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On a generalization of the stable roommates problem

Kataŕına Cechlárová? and Tamás Fleiner??

Abstract

We consider two generalizations of the stable roommates problem: a) we allow parallel edges in
the underlying graph and b) we study a problem with multiple partners. We reduce both prob-
lems to the classical stable roommates problem and describe an extension of Irving’s algorithm
that solves the generalized problem efficiently. We give a direct proof of a recent result on the
structure of stable b-matchings as a by-product of the justification of the algorithm.

Keywords: stable marriage problem, stable roommates problem, Irving’s algorithm

1 Introduction

In this note, we study two generalizations of the stable roommates problem of Gale and Shapley [6].
We have given a finite simple graph G = (V,E) and for each vertex v of V there is a linear order
<v on the set of neighbours Γ(v) of v in G. It is convenient to denote the set of linear orders <v

by O, and we say that (G,O) is an instance of the stable roommates problem (or SR, for short). A
stable matching of SR instance (G,O) is a set M of disjoint edges of E such that for each edge e of
E either e ∈ M or e has a vertex (say) v and M has an edge (say) m such that m <v e holds. Or,
equivalently, a stable matching is a matching M of G that admits no blocking edge, that is, an edge
e outside M such that e <v m, whenever v is a vertex of e and m is an edge of M covering v. It is
usual in economics and in game theory to call the vertices of G agents and to think about the linear
order <v as the preference order of agent v on his/her possible partners. Then the notion of stability
refers to a partnership situation in which no two agents exist that would prefer to quit their current
partnership so as to become partners of each other.

Gale and Shapley in [6] have described the so called stable marriage problem (SM, for short),
a special case of the stable roommates problem where the underlying graph G is bipartite. They
exhibited an efficient algorithm that in this particular case finds a stable matching for any instance
of SM. In contrast to this, a SR instance might admit no stable matching, whatsoever. The first
efficient algorithm to decide whether for a given SR instance there exists a stable matching or not is
due to Irving [8]. Later on, such algorithms were found by Feder [2] and Subramanian [14], and Tan
and Hsueh [16]. The last mentioned algorithm could even find a compact characterization described
earlier by Tan in [15] for the existence of a stable matching.

We shall describe a more general model (the stable activities problem, or SA), in which several
different partnerships may be possible between two agents. The idea behind the name is that the
parnership of agents is a common activity (say playing table tennis, chess, partnership in bridge, etc.)
that they do on a clubmeeting and each agent has his/her own preference order on the activities
depending on the type of activity and the partner. For the bipartite case, multiple edges might
represent different marriage or labour contracts. A special case of the SA (a manpower scheduling
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On leave from Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. Email: fleiner@cs.elte.hu

. Research was supported by OTKA F 037301, T 037547 and by the Zoltán Magyary fellowship of the Hungarian
Ministry of Education. Part of the research was done during a visit at Košice sponsored by VEGA grant 1/7465/20.
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problem for airplanes) was studied by Cechlárová and Ferková in [1]. Namely, they wanted to
construct cabin crews from a pool of pilots by selecting captain-copilot pairs in such a way that
no instability occurs. In [1], the authors exhibit a generalization of Irving’s algorithm to solve the
problem. In Section 2 of this note we reduce the SA to the SR.

In Section 3, we study another generalization (the stable multiple activities problem, or SMA)
where agents may participate in more than one partnerships. In a stable situation, there is no
activity such that each of the two participants would prefer to be involved in that activity either
because he/she is involved in less activities than the maximum number or because he/she prefers
that particular activity to some other activity he/she is involved in. Again, a special case of our
general problem, called the stable fixtures problem was studied by Irving and Scott in [10], where
a generalization of Irving’s algorithm is derived. In Section 3, we reduce the SMA to the SR and
indicate how it is possible to use any algorithm for the SR to solve the SMA. In Section 4, we briefly
describe that extension of Irving’s algorithm that we get by our method. In Section 5, we also exhibit
a direct proof of a colouring property in stable b-matching problems observed recently by Fleiner
[5, 4] and Teo et. al. [17]. We conclude by indicating other generalizations and modifications of the
SR that we conjecture to be reducable to the original problem.

