V D

i

V + :=
⋃k

i=1 Vi, C := C∗ ∪
⋃k

i=1 V
C
i , D := D∗ ∪

⋃k
i=1 V

D
i .

It is easy to see that the sets above define a partition of V . We will see that
V := V(G, T ) := {V +;V0, V1, . . . , Vk} is a T -partition. Theorem 2.2 is the ‘trivial’
exclusion part of this.

Theorem 4.1 (Structure theorem of vertex-disjoint paths). V(T ) = (V +;V0,
V1, V2, . . . , Vk) is a T -partition, µ(G, T ) = valG,T (V). Furthermore,

C is the union of the even components of G− V0 −
⋃k

i=1E[Vi], and

D is the union of the odd components of G− V0 −
⋃k

i=1E[Vi].
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Proof. Let X := {X;X0, X1, X2, . . . Xk} be a T -partition of V of value µ for which
X0 ∪ C(X ) is inclusionwise maximal, and among these, maximize X (again, with
respect to inclusion).

By Mader’s Theorem 1.3 such a T -partition X exists. We will prove that X =
V(T ). We keep the notation V(T ) = (V +;V0, V1, . . . , Vk), C = C(T ), D = D(T );
in order to avoid confusion look again at the definition of these sets and realize that
for the moment C = C(T ), D = D(T ) do not have anything to do with even or
odd components; on the other hand C(X ) (D(X )) is the union of the even (odd)
components of the graph G−X0 −

⋃k
i=1E[Xi].

We proceed by induction on |V (G) \ T |. If this is 0, then the theorem simplifies to
the original Edmonds-Gallai structure theorem.

The proof will realize a project based on the following facts generalizing the edge-
disjoint case: V (G) is partitioned by the three setsX0∪C(X ), X\C(X ), andD(X )\X;
on the other hand, V (G) is also partitioned by the three sets V0∪C, V + \C, and D∗.
We will prove the following three containment relations

(1) X0 ∪ C(X ) ⊆ V0 ∪ C,

(2) Xi \ C(X ) ⊆ Vi \ V C
i for all i = 1, . . . , k,

(3) D(X ) \X ⊆ D∗.

It follows that each of the three classes of the first partition is contained in a
corresponding class of the second partition. The equalities follow throughout, that is,
in (1), (2) and (3) as well. To prove the theorem we only have to prove X0 = V0 in
addition to these equalities, and again, because of the equality in (1), this is equivalent
to X0 ⊆ V0 and C(X ) ⊆ C. Let us prove these first, they are relatively simpler:

We prove X0 ⊆ V0, admitting (1), (2), (3). Let P be an optimal path packing and
x ∈ X0. By complementary slackness (Fig. 2) x is contained in exactly one P ∈ P ,
and P is vertex-disjoint from C(X ) and of X0\{x}. Hence either one of the neighbors
of x on P is in D(X ) \X – and by (3) in D∗–, or the two neighbors of x on P , denote
them by a and b, are in Xi \ C(X ) and Xj \ C(X ) respectively, where i 6= j (Fig. 2).
Now by (2) a is then i-rooted, and b is j-rooted. Thus x is 0-rooted, i-touched and
j-touched, that is, x ∈ V0, as claimed.

We prove now C(X ) ⊆ C. Since C(X ) \ X ⊆ C∗ is obvious, all we have to prove
is C(X ) ∩ Xi ⊆ V C

i (i = 1, . . . , k). Fix i ∈ {1, . . . , k}, and let v ∈ C(X ) ∩ Xi. By
Theorem 2.2 (i) v is 0-rooted, and by (iii) it is neither j-rooted nor j-touched for
j 6= i, proving the assertion.

Since v ∈ X0 ∪ C(X ) implies that v is 0-rooted, (1) is trivial.
We are remained with (2) and (3).

