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The Dress Conjectures on Rank in the
3-Dimensional Rigidity Matroid

Bill Jackson? and Tibor Jordán??

Abstract

A. Dress has made two conjectures concerning the rank function of the 3-
dimensional rigidity matroid. The first would give a min-max formula for this
rank function and hence a good characterization for independence. We show
that the first conjecture is false for all graphs with at least 56 vertices. On the
other hand we show that the second conjecture and a modified form of the first
conjecture are true for certain families of graphs of maximum degree at most
five.

1 Introduction

A framework (G, p) in d-space is a graph G = (V,E) and an embedding p : V → R
d.

The rigidity matrix of the framework is the matrix R(G, p) of size |E| × d|V |, where,
for each edge vivj ∈ E, in the row corresponding to vivj, the entries in the d columns
corresponding to vertex i (j) contain the d coordinates of (p(vi)−p(vj)) ((p(vj)−p(vi)),
respectively), and the remaining entries are zeros. See [12] for more details. The
rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set E
by independence of rows of the rigidity matrix. A framework (G, p) is generic if the
coordinates of the points p(v), v ∈ V , are algebraically independent over the rationals.
Any two generic frameworks (G, p) and (G, p′) have the same rigidity matroid. We call
this the d-dimensional rigidity matroid Rd(G) = (E, rd) of the graph G. We denote
the rank of Rd(G) by rd(G).

Lemma 1.1. [12, Lema 11.1.3] Let (G, p) be a framework in R
d. Then rankR(G, p) ≤

S(n, d), where n = |V (G)| and

S(n, d) =

{
nd−

(
d+1
2

)
if n ≥ d+ 1(

n
2

)
if n ≤ d+ 1.
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Section 2. Preliminary lemmas 2

We say that a graph G = (V,E) is rigid in R
d if rd(G) = S(n, d). (This definition is

motivated by the fact that if G is rigid and (G, p) is a generic framework on G, then
every smooth deformation of (G, p) which preserves the edge lengths ||p(u)−p(v)|| for
all uv ∈ E, must preserve the distances ||p(w)− p(x)|| for all w, x ∈ V , see [12].) We
say that G is M -independent, M -dependent or an M -circuit in R

d if E is independent,
dependent or a circuit, repectively, in Rd(G). For X ⊆ V , let EG(X) denote the set,
and iG(X) the number, of edges in G[X], that is, in the subgraph induced by X in
G. We use E(X) or i(X) when the graph G is clear from the context. A cover of G
is a collection X of subsets of V , each of size at least two, such that ∪X∈XE(X) = E.

Lemma 1.1 implies the following necessary condition for G to be M -independent.

Lemma 1.2. If G = (V,E) is M-independent in R
d then i(X) ≤ S(|X|, d) for all

X ⊆ V .

It also gives the following upper bound on the rank function.

Lemma 1.3. If G = (V,E) is a graph then

rd(G) ≤ min
X

∑
X∈X

S(|X|, d)

where the minimum is taken over all covers X of G.

The converse of Lemma 1.2 also holds for d = 1, 2. The case d = 1 follows from
the fact that the 1-dimensional rigidity matroid of G is the same as the cycle matroid
of G, see [4, Theorem 2.1.1]. The case d = 2 is a result of Laman [7]. Similarly, the
inequality given in Lemma 1.3 holds with equality when d = 1, 2. The case d = 2 is a
result of Lovász and Yemini [8]. Neither of these statements hold for d ≥ 3. Indeed,
it remains an open problem to find good characterizations for independence or, more
generally, the rank function in the d-dimensional rigidity matroid of a graph when
d ≥ 3.

2 Preliminary lemmas

We will be concerned with the case d = 3. We need the following results for this
special case. We state them for general d for the sake of completeness. The first and
third lemmas appear in [12]. The second is folklore.

Lemma 2.1. [12, Lemma 11.1.9] Suppose G = G1 ∪G2.
(a) If |V (G1) ∩ V (G2)| ≥ d and G1, G2 are rigid in R

d then G is rigid in R
d.