The idea of this paper is that we reduce the SMA to the SR by two constructions. While the
b-expansion construction that we use for multiple partner matchings is folklore in the area of stable
matchings, the other construction is very similar to the one that is used in [3] to prove that any
SR instance can be reduced to another SR instance on a 3-colourable graph. (The same related
construction is employed in [4] to extend Tan’s characterization [15] on the existence of a stable
matching.)

2 The stable activities problem

In this section, we shall consider the following generalized stable matching problem. Let finite graph
G = (V,E) be given and for each vertex v of V we have a linear order ≺v on the set of edges
E(v) = E(v,G) incident with v. If O denotes the set of linear orders ≺v (for v ∈ V ) then (G,O)
is called an instance of the stable activities problem, or SA, for short. We say that subset F of E
dominates edge e of E if there is a vertex v of V and an edge f of F such that f ≺v e. Let D(F )
denote the set of edges that are dominated by F . A stable matching of SA instance (G,O) is a subset
M of E with the property that D(M) = E \M .

It is useful to see that the SA is a generalization of the SR. Namely, each SR instance (G,O)
can be considered to be an instance (G,O∗) of the SA, if we let the linear order <v on Γ(v) induce
the linear order ≺v on E(v) for each vertex v. Then if M is a stable matching of (G,O), it is easy
to check that D(M) = E \M and so M is a stable matching of (G,O∗). On the other hand, if
D(M) = E \M then M is a set of disjoint edges, as otherwise some edge of M would be dominated
by M . So M is a matching, and each edge outside M is dominated by M , showing that M is a
stable matching of SR instance (G,O).

In this section, we shall reduce the SA to the SR in such a way that a bipartite problem is reduced
to a bipartite one. For this reason, fix SA instance (G,O). We define a new SR instance (G′,O′)
where G′ = (V ′, E′) is a simple graph and O′ is a set of linear orders ≺′v′ for v′ ∈ V ′.

To define G′, substitute each edge e = uv of G by a 6-cycle with two hanging edges as in Figure 1.
The linear orders on the stars are represented by the numbers on the edges around a vertex. That
is, if edge e was the ith best in ≺u and jth best in ≺v then edge uue

0 is ith best in ≺′u and edge vve
0

is jth best in ≺′v.

Theorem 2.1. Let (G,O) be an instance of the SA, and let SR instance (G′,O′) be constructed
from (G,O) as described above. There is a stable matching of (G,O) if and only if there is a stable
matching of (G′,O′). Moreover, any stable matching of (G′,O′) induces a stable matching of (G,O)
and each stable matching of (G,O) can be induced by some stable matching of (G′,O′).

Proof. Assume that M ′ is a stable matching of SR instance (G′,O′) and let e = uv be an edge of G.
As none of the edges of ue
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Figure 1: The gadget to be introduced along edge e for the definition of G′
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Let M := {e = uv ∈ E : uue
0 ∈ M ′}. As uue

0 ∈ M ′ if and only if vve
0 ∈ M ′, M is a matching, i.e.

D(M) ⊆ E \M . To prove the stability of M in SA instance (G,O), we have to show that any edge
e = uv of G not in M is dominated by M . Let e be such an edge. As uue

0 6∈ M ′, by symmetry we
may assume that ue
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0, that is, f ∈M and f ≺u e. Hence stable matching M ′ of SR instance (G′,O′) induces
stable matching M of SA instance (G,O).

Now let us assume that M is a stable matching of SA instance (G,O). Let e = uv be an edge of E.
Exactly one of the following three cases occurs. Case 1: edge e belongs to M . Case 2: e is dominated
by M at u. Case 3: e is not dominated by M at u but e is dominated by M at v. In case 1 let
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By these declarations along all edges of E, we define a subset M ′ of E′. As M is a matching, each
vertex of V ′ is incident with at most one edge of M ′. To see stability, we observe that for all three
cases, any edge on 6-cycle ue
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2 is either in M ′ or is dominated by M ′. So we only have to

check the implication that if edge uue
0 is not in M ′ then uue

0 is dominated by M ′. If, in this situation,
uue

0 is not dominated by M ′ already at ue
0, then for the corresponding edge e of G we must have

that e is dominated by some edge m of M at u. But the definition of M ′ and linear order ≺′u implies
that uue

0 is dominated by edge uum
0 of M ′ at u.

