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A polyhedral approach to even factors

Márton Makai?

Abstract

Generalizing path-matchings, W.H. Cunningham and J.F. Geelen intro-
duced the notion of even factor in directed graphs. In weakly symmetric di-
rected graphs they proved a min-max formula for the maximum cardinality
even factor by algebraic method and also discussed a primal-dual method for
the weighted case. Later, Gy. Pap and L. Szegő proved a simplified formula
by purely combinatorial method and derived a Gallai-Edmonds type structure
theorem. In this paper, polyhedra related to even factors are considered, inte-
grality and total dual integrality of these linear descriptions are proved directly,
without using earlier unweighted results.

1 Introduction

Cunningham and Geelen [2, 3] introduced the notion of even factor in digraphs as
the edge set of vertex disjoint union of dipaths and dicycles of even length. For short,
on a digraph we mean directed graph, dicycle and dipath mean directed cycle and
directed path, while in a cycle or in a path, there can be forward and backward edges,
too. The maximum cardinality even factor problem is NP-hard in general (Wang, see
[3]) but there are special classes of digraphs where it can be solved.

In the paper throughout digraphs with no loops and with no parallel edges are
considered, only oppositely directed edges are permitted. An edge of a digraph is
called symmetric, if the reserved edge is in the edge set of the digraph, too. A
digraph is symmetric if all its edges are symmetric, while a digraph is said to be
weakly symmetric if its strongly connected components are symmetric. Then weak
symmetry means that the edges contained in dicycle are symmetric. Pap and Szegő
[8] introduced the more general class of hardly symmetric digraphs where the problem
remains tractable. A digraph is said to be hardly symmetric if the edges contained in
odd dicycle are symmetric.

Using an algebraic approach, Cunningham and Geelen proved a min-max formula
for the maximum cardinality even factor problem in weakly symmetric digraphs [3].
Later, Pap and Szegő [8] proved a simpler formula for the same problem with purely
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Section 1. Introduction 2

combinatorial methods and they also observed that the same proof and formula works
for the hardly symmetric case.

As the unweighted problem is tractable only in special graphs, the weight function
also has to possess certain symmetries. If G′ = (V ′, A′) is a weakly symmetric graph
and c′ : A′ → R is a weight function s.t. c′(uv) = c′(vu) if both uv and vu belong to A′,
then the pair (G′, c′) is called weakly symmetric. Cunningham and Geelen considered
weighted generalization in [3] for weakly symmetric pairs. Using their unweighted
formula and a primal-dual method they derived integrality of a polyhedron similar to
the perfect matching polyhedron.

Here we deal with a more general class of digraphs and weight functions which turn
out to be general enough to contain the mentioned cardinality and weighted cases. We
prove integrality of polyhedra related to even factors and total dual integrality. We do
not use earlier unweighted results, which rather follow as consequences. This approach
enables us to derive weighted min-max formulas, nevertheless we omit to present them
explicitly, since these are direct consequences of the polyhedral theorems.

Before, let A ∈ Z
m×n be an integer matrix, b ∈ Z

m an integer vector. The poly-
hedron defined by {x : Ax ≤ b} is said to be integer if every face of it contains an
integer vector. The system Ax ≤ b is called totally dual integral (TDI) if the dual
of the linear program max{cx : Ax ≤ b} has an integer valued optimal solution for
every integer valued c such that it has an optimal solution. Polyhedra defined by TDI
systems are interesting because of the fact that they are integer polyhedra.

To distinguish directed and undirected edges, the directed edge with tail u and
head v will be denoted by uv and the undirected edge with endvertices u and v will
be denoted by {u, v}. If G = (V,E = Ed ∪ Eu) is a mixed graph, Ed and Eu denote
respectively the set of its directed edges and the set of its undirected edges and y ∈ R

E,
then for u ∈ V and S ⊆ V we will use the notations
dy(u) =

∑
{u,v}∈Eu

y({u, v}) +
∑

uv∈Ed
y(uv) +

∑
vu∈Ed

y(vu),

iy(S) =
∑
{y({u, v}) : {u, v} ∈ Eu, u, v ∈ S}+

∑
{y(uv) : uv ∈ Ed, u, v ∈ S},

%y(S) =
∑
{y(uv) : uv ∈ Ed, u /∈ S, v ∈ S} and δy(S) = %y(V − S). We do not

indicate the graph because it will be clear from y and from the context.
For any digraph G = (V,A), one can consider the following system of linear in-

equalities

x ∈ R
A, x ≥ 0 (1)