(b) If |V (G1) ∩ V (G2)| ≤ 1 and G1, G2 are M-independent in R
d then G is M-

independent in R
d.

Lemma 2.2. [6, Lemma 2.5] Let G = (V,E) be a graph.
(a) If G is rigid in R

d then G is either d-connected or complete.
(b) If G is an M-circuit in R

d then G is 2-connected and (d+ 1)-edge-connected.
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Section 3. The Dress Conjectures 3

Lemma 2.3. [12, Lemma 11.1.1] Let G = (V,E) be a graph and v ∈ V with d(v) ≤ d.
Then G is M-independent in R

d if and only if G− v is M-independent in R
d.

Lemmas 2.3 and 1.2 immediately imply the following elementary result.

Lemma 2.4. Let G be a graph on at most d + 2 vertices. If G 6= Kd+2 then G is
M-independent in R

d. If G = Kd+2 then G is an M-circuit in R
d.

Let v be a vertex in a graph G. Suppose w, x ∈ N(v) and wx 6∈ E(G). We denote
the graph (G− v) +wx by Gwx

v and say that Gwx
v has been obtained by a splitting of

G at v along wx.

Lemma 2.5. [12, Theorem 11.1.7] Let v be a vertex of degree d + 1 in a graph G.
Suppose w, x ∈ N(v) and wx 6∈ E(G). If Gwx

v is M-independent in R
d then G is

M-independent in R
d. Furthermore, if G is M-independent in R

d, then Gyz
v is M-

independent in R
d for some pair y, z ∈ N(v).

Henceforth we take d = 3. To simplify terminology, we will supress explicit reference
to this particular value of d and say, for example, that G is rigid to mean G is rigid
in R

3.

3 The Dress Conjectures

Let G = (V,E) be a graph. A cover X = {X1, X2, . . . , Xm} of G is t-thin if |Xi∩Xj| ≤
t for all 1 ≤ i ≤ m. For Xi ∈ X let f(Xi) = 1 if |Xi| = 2 and f(Xi) = 3|Xi| − 6 if
|Xi| ≥ 3. (Thus f(Xi) = S(|Xi|, 3).) Let H(X ) be the set of all pairs of vertices uv
such that Xi ∩Xj = {u, v} for some 1 ≤ i < j ≤ m. For each uv ∈ H(X ) let d(uv)
be the number of sets Xi in X such that {u, v} ⊆ Xi and put

val(X ) =
∑
X∈X

f(X)−
∑

uv∈H(X )

(d(uv)− 1).

In 1983, Dress, Drieding amd Haegi conjectured that 2-thin covers could be used
to determine the rank function of R(G).

Conjecture 3.1. [3, equation (39)] and [11, Conjecture 3] Let G = (V,E) be a graph
and E ′ ⊆ E. Then

r(E ′) = min{val(X )}, (1)

where the minimum is taken over all 2-thin covers X of G[E ′].

The conjecture is stated in [3, 11] in an equivalent form in terms of the degrees of
freedom of G, defined to be S(n, d)− rd(G). It is stated in the above form as an open
problem by Crapo, Dress and Tay in [1]. Several equivalent forms of the conjecture
are given by Tay in [9].

The following example shows that Conjecture 3.1 is false for all connected graphs
on at least 56 vertices. It also provides a counterexample to weaker conjectures of
Crapo and Tay [2] that the function given on the right hand side of (1) is a matroid
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Section 3. The Dress Conjectures 4

rank function on E, and of Tay [9, Conjecture 2.1] that the function on the right hand
side of (1) is an upper bound on r(E ′).