Let us prove now the most difficult part, (2). Let v ∈ Xi \ C(X ); then v is not
j-rooted for any j 6= i (since Theorem 2.2 (ii) and (iv)), whence the containment we
want to prove is equivalent to the following:

Claim: Let Tv := (T1, . . . , Tk, {v}). Then µ(G, Tv) = µ(G, T ) + 1.
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1 2 k

0

u

Y Y Y Yv
v

Y

Figure 3: Mader-partition if Yv 6= ∅

Suppose for a contradiction µ(G, Tv) = µ(G, T ). We know by induction that
V(Tv) =: (Y ;Y0, Y1, . . . , Yk, Yv) is an optimal Tv-partition. We show that

(4) X0 ∪ C(X ) ⊆ Y0 ∪ C(Tv) ∪ U,

where U is the union of Yv and of those components of D(Tv) = G − Y0 − (E[Yv] ∪
∪k

i=1E[Yi]) that have a common vertex with Yv.
The Claim will then be proved, since the optimal T -partition Y defined from V(Tv)

by deleting Yv from the classes (and replacing Y by Y \ Yv) has

X0 ∪ C(X ) ∪ U ⊆ Y0 ∪ C(Y).

Since v /∈ X0∪C(X ) and v ∈ Y0∪C(Y), Y contradicts the maximal choice of X0∪C(X )
if it is an optimal partition which we now prove.

If each optimal path packing in (G, Tv) covers v, then v ∈ Y0 ∪C(Tv) (and U = ∅).
Since valG,T (Y) = µ, Y contradicts the maximal choice of X0 ∪ C(X ).

If there is an optimal path packing in (G, Tv) which does not cover v, then v ∈
Yv. Hence every component K of G − Y0 − (E[Yv]

⋃
∪k

i=1E[Yi]) having a nonempty
intersection with Yv is in D(Y), and |K ∩ Yv| = 1. Hence U ∈ C(Y), valG,T (Y) = µ,
and Y contradicts the maximal choice of X0 ∪ C(X ).

In order to prove the claim it is sufficient now to prove (4). We prove it by show-
ing that the complement of the left hand side with respect to V (G) contains the
complement of the right hand side, that is, the following suffices:

Supposing that u /∈ U is j-rooted in (G, Tv) for some j ∈ {1, . . . , k}, we show that
it is also j-rooted in (G, T ).

Define Tu,v := (T1, . . . , Tk, {u, v}). We have µ(G, Tu,v) = µ(G, T ) + 1, and if we
have an optimal path packing that leaves either u or v uncovered, then we are done.

So u and v are covered by every maximal path packing in (G, Tu,v). V(Tv) shows
that u (v) cannot be l-touched in (G, Tu,v) for any l 6= j (l 6= i). Hence by induction u
and v are in C(Tu,v). If u and v are not in the same even component of C(Tu,v), then

µ(G, T ) ≤ µ(G, Tu,v)− 2,

which is impossible, therefore u, v are on the boundary of a component K of C(Tu,v).
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We know that K has an even number, say 2m boundary points including u and
v; in a system of µ(G, Tu,v) = µ(G, T ) + 1 feasible Tu,v-paths these boundary points
are matched by m paths, and in a system of µ(G, T ) T -paths the 2(m− 1) boundary
points are matched by m − 1 paths (u and v are not terminal points any more, and
therefore they are not boundary points).

By switching between the two sets of paths we get a bijection between maximum
collections of T -paths and maximum collections of Tu,v-paths. Both cover the same
set of terminal vertices, except that the latter covers u, v, whereas the former does
not.

It follows that V(Tu,v) is not only an optimal Tu,v-partition, but also an optimal
T -partition, and V(Tu,v) = V(T ), contradicting the choice of X .

(3) is now simpler to prove:
Indeed, let v ∈ D(X )\X, let K be the (odd) component of D(X ) containing v, and

define the path packing problem (K,S i) as follows: S i = (S1, . . . , Si ∪ {v}, . . . , Sk),
where Si = Xi ∩ V (K) (i = 1, . . . , k). Denote 2m+ 2 the number of terminal points
in S i; since X is an optimal T -partition, µ(K,S) = m or m+ 1.

If for some i = 1, . . . , k, µ(K,S i) = m, then there exists in K an S i-partition Z of
value m. Since the S i-partition Y = ({v} ∪ ∪k

i=1Si;Y0 = ∅,S i) has value m+ 1, in Z
either Z0 6= ∅ or there exists i ∈ {1, . . . , k} such that |Zi| > |Si|.