%x(v) ≤ 1 for every v ∈ V (2)

δx(v) ≤ 1 for every v ∈ V (3)

ix(S) ≤ |S| − 1 for every S ⊆ U , |S| odd, U ∈ C(G) (4)

whose solution set is denoted by EF(G) and C(G) denotes the set of vertex sets of
the strongly connected components of G. We do not distinguish a subset of the edges
and its characteristic vector, thus we can observe easily, that the integer solutions of
EF(G) are exactly the even factors ofG. However, as mentioned above, the polyhedron
defined by these inequalities is not integer. After some preliminaries we will define a
class of graphs and weight functions where we can state that max{cx : x ∈ EF(G)}
is attained on an integer vector.
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Section 1. Introduction 3

For a digraph G′, G′ denotes its underlying undirected graph. The maximal strongly
connected subgraphs of a digraph having 2-vertex-connected underlying undirected
graph are called blocks. If U ∈ C(G), then let D(U) denote the collection of vertex-
sets of blocks of G[U ]. where G[U ] denotes the subgraph of G induced by U . A
digraph G′ is said to be bipartite if G′ is bipartite. Throughout the paper, we deal
with digraphs s.t. for any U ∈ C(G), S ∈ D(U), G[S] is symmetric or bipartite. We
consider families S,B ⊆ 2V s.t. S ∩ B = ∅, S ∪ B = ∪U∈C(G)D(U), for any S ∈ S,
G[S] is symmetric and for any S ∈ B, G[S] is bipartite. A digraph is said to be evenly
symmetric if there exist families satisfying the above criteria. The pair (G, c) is said
to be evenly symmetric if G = (V,A) is an evenly symmetric digraph with respect to S
and B, and c : A→ R is a weight function s.t. c(uv) = c(vu) if uv and vu belong to A
and ∃S ∈ S s.t. u, v ∈ S. More precisely we should say that (G, c) is evenly symmetric
with respect to the families S and B, but the context will make clear everywhere the
families we consider. We let S? be the family of maximal members of

{T : ∃T ⊆ S, T = ∪T s.t. the hypergraph (T, T ) is connected}.

It is easy to see that EF(G) equals to the solution set of

x ∈ R
A, x ≥ 0 (5)

%x(v) ≤ 1 for every v ∈ V (6)

δx(v) ≤ 1 for every v ∈ V (7)

ix(S) ≤ |S| − 1 for every S ⊆ U , |S| odd, U ∈ S?. (8)

Moreover, with respect to some objective function, this system and (1)-(2)-(3)-(4)
have integer dual optimal solution at the same time. A family F of subsets of V is
said to be laminar if for any X,Y ∈ F , at least one of X ⊆ Y , Y ⊆ X or X ∩ Y = ∅
holds. Now we are ready to state a result on dual integrality.

Theorem 1.1. If (G, c) is evenly symmetric and c is an integer vector, then the dual
of the linear program max{cx : (5) − (6) − (7) − (8)} has integer optimal solution
(λ%v, λ

δ
v, zS). Moreover, there is one for which {S : zS > 0} is a laminar family.

To deal with primal integrality and to exploit the theory of TDI systems, the
symmetric edges spanned by some members of S are considered as undirected edges
and we take the mixed graph with vertex set V and edge set E = Ed ∪ Eu,

Eu = {{u, v} : uv, vu ∈ A, u, v ∈ U for some U ∈ S},
Ed = {uv ∈ A : {u, v} /∈ Eu}.

We need the description (in the sense of linear inequalities) of the following polyhedron

SEF(G) =

{
y ∈ R

E : ∃x ∈ EF(G), y(e) =

{
x(uv) + x(vu) if e = {u, v} ∈ Eu

x(uv) if e = uv ∈ Ed

}}
.
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Theorem 1.2. For the evenly symmetric digraph G = (V,A), SEF(G) is the solution
set of

y ∈ R
E, y ≥ 0 (9)

dy(v) ≤ 2 for every v ∈ V (10)

iy(S) ≤ |S| − 1 for every S ⊆ U , |S| odd, U ∈ S? (11)

iy(S) + %y(S) ≤ |S| for every S ∈ U (12)

iy(S) + δy(S) ≤ |S| for every S ∈ U (13)

where U = {S : ∃U ∈ S? s.t. S ⊆ U} ∪ {{v} : v ∈ V − ∪S?}.