A biplane B is a collection of subsets of a finite set V such that each pair of subsets
intersect in exactly two elements and each pair of elements of V belong to exactly two
subsets, see [5]. It can be seen that each subset has the same size, say k, that each
element belongs to exactly k subsets, and that |B| = |V | =

(
k
2

)
+ 1 =: n. Thus B

is equivalent to a covering of Kn with n subgraphs isomorphic to Kk such that every
edge belongs to exactly two subgraphs and every pair of subgraphs intersect in an
edge. Let F = (V,E) be a graph on n vertices and without isolated vertices. Let X
be the 2-thin cover of F obtained by taking the above covering of Kn. For k ≥ 3, we
have: ∑

X∈X

f(X) = n(3k − 6) =

((
k

2

)
+ 1

)
(3k − 6)

and ∑
uv∈H(X )

(d(uv)− 1) = |E(Kn)| =
(
n

2

)
=

1

2

((
k

2

)
+ 1

)(
k

2

)
.

Biplanes are known to exist for k = 3, 4, 5, 6, 9, 11, 13. Taking k = 11 we have n = 56
and

val(X ) =
∑
X∈X

f(X)−
∑

uv∈H(X )

(d(uv)− 1) < 0.

On the other hand r(E) ≥ 0 since r is the rank function of a matroid. Thus every such
graph F = (V,E) is a counterexample to Conjecture 3.1. It follows that every graph
G = (V,E) on at least 56 vertices and without isolated vertices is a counterexample
to Conjecture 3.1, since we may choose E ′ ⊆ E such that F = G[E ′] is a subgraph of
G on exactly 56 vertices and without isolated vertices.

At a conference on rigidity held in Montreal in 1987, Dress conjectured that equality
is obtained in (1) for the special 2-thin cover defined as follows. For u, v ∈ V , the
edge uv is an implied edge of G if uv 6∈ E and r(E + uv) = r(E). The closure Ĝ of
G is the graph obtained by adding all the implied edges to G. A rigid cluster of G
is a set of vertices which induce a maximal complete subgraph of Ĝ. Using Lemma
2.1(a), we can see that any two rigid clusters of G intersect in at most two vertices,
see Lemma 4.6. Thus the set of rigid clusters of G is a 2-thin cover of G.

Conjecture 3.2. (see [4, Conjecture 5.6.1],[1], and [9, Conjecture 2.3]) Let G =
(V,E) be a graph and X be the set of rigid clusters of G. Then

r(E) = val(X ). (2)

Note that, while Conjecture 3.1 would have provided a good characterisation for
the rank function of R(G), the same does not seem to be true for Conjecture 3.2.

It is conceivable that Conjecture 3.2 is true because of the special intersection
properties of rigid clusters. If so, then it may be possible to resurrect Conjecture 3.1
by only considering 2-thin covers whose intersection properties reflect those of rigid
clusters. We will also show in Section 4 that Conjecture 3.2 is true for graphs of low
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Section 3. The Dress Conjectures 5

degree. We close this section by showing that a modified version of Conjecture 3.1 is
also true for graphs of low degree. We denote the maximum and minimum degrees of
a graph G by ∆(G) and δ(G), respectively. We use the following result from [6].

Theorem 3.3. [6] Let G = (V,E) be a connected graph with ∆(G) ≤ 5 and δ(G) ≤ 4.
Then

r(E) = min
X

∑
X∈X

f(X)

where the minimum is taken over all 1-thin covers X of G.

We say that a cover X of a graph G = (V,E) is independent if the graph (V,H(X ))
is M -independent. The following lemma shows that independent covers of G can be
used to give an upper bound on r(G). (Note that the biplane example given above
shows that (2-thin) covers which are not independent do not, in general, give an upper
bound on r(G).)

Lemma 3.4. Let G = (V,E) be a graph, and X be an independent cover of G. Then
r(E) ≤ val(X ).

Proof: Let H = H(X ), E∗ = E ∪ H and G∗ = (V,E∗). For each Xi ∈ X let Si =
EG∗(X)∩H. Since (V,H) is M -independent, (Xi, Si) is M -independent and hence Si

can be extended to a basis Bi for the rigidity matroid of G∗[Xi]. Let S = ∪Xi∈XBi.
Then S spans E∗ since, if e ∈ E∗ then e ∈ EG∗(Xi) for some Xi ∈ X and hence e
is spanned by Bi ⊆ S. Thus r(E∗) ≤ |S|. On the other hand, |Bi| ≤ f(Xi) for all
Xi ∈ X by Lemma 1.2. Since S covers each uv ∈ S−H exactly once and covers each
uv ∈ H exactly d(uv) times, we have

|S| =
∑

Xi∈X

|Bi| −
∑
uv∈H

(d(uv)− 1) ≤ val(X ).