Combining Z with X in the obvious way, we get in the former case a T -partition
where X0∪C(X ) increases, whereas in the latter case a T -partition where X increases,
contradicting in both cases the choice of X .

Therefore, for all i = 1, . . . , k, µ(K,S i) = m + 1. For a fixed i, µ(K,S i) = m + 1
means exactly that there exists j 6= i so that v is j-rooted in K, and this j is not
unique, since µ(K,Sj) = m+ 1 also holds. Since according to the Claim every s ∈ Si

is i-rooted, we can combine the maximum path packing and the half path proving
that s is i-rooted with the appropriate path packings in (K,S i) showing that v is
j-rooted in (G, T ). Using that v is also l-rooted for some l 6= j in K, we get a path
packing proving that v is l-rooted in (G, T ).

Now the claim and the theorem is proved.

5 Generalizations

Suppose we are given a function c : V (G) −→ N, and we want to maximize the
number of T -paths so that vertex v ∈ V (G) is contained in at most c(v) paths. Let
us denote by ν(G, T, c) the maximum.

Theorem 5.1.

ν(G, T, c) = min c(V0) +
∑
C∈C

⌊
c(∪k

i=1Vi ∩ C)

2

⌋
,

where V0 ⊆ V (G), Vi is a subpartition of V (G)\V0, V0∪Vi ⊇ Ti, and C is the collection
of the components of G− V0 − ∪k

i=1E[Vi].
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Proof. Replicate each vertex – vertex v c(v) times. (All copies are adjacent to the
same vertex-set, and non-adjacent among them.) Note that all the copies of a vertex
are in the same class of the structure theorem, and the theorem follows. The statement
is also easy directly from Mader’s Theorem 1.4.

In other words, putting weights on vertices does not generalize the problem, but
the statement can be useful in algorithmic considerations.

In the following we formulate a common generalization of Mader’s T -path problem
and Cunningham and Geelen’s path-matching theorem [3]. We call this problem the
T -path-matching problem.

Let G = (V,E) be a graph and T1, . . . , Tk disjoint subsets of V , denote T :=
{T1, . . . , Tk}, T := ∪k

i=1Ti. A T -path-matching is a union of edges (called matching
edges) and T -paths and paths with one end in T and the other not in T , all vertex-
disjoint. The value of a path-matching is the number of its edges plus the number of
its matching edges. For a T -path-matching or any subset F ⊆ E(G) we will simply
denote by |F | the value of the edges that are in the set. This is defined as the number
of edges in it plus the number of matching edges counted a second times, that is, the
total number of edges contained in paths + twice the number of edges contained in
matchings. The perfect version of this problem was introduced by Z. Szigeti [20].

A T -partition is a family of pairwise disjoint sets X0, X1, . . . , Xk ⊆ V (G) so that
X0 ∪ Xi ⊇ Ti. (It is not necessarily a partition of V (G).) The components of the
graph (G−X0)−∪k

i=1E[Xi] will be called the components of this T -partition. Let us
denote by C the family of these components.

Let X := ∪k
i=1Xi, and

C∗ := {C ∈ C : C ∩X 6= ∅}, C ′ := {C ∈ C : C ∩X = ∅}.

X̄ := ∪{C : C ∈ C∗}, U := ∪{C : C ∈ C ′}.
We denote by ω the number of odd components that do not meet X. Clearly,

X̄ ⊇ X, (but X̄ does not necessarily contain T , since X0 can also contain vetices of
T ).

Fact 6. There is no edge between a vertex of U and a vertex of X̄.

For a component C ∈ C∗, ωi(C) denotes the number of components of C − X of
odd cardinality having neighbors only in Xi ∪X0 for i = 1, 2, . . . k. Denote Ωi(C) the
union of these components, and Ω(C) := ∪k

i=1Ωi(C) . Let ω(C) :=
∑k

i=1 ωi(C).
The value of a T -partition is defined to be

valG,T (X ) := |V \ T |+ (|X0| − ω) +
∑
C∈C

⌊
|C ∩X| − ω(C)

2

⌋
.