Observe that if |C(G)| = 1, then this specializes to 2M(G) where M(G) is the
matching polyhedron defined by

y ∈ R
E, y ≥ 0

dy(v) ≤ 1 for every v ∈ V

iy(S) ≤ |S| − 1

2
for every S ⊆ V , |S| odd.

This system was proved to be a TDI system by Cunningham and Marsh [5]. Another
well-known special case is when the strongly connected components are bipartite. In
this case

y ∈ R
E, y ≥ 0

%y(v) ≤ 1 for every v ∈ V
δy(v) ≤ 1 for every v ∈ V

is obtained, which is TDI. Also, we can see easily that any integer solution of this
system is a vertex disjoint union of dipaths and even dicycles.

A more general special case is the path-matching polyhedron which was introduced
by Cunningham and Geelen. For a detailed description, the interested reader is re-
ferred to the paper of Cunningham and Geelen [4] and Frank and Szegő [6]. Here,
V is the disjoint union of T1, R and T2, where T1 and T2 are stable sets, G[R] is
symmetric, no edge enters T1 and no edge leaves T2. System (9)-(10)-(11)-(12)-(13)
defined on this graph specializes to the path-matching polyhedron

y ∈ R
E, y ≥ 0

dy(v) ≤ 2 for every v ∈ R
iy(S) ≤ |S| − 1 for every S ⊆ R, |S| odd

iy(S) + %y(S) ≤ |S| for every S ⊆ R

iy(S) + δy(S) ≤ |S| for every S ⊆ R

%y(v) ≤ 1 for every v ∈ T2

δy(v) ≤ 1 for every v ∈ T1

which was proved to be TDI by Cunningham and Geelen [4]. Our main theorem is
the following.
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Section 2. Unweighted min-max formula 5

Theorem 1.3. If G = (V,A) is evenly symmetric, then (9)-(10)-(11)-(12)-(13) is
TDI. In addition, if c ∈ Z

E is an integer vector, then there is an integer optimal
solution (µdv, µ

i
S, µ

i,%
S , µ

i,δ
S ) of the dual of max{cy : (9)− (10)− (11)− (12)− (13)} s.t.

G = {S : µiS > 0} ∪ {S : µi,%S > 0} ∪ {S : µi,δS > 0} is a laminar family, (14)

if µiS > 0, µi,%T > 0, S ∩ T 6= ∅, then S ⊆ T , (15)

if µiS > 0, µi,δT > 0, S ∩ T 6= ∅, then S ⊆ T , and (16)

µi,δS > 0, µi,%T > 0 implies S ∩ T = ∅. (17)

Clearly, this generalizes the weakly symmetric case because a weakly symmetric
graph G is evenly symmetric with S = ∪U∈C(G)D(U). Due to the following character-
ization of hardly symmetric graphs, which was observed and proved by Z. Király [7],
our model includes the hardly symmetric case, too.

Lemma 1.4 (Király). Let G = (V,A) be a hardly symmetric digraph which is itself
a block. Then G is symmetric or bipartite.

The rest of the paper is organized as follows. In the next section, we derive the
unweighted min-max formula of Pap and Szegő [8], while in the subsequent sections,
the detailed proofs of Theorem 1.2 and Theorem 1.3 will be presented.

2 Unweighted min-max formula

In [3], Cunningham and Geelen using their unweighted min-max formula and a primal-
dual method, derived polyhedral results. Here we follow an opposite direction and
prove the unweighted formula of Pap and Szegő [8] as a consequence of Theorem
1.3. First, for better view of analogy, we recall a non-usual form of the well-known
Berge-Tutte formula. If G = (V,E) is an undirected graph then odd(G) denotes
the number of connected components of G having an odd number of vertices, and
NG(X) = {v ∈ V −X : ∃u ∈ X, {u, v} ∈ E}.

Theorem 2.1 (Berge and Tutte). If G = (V,E) is an undirected graph, then the
cardinality of a maximum matching of G is

min
X⊆V

|V |+ |NG(X)| − odd(G[X])

2
.

In a digraph G = (V,A), we define N+
G (X) = {v ∈ V −X : ∃u ∈ X, uv ∈ A} and

let odd(G) denote the number of strongly connected components of G having an odd
number of vertices with no entering arc (i.e. source components). Using this notation,
Pap and Szegő [8] proved the following.