The equivalence of stable matchings of G and G′ described in the above proof allows us to decide
whether a stable matching exists for an instance (G,O) of the SA and to find a stable matching
if one exists, once we have an algorithm that does the same for SR instance (G′,O′). So one can
generalize his/her favourite stable matching algorithm for the SR to an algorithm for the SA by
following what the algorithm does along the gadgets on Figure 1. We illustrate this in the Section
4, where we describe how Irving’s algorithm can be generalized to the SA.

3 Multiple partner matchings

In this section, we consider another generalization of the stable roommates problem to the situation
where each agent has a nonnegative integral quota on the number of possible partnerships. Formally,
an instance of the stable multiple activities problem (or SMA, for short) is a triple (G,O, b), where
G = (V, E) is a finite graph, O is a set of linear orders ≺v for v ∈ V , ≺v being an order on set E(v)
of edges incident with v and b : V → N is a quota function on the vertices. We say that subset F
of E b-dominates edge e of E if there is a vertex v of e and different elements f1, f2, . . . , fb(v) of F

such that fi ≺v e for i = 1, 2, . . . , b(v). We denote by Db(F ) the set of edges that are b-dominated
by F . A subset M of E is a stable b-matching of SMA instance (G,O, b) if Db(M) = E \M .

Equivalently, we can say that M is a stable b-matching, if Db(M) ⊆ E \M and Db(M) ⊇ E \M
holds. The former condition means that M is a b-matching, that is, each vertex v of V is incident
with at most b(v) edges of M , while the latter condition says that for any edge e outside M , there
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is a vertex v and different edges m1,m2, . . . mb(v) of M such that mi ≺v e for i = 1, 2, . . . , b(v).
It is well known that there always exists a stable b-matching of SMA instance (G,O, b) whenever

G is finite, bipartite and simple, and a straightforward extension of the Gale-Shapley algorithm finds
one (see Gusfield and Irving [7] p. 54-55.) Actually, Gale and Shapley in [6] considered the so called
college admission problem which is the special case of the SMA where G is simple and bipartite,
and moreover the b-values on one colour class of G are uniformly 1. To generalize this feature of
the college admission problem, we say that SMA instance (G,O, b) has the many-to-one property if
b(u) = 1 or b(v) = 1 for each edge e = uv of E(G).

The college admission problem can be reduced to the stable marriage problem by the b-expansion
of the underlying instance defined below (see Gusfield and Irving [7] p. 38 or Roth and Sotomayor
[11] p. 131-132). Let (G,O, b) be an instance of the SMA. Define the instance (Gb,Ob) of the SA by

V (Gb) := {vi : v ∈ V (G) and i = 1, 2, . . . , b(v)}
E(Gb) := {ei,j = uivj : e = uv ∈ E(G) and ui, vj ∈ V (Gb)}
Ob := {≺vi : v(i) ∈ V (Gb)}, where

uivj ≺ui uiwk ⇐⇒
{

uv ≺u uw or
v = w and j < k.

That is, instead of each vertex v of G, we introduce b(v) equivalent copies, and the linear orders are
essentially inherited from the SMA instance. (We only have to take special care to define the linear
order if the two adjacent edges originate from the same edge of G.) In the reduction of the college
admission problem to the stable marriage problem, Gale and Shapley implicitly use the following
fact.

Lemma 3.1. Let (G,O, b) be an instance of the SMA with the many-to-one property. There is a
stable b-matching of (G,O, b) if and only if there is a stable matching of (Gb,Ob). Moreover, any
stable matching of (Gb,Ob) induces a stable b-matching of (G,O, b) and each stable b-matching of
(G,O, b) can be induced by a stable matching of (Gb,Ob).