The lemma now follows since r(E) ≤ r(E∗). •

Theorem 3.5. Let G = (V,E) be a connected graph with ∆(G) ≤ 5 and δ(G) ≤ 4.
Then r(E) = minX val(X ) where the minimum is taken over all independent 2-thin
covers X of G.

Proof: By Lemma 3.4, it suffices to show that there exists an independent 2-thin
cover X of G such that val(X ) = r(E). Let X be a 1-thin cover of G for which equal-
ity occurs in Theorem 3.3. Then H(X ) = ∅ so X is independent and val(X ) = r(E). •

The following construction due to Tay [10] shows that Theorem 3.5 becomes false
if we remove the restriction on the maximum degree of G. If G1 = (V1, E1), G2 =
(V2, E2) are graphs such that V1 ∩ V2 = {u, v} and E1 ∩E2 = {uv}, then we say that
G = (G1 ∪G2)− uv is a 2-sum of G1, G2. We denote this by G = G1 ⊕2 G2.

Lemma 3.6. [10, Theorem 4.1] Suppose G1, G2 are graphs and G = G1⊕2G2. Then
G is an M-circuit if and only if G1 and G2 are M-circuits.

EGRES Technical Report No. 2003-04



Section 4. Rigid clusters in graphs of maximum degree at most five 6

Let G0 = (V0, E0) be a complete graph on five vertices with V0 = {vi : 1 ≤ i ≤ 5}.
For 1 ≤ i < j ≤ 5 let Gi,j = (Vi,j, Ei,j) be a complete graph on five vertices with
Vi,j ∩ V0 = {vi, vj} and Ei,j ∩ E0 = {vivj} for 1 ≤ i < j ≤ 5. Let

G = (G0 ∪ (∪1≤i<j≤5Gi,j))− E0.

Then G is an iterated 2-sum of K5’s and hence is an M -circuit by Lemma 3.6 and
the fact that K5 is an M -circuit by Lemma 2.4. Thus r(G) = |E(G)| − 1 = 89. On
the other hand, minX val(X ) over all independent 2-thin covers X of G is 90. Note
however that the set of implied edges of G is E0, and hence the rigid clusters of G are
V0 and the sets Vi,j for 1 ≤ i < j ≤ 5. Hence, if X is the set of rigid clusters of G,
then we have H(X ) = E0 and val(X ) = 89. Thus Conjecture 3.2 holds for G.

The above example has maximum degree 12. It is conceivable that Theorem 3.5
can be extended to all graphs of maximum degree at most 11. On the other hand,
Theorem 3.3 cannot be extended to graphs of maximum degree six. This can be seen
by considering the M -circuit G = K5 ⊕2 K5. We have r(G) = |E(G)| − 1 = 17 but
minX val(X ) over all 1-thin covers X of G is 18.

4 Rigid clusters in graphs of maximum degree at

most five

Let G = (V,E) be a graph. We say that G is Laman if G is simple and i(X) ≤ 3|X|−6
for allX ⊆ V with |X| ≥ 3. Let v ∈ V with d(v) = 4. Splitting v along two neighbours
u,w in a Laman graph G is admissible if the resulting graph Guw

v is also Laman.
We shall need the following results from [6].

Lemma 4.1. [6] Let G = (V,E) be a Laman graph, V6 be the set of all vertices of G
of degree at least six and suppose that G[V6] is a (possibly empty) complete graph. Let
v be a vertex of degree four in G. Then G has an admissible split at v.

Theorem 4.2. [6] Let G = (V,E) be a connected graph with ∆(G) ≤ 5 and δ(G) ≤ 4.
Then G is M-independent if and only if G is Laman.