Theorem 2.2 (Pap and Szegő). If G = (V,A) is a hardly symmetric digraph, then
the maximum cardinality of an even factor is

min
X⊆V
|V |+ |N+

G (X)| − odd(G[X]).
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U%

U δ

S3

S1 S2

X
µiSj = 1

N
N+
G (X)

Figure 1: The edges indicated by dashed line cannot occur.

Proof. First we prove max ≤ min. For a fixed X, any even factor of G has at most
|X|−odd(G[X]) edges spanned by X, at most |N+

G (X)| edges leaving X, and at most
|V − X| edges having tail in V − X. Then, an even factor of G has cardinality at
most |V |+ |N+

G (X)| − odd(G[X]).
To see max ≥ min, we consider integer optimal primal and dual solutions of

max
∑

e∈E y(e) subject to (9)-(10)-(11)-(12)-(13), suppose moreover that the dual

solution (µdv, µ
i
S, µ

i,%
S , µ

i,δ
S ) satisfies (14)-(15)-(16)-(17). Such a dual solution exists by

Theorem 1.3. A primal solution is an even factor, while the dual solution may have
to be modified.

Claim 2.3. The family G = {S : µiS > 0} ∪ {S : µi,%S > 0} ∪ {S : µi,δS > 0} form a
subpartition of V . Moreover, we can assume that G ∪ {v : µdv = 1} is a subpartition.

Proof. The first statement is a consequence of (14)-(15)-(16)-(17) and that the solution
is 0-1 valued. Consider now a solution s.t. this subpartition covers a minimum number
of vertices v with µdv = 1. If µdv = 1, µiS = 1 and v ∈ S, then we can decrease µiS by
1 and increase µiS−u−v and µdu by 1 for some u ∈ S − v, contradicting the minimality.

If µdv = 1, µi,%S = 1 and v ∈ S then we can decrease µi,%S by 1 and increase µi,%S−v by 1
which would be a dual solution with strictly smaller value.

From the dual solution µ we can define X for which max ≥ min. After setting
U δ = ∪{S : µi,δS = 1}, U% = ∪{S : µi,%S = 1} and N = {v : µdv = 1} we can define
X = V −N−U δ. Then G[X−U%] is composed by symmetric odd components, which
are source components in G[X]. Clearly, N+

G (X) ⊆ N . If uv ∈ A leaves U%, then
v ∈ N , and similarly, if uv ∈ A enters U δ, then u ∈ N . Then the cardinality of a
maximum even factor is at least

2|N |+
∑
µiS=1

(|S|−1)+|U δ|+|U%| = |N |+|V |−odd(G[X]) ≥ |V |+|N+
G (X)|−odd(G[X]).
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Section 3. Structure of hardly symmetric digraphs 7

3 Structure of hardly symmetric digraphs

Let G′ = (V ′, E′) be a digraph. An ear of G′ is a dicycle or a dipath (with different
ends) of G′, while a proper ear of G′ is a dipath (with different ends) of G′. Then the
sequence C0, P1, P2, . . . , Pk is an ear-decomposition of G′ if C0 is a dicycle called initial
dicycle; every Pi is an ear; C0∪P1∪· · ·∪Pi−1 has exactly two common vertices with Pi,
namely the ends of Pi, if Pi is a dipath, and has exactly one common vertex with Pi,
if Pi is a dicycle; and C0∪P1∪· · ·∪Pk = G′. Similarly, the sequence C0, P1, P2, . . . , Pk
is a proper ear-decomposition of G′ if C0 is a dicycle of length at least 2, called initial
dicycle; every Pi is a proper ear; C0∪P1∪ · · · ∪Pi−1 has exactly two common vertices
with Pi, namely the ends of Pi; and C0 ∪ P1 ∪ · · · ∪ Pk = G′.

It is well-known that a strongly connected digraphG′ possesses an ear-decomposition,
moreover, every dicycle of G′ can be the initial dicycle of this ear-decomposition. It
is much more non-trivial that a strongly connected digraph G′ s.t. G′ is 2-vertex-
connected, has proper ear-decomposition, and every dicycle of G′ of length at least 2
can be the initial dicycle of a proper ear-decomposition.

Proof of Lemma 1.4. If G is bipartite, then we are done. Thus, G contains a (not
necessarily directed) closed walk W , having and odd number of edges (with multi-
plicity). W may have forward and backward edges. Consider such a W containing
minimum number of backward edges.