Proof. Let M b be a stable matching of (Gb,Ob). We claim that

M := {e = uv ∈ E : ei,j ∈M b for some 1 ≤ i ≤ b(u) and 1 ≤ j ≤ b(v)} (1)

is a stable b-matching of (G,O, b). As each vi is incident with at most one edge of M b, projection
M of M b is a b-matching, and we only have to check that each edge e = uv of G outside M is
b-dominated by M . By the many-to-one property, we may assume that b(u) = 1. If, for some
j = 1, 2, . . . , b(v), e1,j is dominated at u by edge m1,k of M b then e is b-dominated at u by edge
m of M . Otherwise, each e1,j is dominated at v by some edge mj

j,kj of M b. As M b is a matching
and (G,O, b) has the many-to-one property, edges m1, m2, . . . ,mb(v) of M are different and mi ≺v e
holds. So e is b-dominated at v by M .

Next, let M be a stable b-matching of (G,O, b). As M is a b-matching, there exists a matching
M b of Gb such that (1) holds. If ei,j blocks M b in (Gb,Ob) then e cannot be b-dominated by M ,
hence M b is a stable matching.

Note that although by Lemma 3.1, we can reduce the SMA with the many-to-one property to the
SA, it is not true that the same b-expansion reduces the general SMA to the SA. The reason is that
disjoint copies a fixed edge of SMA instance (G,O, b) may appear in a stable matching of (Gb,Ob).
The main observation in this section is that an extension of the construction in Section 2 reduces
the SMA to the SMA with the many-to-one property.

Definition 3.2. For SMA instance (G,O, b), define SMA instance (G′,O′, b′) by defining G′ and O′
as in Section 2, and let b′(v) := b(v) if v is a vertex of G and let b′(v) := 1 otherwise.

As different vertices of G are not adjacent in G′, we have the following observation.

Observation 3.3. SMA instance (G′,O′, b′) in Definition 3.2 has the many-to-one property.
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The next lemma gives the reduction of the SMA to the SMA with the many-to-one property.

Lemma 3.4. Let (G,O, b) be an instance of the SMA and (G′,O′, b′) be the instance of the SMA in
Definition 3.2. There is a stable b-matching of (G,O, b) if and only if there is a stable b′-matching
of (G′,O′, b′). Moreover, any b′-matching of (G′,O′, b′) induces a stable b-matching of (G,O, b) and
each stable b-matching of (G,O, b) can be induced by some stable b′-matching of (G′,O′, b′).

Proof. The proof of Theorem 2.1 can be used here mutatis mutandis with the following replacements:
SR 7→ SMA with the many-to-one property; SA 7→ SMA; (G,O) 7→ (G,O, b); (G′,O′) 7→ (G′,O′, b′);
and matching 7→ b-matching, or b′-matching, whichever applies.

If we put together Lemma 3.1, Observation 3.3 and Lemma 3.4 we get a reduction of the SMA to
the SR.

Theorem 3.5. Let (G,O, b) be an instance of the SMA. There is a stable b-matching of instance
(G,O, b) if and only if there is a stable matching of instance ((G′)b′ , (O′)b′) of the SR. Moreover, any
stable matching of ((G′)b′ , (O′)b′) induces a stable b-matching of (G,O, b) and each stable b-matching
of (G,O, b) can be induced by a stable matching of ((G′)b′ , (O′)b′).

Proof. We only have to check that (G′)b′ is simple, but it follows from the simplicity of G′.

4 An extension of Irving’s algorithm

We have seen in Section 3 that the SMA (just like its special case, the SA) can be reduced to
the SR. Hence, if we have an algorithm to find a stable matching for finite simple graphs, then
we can find a stable (b-)matching in a finite (multi)graph. (Note that our constructions preserve
bipartiteness, hence for bipartite SMA instances we can even use the Gale-Shapley algorithm.) Due
to the constructions in Section 3, the complexity of the algorithm for the SA will grow with a constant
factor (in case of the SMA, the maximum value of b (which should be less than m) also comes in). If
we want to avoid this constant factor or if we want an algorithm that works directly with the general
problem then we can translate the algorithm on the construction back to the language of the original
problem. By this, we can describe a new algorithm that is based on the old one, but solves a more
general problem, namely the SA or the SMA instead of the SR.