Theorem 4.2 does not seem to be strong enough to determine the rigid clusters in
an M -independent graph G with ∆(G) ≤ 5 and δ(G) ≤ 4. In order to determine
the rigid clusters of G we need to determine the closure of G and hence we need to
determine the implied edges of G. Thus we need to be able to determine when G+uv
is M -dependent for each pair u, v ∈ V . The problem is that we may not be able to
apply Theorem 4.2 to G + uv because it may no longer satisfy the hypotheses that
∆ ≤ 5, or that δ ≤ 4. The second problem can be easily avoided by requiring G to
have at least three vertices of degree four. To overcome the first problem we need to
obtain a version of Theorem 4.2 which allows at most two vertices of degree six.

Theorem 4.3. Let G = (V,E) be a 3-edge-connected graph with ∆(G) ≤ 6. Let
Vi = {v ∈ V : d(v) = i}. Suppose that |V6| ≤ 2, G[V6] is a (possibly empty) complete
graph, and |V3| + |V4| ≥ max{1, |V6|}. Then G is M-independent if and only if G is
Laman.
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Section 4. Rigid clusters in graphs of maximum degree at most five 7

Proof: Necessity follows from Lemma 1.2.
To prove sufficiency, we proceed by induction on |V |. Let G be a Laman graph

satisfying the hypotheses of the theorem. Since G is 3-edge-connected and K4 is M -
independent we may assume that |V | ≥ 5. Let v be a vertex of minimum degree in G.
If d(v) = 3 let G′ = G−v. If d(v) = 4 then, by Lemma 4.1, there is an admissible split
Gv of G at v and we let G′ = Gv. In both cases G′ is Laman. If G′ is M -independent
then G is M -independent by Lemmas 2.3 and 2.5. Thus we may assume that G′ is
not M -independent.

Let C be an M -circuit in G′. Then C is 4-edge connected by Lemma 2.2(b). Thus
C is contained in a maximal 4-edge-connected subgraph G1 = (V1, E1) of G′. Since G
is 3-edge-connected we have dG(V1, V −V1) ≥ 3. The facts that G1 is 4-edge-connected
and ∆(G) ≤ 6 now imply that G1 satisifies the hypotheses of the theorem. Moreover
G1 is Laman since G′ is Laman and G1 is a subgraph of G′. By induction, G1 is
M -independent. This contradicts the fact that G1 contains the M -circuit C. •

Using Theorem 4.3 we may deduce:

Corollary 4.4. Let G = (V,E) be a graph with ∆(G) ≤ 6. Let Vi = {v ∈ V :
d(v) = i}. Suppose that |V6| ≤ 2, G[V6] is a (possibly empty) complete graph, and
|V4| ≥ max{1, |V6|}. Then G is an M-circuit if and only if G is 4-edge-connected,
|E| = 3|V | − 5, and i(X) ≤ 3|X| − 6 for all X ⊆ V with 3 ≤ |X| ≤ |V | − 1.

Proof: Suppose G is an M -circuit. Then G is 4-edge-connected by Lemma 2.2(b).
Hence G− e is M -independent and 3-edge-connected for all e ∈ E. By Theorem 4.3,
G− e is Laman. Thus iG−e(X) ≤ 3|X| − 6 for all X ⊆ V with 3 ≤ |X| ≤ |V |. Hence
iG(X) ≤ 3|X| − 6 for all X ⊆ V with 3 ≤ |X| ≤ |V | − 1. Furthermore, since G
is M -dependent and G satisfies the hypotheses of Theorem 4.3, we must also have
iG−e(V ) = 3|V | − 6 and thus |E| = 3|V | − 5.

Next we suppose that G is 4-edge-connected, |E| = 3|V | − 5, and i(X) ≤ 3|X| − 6
for all X ⊆ V with 3 ≤ |X| ≤ |V | − 1. Then G and G − e satisfy the hypotheses
of Theorem 4.3 for all e ∈ E. Thus G is dependent and G − e is independent for all
e ∈ E. Hence G is an M -circuit. •

Corollary 4.5. Let G = (V,E) be an M-circuit with ∆(G) ≤ 6. Let Vi = {v ∈ V :
d(v) = i}. Suppose that |V6| ≤ 2, G[V6] is a (possibly empty) complete graph, and
|V4| ≥ max{1, |V6|}. Then G− e is rigid for all e ∈ E.