Now, we are looking for a directed closed walk having an odd number of edges. If
W has no backward edge, then we are done. If W has a backward edge uv, then by
strong connectivity there is a dipath P from v to u. If P has an even number of edges,
then P together with uv is an odd dicycle. Otherwise, uv can be exchanged to P in
W , and the number of backward edges decreases. Finally, we have a directed closed
walk having an odd number of edges. After decomposing it into dicycles, we get an
odd dicycle C.

Claim 3.1. There is a sequence of symmetric digraphs G0 ⊂ G1 ⊂ · · · ⊂ Gl = G s.t.
G0 is a symmetric odd cycle, and for any two vertices s and t of Gi, Gi contains odd
and also even length dipaths from s to t.

Proof. We consider a proper ear-decomposition of G with initial cycle C. Then C is
odd, hence symmetric. Moreover, there exist odd and also even dipaths between any
two vertices of C. Suppose, by induction, that a subgraph Gi ⊆ G is built up by the
proper ear-decomposition, Gi is symmetric and between any two vertices of Gi, there
exist odd and also even dipaths contained in Gi. Then the edges of the following
proper ear Q are contained in odd dicycle, hence are symmetric. Moreover, between
any two vertices of Q, there exists odd dipath and also even dipath.

The claim completes the proof.
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4 Projection

For the proof of Theorem 1.2 we invoke a projection technique of Balas and Pulleyblank
from [1]. We consider the polyhedron defined by

P = {(x, y) : A1x+B1y ≤ b1, A2x+B2y = b2, x, y ≥ 0}

where our aim is to describe

P ′ = {y : ∃x s.t. (x, y) ∈ P}

in the sense of linear inequalities. After defining the cone W = {(w1, w2) : w1 ≥
0, w1A1 + w2A2 ≥ 0}, it can be seen via Farkas’ lemma that

P ′ = {y : y ≥ 0, (w1B1 + w2B2)y ≤ w1b1 + w2b2 for every (w1, w2) ∈ W}.

To get a polyhedral description of P ′, finitely many inequalities have to be chosen
which define the same polyhedron. To this end, a finite set Ŵ ⊆ W will be determined
s.t.

P ′ = {y : y ≥ 0, (w1B1 + w2B2)y ≤ w1b1 + w2b2 for every (w1, w2) ∈ Ŵ}.

Proof of Theorem 1.2. To apply this projection technique, consider the following sys-
tem in the above role of P .

x ∈ R
A, y ∈ R

E, x, y ≥ 0 (18)

%x(v) ≤ 1 for every v ∈ V (19)

δx(v) ≤ 1 for every v ∈ V (20)

ix(S) ≤ |S| − 1 for every S ⊆ U , |S| odd, U ∈ S? (21)

−x(uv) + y(uv) = 0 for every uv ∈ Ed (22)

−x(uv)− x(vu) + y({u, v}) = 0 for every {u, v} ∈ Eu. (23)

Let (w%v : v ∈ V,wδv : v ∈ V,wiS : S ⊆ U,U ∈ S?, wuv : uv ∈ Ed, w{u,v} : {u, v} ∈ Eu)
be a member of the cone determined by inequalities w%v ≥ 0, wδv ≥ 0, wiS ≥ 0 and by

w%v + wδu ≥ wuv for every uv ∈ Ed

w%v + wδu +
∑
u,v∈S

wiS ≥ w{u,v} for every {u, v} ∈ Eu

w%u + wδv +
∑
u,v∈S

wiS ≥ w{u,v} for every {u, v} ∈ Eu.

Thus we have inequalities y ≥ 0 and∑
e∈E

wey(e) ≤
∑
v∈V

w%v +
∑
v∈V

wδv +
∑

S⊆U, |S| odd, U∈S?
wiS(|S| − 1). (24)
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Our goal is to decompose (24) into the nonnegative combination of inequalities of
(9)-(13).

We can observe that if wiS > 0 then (24) can be decomposed into the nonnegative
combination of an inequality of type (11) and an inequality of form (24) but with
fewer positive component wiS.

Similarly, if w%v > 0 and wδv > 0 for some v, this can be removed by (10). If w%v > 0
or wδv > 0 for some v ∈ V − ∪{S : S ∈ S}, this also can be removed by (12) or by
(13).