To illustrate the above idea, we extend the first algorithm for finding stable matchings for the SR
by Irving [8] to an algorithm for the SMA. A natural way to justify the correctness of the extended
algorithm, would be to check what Irving’s original algorithm does on ((G′)b′ , (O′)b′). This certainly
is a possible way to find the appropriate extension of Irving’s algorithm to the SMA. But to justify
the correctness of the extension is too tedious because of the complexity of the constructions, so,
instead of that, we prove this from scratch.

The input of the extension of Irving’s algorithm (the EI algorithm, for short) is an instance
(G,O, b)=(G0,O0, b) of the SMA, and its output is either a conclusion that no stable b-matching
of (G,O, b) exists or a stable b-matching of (G,O, b). The EI algorithm has two phases. In both
phases, it transforms an instance (Gi,Oi, b) to another instance (Gi+1,Oi+1, b) in such a way that

Gi+1 is a proper subgraph of Gi, (2)
if (Gi,Oi, b) has a stable b-matching then (Gi+1,Oi+1, b) has one, (3)

any stable b-matching of (Gi+1,Oi+1, b) is a stable b-matching of (Gi,Oi, b). (4)

Define B(u,Gi) as the set of the b(u) best edges of Gi in ≺u and let D(u,Gi) denote those edges
f of Gi that can only be b-dominated at u:

B(u,Gi) := {f = ux ∈ E(u, Gi) : |{g ∈ E(u,Gi) : g ≺u f}| < b(u)}
D(u,Gi) := {f = ux ∈ E(u, Gi) : f ∈ B(x,Gi)} .

We say that SMA instance (Gi,Oi, b) has the first-last property if for each vertex u of Gi and for
each edge e ∈ E(Gi) incident with u

|{f ∈ D(u,Gi) : f ≺u e}| < b(u) (5)
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holds. The name of the first-last property comes from the SR where it means that each agent is the
last choice of his/her first choice. Consequently, each agent is the first choice of his/her last choice.
This is generalized in the following lemma.

Lemma 4.1. If SMA instance (Gi,Oi, b) has the first-last property then |B(u,Gi)| = |D(u,Gi)| for
each vertex u of Gi.

Proof. Observe that |D(u,Gi)| ≤ |B(u,Gi)| for each vertex u of Gi. This is because if |B(u,Gi)| <
b(u) then D(u,Gi) ⊆ E(u,Gi) = B(u,Gi). Otherwise |B(u,Gi)| = b(u), and |D(u,Gi)| ≤ b(u) by
the first-last property. By double counting,

∑
{|B(u,Gi)| : u ∈ Gi} =

∑
{|D(u,Gi)| : u ∈ Gi}, so

Lemma 4.1 follows.

If instance (Gi,Oi, b) does not have the first-last property then the algorithm makes a first phase
step. That is, it finds an edge e = uv that violates (5) and deletes e from Gi to get Gi+1. To
construct Oi+1, we restrict each order of Oi to the remaining edges. The motivation is that each
agent selects his/her best possible partners according to his/her quota and proposes to them. If
agent v receives at least b(v) proposals than he/she will never be a partner of another agent who is
worse than the b(v)th proposer of v.

Lemma 4.2. If (Gi+1,Oi+1, b) is constructed from (Gi,Oi, b) by deleting e in a first phase step then
properties (2–4) hold.

Proof. Property (2) holds trivially for (Gi+1,Oi+1, b). Assume that M is a stable b-matching of
(Gi,Oi, b). By the definition of the first phase step, there are different edges f1, f2, . . . , fbu ∈ D(u,Gi)
such that fj ≺u e for j = 1, 2, . . . , b(u). The definition of D(u,Gi) implies that either all fj ’s belong
to M or M must b-dominate some fj at u. In both cases, e is b-dominated by M at u, hence e 6∈M ,
so M is a stable b-matching of (Gi+1,Oi+1, b). This proves (3).