Proof: By Corollary 4.4, G is 4-edge-connected, |E| = 3|V |−5, and i(X) ≤ 3|X|−6
for all X ⊆ V with 3 ≤ |X| ≤ |V | − 1. Hence G − e is 3-edge-connected and
iG−e(X) ≤ 3|X| − 6 for all X ⊆ V with 3 ≤ |X| ≤ |V |. Applying Theorem 4.3 to
G− e we deduce that G− e is rigid. •

We shall use Corollary 4.5 to determine some structural properties of the rigid
clusters in graphs of low degree. We first prove a general result about rigid clusters.

Lemma 4.6. Let Y1, Y2 be distinct rigid clusters of a graph G. Then |Y1 ∩ Y2| ≤ 2.
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Section 4. Rigid clusters in graphs of maximum degree at most five 8

Proof: Suppose |Y1∩Y2| ≥ 3. Since Yi is a rigid cluster of G, Ĝ[Yi] is a complete, and
hence rigid, subgraph of Ĝ for each i ∈ {1, 2}. By Lemma 2.1(a), Ĝ[Y1]∪Ĝ[Y2] is rigid.
It follows that y1y2 is either an edge or an implied edge of Ĝ for all y1 ∈ Y1 and y2 ∈ Y2.
Since Ĝ is closed, we have y1y2 ∈ E(Ĝ) for all y1 ∈ Y1 and y2 ∈ Y2. This Ĝ[Y1 ∪ Y2] is
complete. This contradicts the fact that Ĝ[Yi] is a maximal complete subgraph of Ĝ. •

Lemma 4.7. Let G = (V,E) be a 3-edge-connected graph with ∆(G) ≤ 5 and at least
three vertices of degree at most four.
(a) Let Y be a rigid cluster of G with with |Y | ≥ 5. Then G[Y ] is rigid.
(b) Let Y1, Y2 be rigid clusters of G with |Y1|, |Y2| ≥ 5. Then Y1 ∩ Y2 = ∅.
(c) Let uv be an implied edge of G. Then {u, v} is contained in exactly one rigid
cluster of G of size at least five.

Proof: (a) Suppose thatG[Y ] is not rigid. ThenG[Y ] 6= Ĝ[Y ], since Ĝ[Y ] is complete.
Hence we may choose an implied edge uv of G with u, v ∈ Y . Then uv ∈ E(C) ⊆
E + uv for some M -circuit C of G+ uv. If V (C) = V then C satisfies the hypotheses
of Corollary 4.5 and hence C − uv is rigid. On the other hand, if V (C) 6= V then
the 3-edge-connectivity of G implies that dG(V (C), V − V (C)) ≥ 3. The fact that C
is 4-edge-connected and the hypotheses on the degree in G now imply that C again
satisfies the hypotheses of Corollary 4.5 and hence C − uv is rigid. We may apply
Lemma 4.6 to Ĝ to deduce that either V (C) ⊆ Y or V (C) ∩ Y = {u, v}. We shall
show that the second alternative cannot hold.

Suppose V (C)∩Y = {u, v}. Since 5 ≥ dG(u) ≥ dC(u)−1+dY (u) and dC(u) ≥ 4, we
have dY (u) ≤ 2. The facts that |Y | ≥ 5 and Ĝ[Y ] is complete, now imply that uv′ is an
implied edge ofG for some v′ ∈ Y −v. Arguing as above we have uv′ ∈ E(C ′) ⊆ E+uv′