Moreover, the constraint can be decomposed into the sum of inequalities, s.t. for
each of the new inequalities there exists U ∈ S? so that w%v = 0 and wδv = 0 if v /∈ U .
Furthermore, by y ≥ 0, it is enough to consider inequalities in the special case when
wuv ≥ 0 and w{u,v} ≥ 0.

Hence, any remaining constraint is of form∑
e∈E

wey(e) ≤
∑
v∈U

w%v +
∑
v∈U

wδv (25)

for some U ∈ S? and for weights s.t.

w%v + wδu ≥ wuv for every uv ∈ Ed (26)

w%v + wδu ≥ w{u,v} for every {u, v} ∈ Eu (27)

w%u + wδv ≥ w{u,v} for every {u, v} ∈ Eu (28)

where w%v ≥ 0, wδv ≥ 0, v ∈ U and, for any v ∈ U , at most one of the two quantities is
strictly positive. An edge uv ∈ A is said to be tight if uv ∈ Ed and equality holds in
(26) or if {u, v} ∈ Eu and equality holds in (27). The set of tight edges is denoted by
A=. By increasing the value of w{u,w} and wuv, it can be assumed that every e ∈ Ed

is tight and for {u, v} ∈ Eu at least one of uv and vu is tight.
After setting G= = (V,A=), we can observe that G=[U ] forms a weakly symmetric

digraph, since it is easy to see that if a dicycle of length at least three is contained
in A=, then this dicycle in the opposite orientation also belongs to A=, while for a
dicycle of length two this is obvious.

Claim 4.1. If for some u ∈ K ∈ C(G=[U ]), at least one of w%u and wδu is nonzero,
then, for any vertex v ∈ K, w%v = w%u and wδv = wδu.

Proof. Assume w.l.o.g. that uv, vu ∈ A=, wδu > 0 and w%u = 0. Then wδv = w{u,v} > 0,
w%v = 0 and wδu = w{u,v}.

We set p =
∣∣{Y ∈ C(G=[U ]) : wδy + w%y > 0 for y ∈ Y

}∣∣. If p = 0, then we are done.
If p = 1, then our inequality (25) is of form (12) or (13), more precisely constant
times (12) or (13). Thus we suppose p ≥ 2. If uv, vu ∈ A, u, v ∈ U and uv ∈ A=,
vu /∈ A= then wδv ≥ wδu, w

%
v ≤ w%u and at least one of these inequalities holds with

strict inequality. We may assume w.l.o.g. the existence of a vertex u ∈ U with
wδu > 0. Let Z be a sink component (a sink in the acyclic digraph obtained by
shrinking the strongly connected components) of G=[U ] s.t. wδz > 0 and w%z = 0 for
(every) z ∈ Z. p ≥ 2 implies that there are vertices z ∈ Z and u ∈ U − Z s.t.
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Section 5. Proof of Theorem 1.1 and Theorem 1.3 10

uz ∈ A= (and zu /∈ A=). For such z and u, wδz > wδu, so we can define b := wδz
and a := max{wδu : z ∈ Z, u ∈ U − Z, uz ∈ A=}. Then our inequality (25) can
be decomposed into the sum of an inequality which is b − a times (13) and another
inequality of form (25) but with smaller p. Iterating such steps (and the similar one
with (12)), the decomposability of (25) follows.

5 Proof of Theorem 1.1 and Theorem 1.3

Proof of Theorem 1.1. Let λ%v, λ
δ
v ≥ 0, zS ≥ 0 be an optimal rational dual solution

where v ∈ V , S ⊆ U , |S| is odd, U ∈ S?. We take a positive integer k s.t. λ̃%v =
kλ%v, λ̃

δ
v = kλδv, z̃S = kzS are integers and we let ε = 1

k
. For fixed k, we choose

moreover this solution so that the vector
(
A =

∑
v∈V λ̃

%
v +

∑
v∈V λ̃

δ
v, B =

∑
S z̃S|S|2

)
is lexicographically as large as possible. Between optimal solutions, for fixed k, A
and B are upper bounded. We show that under these conditions, the dual solution
is almost integer and finally it can be transformed easily to an integer optimal one.
The steps of the proof are motivated by the work of Balas and Pulleyblank [1].

Claim 5.1. F = {S : zS > 0} is a laminar family.