Conjecture 6.1. The maximum value of a T -path-matching is equal to

min valG,T (X ),

where the minimum is taken over all T -partitions X .
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We provide the proof of the so called ‘trivial’ part (which is indeed, easy, but
requires more concentration than for simpler min-max theorems). The assertion is
that the maximum does not exceed the minimum.

Let F be a T -path-matching, X0, X1, . . . , Xk a T -partition. {X0, X̄, U} is a parti-
tion of V , and {∪v∈X0δ(v), E[X̄], E[U ]} is a partition of E. Indeed, by the Fact there
is no edge between U and X̄. We have:

|F | = |F ∩ ∪v∈X0δ(v)|+ |F ∩ E[X̄]|+ |F ∩ E[U ]|.

Estimate each term:

|F ∩ ∪v∈X0δ(v)| ≤ 2|X0 \ T |+ |X0 ∩ T |,

because every x ∈ X0 \ T is incident either to a matching edge or to at most two
path-edges. x ∈ X0 ∩T is incident to at most one path edge (and no matching edge).

Let M be the set of matching edges of F , and P the set of its path-edges. Then

|F ∩ E[X̄]| ≤ |X̄ \ T |+
∑
C∈C

⌊
|C ∩X| − ω(C)

2

⌋
,

which we prove in the following paragraph.
Clearly, |M ∩ E[X̄]| ≤ |V (M) ∩ (X̄ \ T )|. Furthermore, let P ′ be the edge-set of a

path in P . Since P ′ is a forest,

|E(P ′) ∩ E[X̄]| ≤ |V (P ′) ∩ X̄| − 1,

hence either |E(P ′)∩E[X̄]| ≤ |V (P ′) \ T |, or P ′ is a T -path and entirely in X̄, when
we have to add 1 to the right hand side as ‘correcting term’, that is, we have then
|E(P ′) ∩ E[X̄]| ≤ |V (P ′) \ T | + 1. However, the sum of the correcting terms can

be estimated from above by
∑

C∈C

⌊
|C∩X|−ϕ1(C)−ϕ2(C)

2

⌋
, where ϕ1(C) (ϕ2(C)) denotes

the number of matching (path) edges joining Ω(C) to C ∩X, since for every T -path
entirely contained in X̄ there exists at least one C ∈ C∗ with at least two vertices
of P ′. Indeed, the two endpoints of P ′ are contained in sets Ti and Tj respectively
(i 6= j). Summing up, we get the following (where ϕ3(C) denotes the number of
components K of Ω(C) for which there is no edge of F between K and X):

|F ∩ E[X̄]| ≤ |X̄ \ T |+
∑
C∈C

⌊
|C ∩X| − ϕ1(C)− ϕ2(C)

2

⌋
− ϕ3(C)

= |X̄ \ T |+
∑
C∈C

⌊
|C ∩X| − ϕ1(C)− ϕ2(C)− 2ϕ3(C)

2

⌋

≤ |X̄ \ T |+
∑
C∈C

⌊
|C ∩X| − ω(C)

2

⌋
.

Finally,
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|F ∩ E[U ]| ≤ |U | − ω,

because |F ∩ E[U ]| =
∑

C∈C′ |F ∩ E(C)|, and |F ∩ E(C)| ≤ |V (C)|,

moreover, if C ∈ C ′, and |V (C)| is odd, then |F ∩ E(C)| ≤ |V (C)| − 1,

because there is either at least one path entering and leaving the component, or at
least one uncovered vertex (or both).

So we finally got:

|F | ≤ 2|X0 \ T |+ |X0 ∩ T |+ |U | − ω + |X̄ \ T |+
∑
C∈C

⌊
|C ∩X| − ω(C)

2

⌋

= |X0 \ T |+ |X̄ \ T |+ |U |+ |X0 \ T |+ |X0 ∩ T | − ω +
∑
C∈C

⌊
|C ∩X| − ω(C)

2

⌋

= |V \ T |+ (|X0| − ω) +
∑
C∈C

⌊
|C ∩X| − ω(C)

2

⌋
.

Isn’t it challenging to search for a structure algorithm for T -path-matchings (in
polynomial time)? This conjecture can be reduced to matchings in the particular
case when every class of T has at most one element, which motivates an adaptation
of Schrijver’s approach [14].
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