for some rigid M -circuit C ′ of G+ uv′ and either V (C ′) ⊆ Y or V (C ′) ∩ Y = {u, v′}.
If V (C ′) ⊆ Y then, since E(C ′) − uv′ ⊆ E, we have dY (u) ≥ dC′(u) − 1 ≥ 3. This
contradicts the fact dY (u) ≤ 2. Hence V (C ′)∩Y = {u, v′}. If there exists a vertex w ∈
(V (C) ∩ V (C ′))− u then w 6∈ Y and, since C,C ′ are rigid, wu,wv, wv′ ∈ E(Ĝ). But
then Ĝ[Y +w] would be rigid by Lemma 2.1(a), contradicting the fact that Y is a rigid
cluster of G. Thus V (C)∩V (C ′) = {u}. Hence 5 ≥ dG(u) ≥ dC(u)−1+dC′(u)−1 ≥ 6.
This contradiction implies that we must have V (C) ⊆ Y .

It follows that uv is an implied edge of G[Y ]. Since this holds for all implied edges
uv of G with u, v ∈ Y , we may deduce that the closure of G[Y ] is Ĝ[Y ]. Thus the
closure of G[Y ] is complete and hence G[Y ] is rigid. This completes the proof of (a).

(b) By (a), G[Yi] is rigid for i = 1, 2. Lemma 2.1(a) implies that |Y1 ∩ Y2| ≤ 2.
Suppose Y1 ∩ Y2 = {x}. By Lemma 2.2(a), d(x) ≥ dY1(x) + dY2(x) ≥ 3 + 3 = 6.

This contradicts the fact that ∆(G) ≤ 5.
Suppose Y1∩Y2 = {u, v}. By Lemma 2.2(a), 5 ≥ d(y) ≥ dY1(y)+dY2(y)−1 ≥ 3+3−

1 = 5 for each y ∈ {u, v}. Thus equality must hold throughout, dY1(u) = 3 = dY1(v)
and uv ∈ E. Let G′ = G[Y1]. Applying Lemma 2.3 to G′ we deduce that G′ − u is
rigid. This contradicts Lemma 2.2(a) since |Y − u| ≥ 4 and dG′−u(v) = 2.
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Section 4. Rigid clusters in graphs of maximum degree at most five 9

Thus Y1 ∩ Y2 = ∅.

(c) Since uv is an implied edge of G, uv belongs to an M -circuit C in G + e. We
may deduce, as in the proof of (a), that C − e is rigid. Thus {u, v} ⊆ V (C) ⊆ Y for
some rigid cluster Y of G. Furthermore |Y | ≥ |V (C)| ≥ 5 by Lemma 2.4. Uniqueness
follows from (b). •

We next use Lemma 4.7 to show that Conjecture 3.2 holds for this family of graphs.

Theorem 4.8. Let G = (V,E) be a 3-edge-connected graph with ∆(G) ≤ 5 and at
least three vertices of degree at most four. Let X be the set of rigid clusters of G.
Then val(X ) = r(E).

Proof: Let H = H(X ) and F = (V,H∩E). We shall show that F is M -independent.
Suppose to the contrary that F is M -dependent and let C be an M -circuit contained in
F . Since C is a subgraph of G, Corollary 4.5 implies that C is rigid. Hence V (C) ⊆ X
for some X ∈ X . Since |X| ≥ |V (C)| ≥ 5, G[X] is rigid by Lemma 4.7(a). Choose
u ∈ V (C). By Lemma 2.2(b), dC(u) ≥ 4. Thus we may choose vertices vi ∈ V (C)
such that uvi ∈ E(C) for 1 ≤ i ≤ 4. Since E(C) ⊆ H, we may choose Xi ∈ X − {X}
such that u, vi ∈ Xi for each 1 ≤ i ≤ 4. Since Xi 6⊆ X, we we may choose wi ∈ Xi−X
for 1 ≤ i ≤ 4. If wi = wj for some 1 ≤ i < j ≤ 4 then wiu,wivi, wivj ∈ E(Ĝ). This

would imply, by Lemma 2.3, that Ĝ[X +wi] is rigid and contradict the maximality of
X. Hence wi 6= wj for all 1 ≤ i < j ≤ 4. Since |X| ≥ 5, Lemma 4.7(b) implies that
|Xi| ≤ 4 for 1 ≤ i < j ≤ 4. If wiu 6∈ E for some 1 ≤ i ≤ 4, then wiu is an implied
edge of G and Lemma 4.7(c) implies that wi, u ⊆ Y for some rigid cluster Y of G
with |Y | ≥ 5. This contradicts Lemma 4.7(b) since u ∈ X ∩ Y . Thus wiu ∈ E for all
1 ≤ i ≤ 4. This gives dG(u) ≥ dC(u) +

∑4
i=1 dXi

(u) ≥ 4 + 4 = 8. This contradicts the
hypothesis that ∆(G) ≤ 5. Thus F is M -independent.