Proof. If F is not laminar, then a simple uncrossing technique can be applied. Suppose
that zS, zT > 0, none of S ∩ T , S − T , T − S is empty. If |S ∩ T | is odd, then we can
decrease zS and zT , and increase zS∩T and zS∪T by ε, A does not change, B increases
which is a contradiction. If |S ∩ T | is even, then we can decrease zS and zT by ε,
increase zS−T and zT−S by ε and increase λ%v and λδv by ε if v ∈ S ∩ T , A increases,
which is a contradiction.

For a graph G and a laminar family F , let G × F denote the graph obtained from
G by shrinking the maximal members of F . For any S ∈ F , we let F [S] denote
the subfamily of F consisting of all members of F properly contained in S. Thus
G[S] × F [S] is the graph obtained from G[S] by shrinking the maximal elements of
F properly contained in S. Let A= denote the set of tight edges i.e. A= = {uv ∈ A :
λδu + λ%v +

∑
u,v∈S zS = c(uv)} and G= = (V,A=).

It is straightforward to see that G=[S] is weakly symmetric for any S ∈ S?.
Claim 5.2. For every S ∈ F , G=[S]×F [S] is strongly connected. As a consequence,
G=[S] is strongly connected for any S ∈ F .

Proof. If G=[S] × F [S] is not strongly connected, then it has a strongly connected
component with an odd number of vertices, moreover, S has a partition into U δ, U and
U%, s.t. |U | is odd and any strongly connected component of G=[S]×F [S] is contained
in some of the partition classes and if uv ∈ A= connects two different classes, then
one of the following three possibilities holds: u ∈ U and v ∈ U%; or u ∈ U δ and v ∈ U ;
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or u ∈ U δ and v ∈ U%. Now we can modify the dual solution in the following way

z′W =


zW − ε if W = S
zW + ε if W = U

zW otherwise

(λ%v)
′ =

{
λ%v + ε if v ∈ U%

λ%v otherwise

(λδv)
′ =

{
λδv + ε if v ∈ U δ

λδv otherwise.

This step yields a new dual solution with larger A which is a contradiction.

Claim 5.3. For any S ∈ F , G=[S]×F [S] is nonbipartite (i.e. contains an odd cycle
C, but by strong connectivity and by symmetry of G=[S], C is a symmetric odd cycle
in A=).

Proof. For contradiction, we choose an S for which G=[S] × F [S] is bipartite. Thus
S has a bipartition into S1 and S2 so that any member of F [S] is a subset of some Si
and G=[Si]×Fi does not contain tight edge, where Fi denotes the family of maximal
members of F [S] contained in Si. We can assume moreover that |S1−∪S∈F1S|+|F1| ≤
|S2 − ∪S∈F2S|+ |F2|. We apply the following modification of the dual solution

z′W =

 zW + ε if W ∈ F2

zW − ε if W ∈ F1 or W = S
zW otherwise

(λ%v)
′ =

{
λ%v + ε if v ∈ S1

λ%v otherwise

(λδv)
′ =

{
λδv + ε if v ∈ S1

λδv otherwise.

It can be verified that a dual solution is obtained, with larger A, which leads to a
contradiction.

The notation a ≡ b is used if two integers a and b are congruent modulo k (i.e. a−b is
divisible by k). For the equivalence class of a under the modulo k equivalence relation
we put a.

Claim 5.4. For any S ∈ F , λ̃%v ≡ λ̃%u and λ̃δv ≡ λ̃δu, whenever u, v ∈ S.

Proof. For contradiction, we can choose a minimal S ∈ F for which the statement does
not hold. Now G=[S] is symmetric, G=[S] × F [S] is strongly connected, symmetric
and nonbipartite. So let uv and vu be edges of G=[S] × F [S] where u, v ∈ S. We
let λ̃δu ≡ a, λ̃%u ≡ b, λ̃δv ≡ c and λ̃%v ≡ d. Then for every pair of edges u′v′ and v′u′

of G=[S] × F [S] we have the same whenever u′, v′ ∈ S. Using the statement for the
maximal members of F [S], we get that if S ′ is a maximal member of F [S], then λ̃δu ≡ a
and λ̃%u ≡ b ∀u ∈ S ′; or λ̃δu ≡ c and λ̃%u ≡ d ∀u ∈ S ′. G=[S]×F [S] is nonbipartite, the
symmetric odd cycle C proving this have vertices of the same type, say λ̃δ ≡ c and
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λ̃% ≡ d. The directed ear decomposition with initial cycle C, forces all the vertices of
S to have the same.

We let Fmax denote the maximal members of F . As a consequence we get the following.

Claim 5.5. If S ∈ F − Fmax, then zS is integer.

From now on, the property that (A,B) is lexicographically as large as possible is
not used further, the actual solution easily will be transformed to an integer one. To
this end, the number of nonzero modulo k remainders of the variables is decreased
sequentially (if any), and finally, the desired integer optimal dual solution is obtained.

It can be seen that if λδv and λ%v are integers for every vertex v then we are at
an integer solution. Thus, consider an integer a 6≡ 0 s.t. −a ≡ λ̃δv or a ≡ λ̃%v for
some v ∈ V and define U% = {v ∈ V : λ̃%v ≡ a}, U δ = {v ∈ V : λ̃δv ≡ −a},
Z% = {S : S ∈ Fmax,∀v ∈ S λ̃%v ≡ a and λ̃δv 6≡ −a} and Zδ = {S : S ∈ Fmax, ∀v ∈
S λ̃δv ≡ −a and λ̃%v 6≡ a}. By symmetry we can suppose that |U%| −

∑
S∈Z%(|S| − 1) ≥

|U δ| −
∑

S∈Zδ(|S| − 1). Then we can apply the following change in the dual solution

(λ%v)
′ =

{
λ%v − η if v ∈ U%

λ%v otherwise

(λδv)
′ =

{
λδv + η if v ∈ U δ

λδv otherwise

z′W =

{
zW + η if S ∈ Z%

zW otherwise

z′W =

{
zW − η if S ∈ Zδ

zW otherwise.

η can be chosen to be an positive integer multiple of 1
k

so that
∣∣∣{λ̃%v : v ∈ V

}∣∣∣ +∣∣∣{λ̃δv : v ∈ V
}∣∣∣+ ∣∣{z̃S : S ∈ F

}∣∣ decreases, thus after a finite application of this step,

we obtain an integer optimal dual solution.

Proof of Theorem 1.3. Consider the evenly symmetric pair (G, c), an integer optimal
dual solution w%v , w

δ
v, w

i
S and an optimal primal solution x of max{cx : (1)−(2)−(3)−

(4)}. Obviously, this gives a primal solution y of max{c′y : (9)− (10)− (11)− (12)−
(13)} with objective function value c′y = cx. Next, we construct an integer optimal
solution (µdv, µ

i
S, µ

i,%
S , µ

i,δ
S ) of the dual of max{c′y : (9) − (10) − (11) − (12) − (13)}

from w with objective function value cx. This can be done easily, only the steps of
the proof of Theorem 1.2 have to be copied.

It remains to prove the existence of an integer optimal dual solution with the special
laminar property. To this end, we choose a dual solution among the integer optimal
dual solutions so that

∑
S(µiS + µi,%S + µi,δS )|S|(|V − S|+ 1) is as small as possible.

Claim 5.6. (14)-(15)-(16)-(17) hold.

Proof. Suppose contrary that µiS, µ
i
T > 0, none of S ∩ T , S − T , T − S is empty and

set ε = min{µiS, µiT}. If |S ∩ T | is odd, then we can decrease µiS and µiT , and increase
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µiS∩T and µiS∪T by ε. If |S ∩T | is even, then we can decrease µiS and µiT by ε, increase
µiS−T and µiT−S by ε and increase µdv by ε if v ∈ S ∩ T .

Next, suppose that µiS, µ
i,%
T > 0, S ∩ T , S − T are nonempty, ε = min{µiS, µ

i,%
T }. If

|S ∩ T | is odd, then we can decrease µiS and µi,%T , and increase µiS∩T and µi,%S∪T by ε. If
|S ∩ T | is even, then we can decrease µiS and µi,%T by ε, increase µiS−T and µi,%T−S by ε
and increase µdv by ε if v ∈ S ∩ T .

If µi,%S , µ
i,%
T > 0 and S ∩ T , S − T , T − S are nonempty, then we can decrease µi,%S

and µi,%T , and increase µi,%S∩T and µi,%S∪T by ε.
Last, if µi,%S , µ

i,δ
T > 0 and S ∩T is nonempty, then we can decrease µi,%S and µi,δT , and

increase µi,%S−T and µi,δT−S by ε and increase µdv by ε if v ∈ S ∩ T .
The remaining cases are similar. In every case

∑
S∈G µ

i
S|S|(|V − S|+ 1) decreases.
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