We complete the proof by showing that val(X ) = r(E). Since F is M -independent,
we can choose a basis B for R(G) with H ∩ E ⊆ B. Let Bi = B ∩ E(Xi) for each
Xi ∈ X . We have |Bi| ≤ f(Xi) by Lemma 1.2.

Claim 4.9. Suppose Xi ∈ X and |Xi| ≥ 5. Then |Bi| = f(Xi).

Proof: Suppose to the contrary that |Bi| < f(Xi). Since G[Xi] is rigid by Lemma
4.7(a), we have r(E(Xi)) = f(Xi). Since |Bi| < f(Xi), there exists e ∈ E(Xi) such
that e is not spanned by Bi in R(G). Since B spans E, we have e ∈ E(C) ⊆ B + e
for some M -circuit C of G. Since C is rigid by Corollary 4.5, V (C) ⊆ Xj for some
Xj ∈ F . Since |Xj| ≥ |V (C)| ≥ 5, Lemma 4.7(b) implies that Xj = Xi. Thus
V (C) ⊆ Xi. Since E(C) ⊆ B + e, this implies that E(C) ⊆ Bi + e, and contradicts
the fact that Bi does not span e. •

Claim 4.10. Suppose Xj ∈ X and |Xj| ≤ 4. Let I(Xj) be the set of implied edges uv
of G with {u, v} ⊆ Xj. Then Bj = E(Xj) and |Bj| = f(Xj)− |I(Xj)|.
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Proof: Choose e ∈ E(Xj). Suppose e ∈ E(C) for some M -circuit C of G. Since C
is rigid by Lemma 4.7(a), e ∈ E(Y ) for some rigid cluster Y of G with |Y | ≥ 5. Thus
e ∈ H. Hence e ∈ H ∩ E ⊆ B and thus e ∈ Bj. On the other hand, if e 6∈ E(C)
for all M -circuits C of G then r(G − e) = r(G) − 1. Thus e ∈ B and we again have
e ∈ Bj. Hence Bj = E(Xj). Since |Xj| ≤ 4, f(Xj) = |EĜ(Xj)| = |E(Xj)| + |I(Xj)|.
Thus |Bj| = f(Xj)− |I(Xj)|. •

Let X1 = {X ∈ X : |X| ≥ 5} and X2 = X − X1. Let B be the collection of all
sets Bi for Xi ∈ X . Then B covers each uv ∈ B − H exactly once and covers each
uv ∈ B ∩H exactly d(uv) times. Thus Claims 4.9 and 4.10 give

r(E) = |B| =
∑

Xi∈X

|Bi| −
∑

uv∈B∩H

(d(uv)− 1)

=
∑

Xi∈X1

f(Xi) +
∑

Xj∈X2

(f(Xj)− |I(Xj|)−
∑

uv∈B∩H

(d(uv)− 1). (3)

Let I be the collection of all sets I(Xj) for Xj ∈ X2, and uv be an implied edge of G.
Then uv belongs to exactly one set Xi ∈ X1 by Lemma 4.7(c), and hence uv belongs
to exactly d(uv)−1 sets Xj ∈ X2. Thus the collection I covers each edge uv ∈ H−B
exactly d(uv) − 1 times, and

∑
Xj∈X2

|I(Xj)| =
∑

uv∈H−B(d(uv) − 1). Substituting

into (3) we obtain

r(E) =
∑

Xi∈X

f(Xi)−
∑
uv∈H

(d(uv)− 1).

•
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