Observe that after the deletion of e, we still have fj ∈ D(u,Gi+1) for j = 1, 2, . . . , b(u). So
the above argument applies to any stable b-matching M ′ of (Gi+1,Oi+1, b), and shows that M ′

b-dominates e. Hence M ′ is a stable b-matching of (Gi,Oi, b), justifying (4).

The above proof justifies the following observation.

Observation 4.3. If edge e is deleted in the first phase of the EI algorithm then e does not belong
to any stable b-matching of (G0,O0, b).

If the first phase step cannot be executed, i.e. (Gi,Oi, b) has the first-last property then either the
edges of graph Gi form a b-matching M which (by property (4)) is a stable b-matching of (G0,O0, b),
or the algorithm makes a second phase step, that is, it finds and eliminates a so called rotation to get
(Gi+1,Oi+1, b). A rotation of (Gi,Oi, b) is a pair of edge sets R = ({e1, e2, . . . , ek}, {f1, f2, . . . , fk})
such that ej = ujvj , fj = ujvj+1 (here and further on, addition in the indices is modulo k), ej is
maximal (i.e. worst) in ≺vj and fj is the (b(uj) + 1)st least (i.e. (b(uj) + 1)st best) element of ≺uj .

Lemma 4.4. If (Gi,Oi, b) has the first-last property and E(Gi) is not a b-matching then there exists
a rotation R of (Gi,Oi, b) such that dGi(v) > b(v) for each vertex v covered by R.

Proof. Define arc set A on V (Gi) by introducing an arc ~a = ~uv if e = uw is the ≺u-maximal edge and
f = wv is the (b(w) + 1)st least edge of ≺w. Observe that if dGi(u) > b(u) then for the ≺u-maximal
edge e = uw we have e 6∈ B(u,Gi), hence e 6∈ D(w, Gi), that is, dGi(w) > b(w) by Lemma 4.1. This
means that whenever dGi(u) > b(u) then there is an arc ~a of A going from u to some vertex v with
dGi

(v) > b(v). As E(Gi) is not a b-matching, A is nonempty and contains a cycle. This A-cycle
defines a rotation in a natural way.

If the EI algorithm finds a rotation R = ({e1, e2, . . . , ek}, {f1, f2, . . . , fk}) as in Lemma 4.4 such
that {e1, e2, . . . , ek} = {f1, f2, . . . , fk} then it concludes that no stable matching of instance (G,O)
exists. Otherwise the algorithm eliminates rotation R, i.e. it constructs Gi+1 and Oi+1 by deleting
edges {e1, e2, . . . , ek} from Gi and by restricting orders of Oi to the remaining edges, respectively.
The following lemma justifies the correctness of the second phase step.
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Lemma 4.5. Let SMA instance (Gi,Oi, b) have the first-last property and let R = ({e1, e2, . . . , ek},
{f1, f2, . . . , fk}) be a rotation of (Gi,Oi, b) as in Lemma 4.4.

A Sets {e1, e2, . . . , ek} and {f1, f2, . . . , fk} are disjoint or identical. In the latter case, (Gi,Oi, b)
has no stable b-matching.

B If (Gi+1,Oi+1, b) is the SMA instance after the elimination of rotation R then properties (2–4)
hold.

Proof of part A. Assume that ej = fl, for some j, l. As dGi(vj) > b(vj) and ej is the ≺vj -maximal
edge, ej ∈ B(uj , Gi) by the first-last property of (Gi,Oi, b). But fl 6∈ B(ul, Gi), so uj 6= ul hence
uj = vl+1 and ul = vj must hold. So dGi

(ul) = b(ul) + 1 as ej is maximal and fl is the (b(ul) + 1)st
least element of ≺ul

. In particular, b(ul) = |B(ul, Gi)| = |D(ul, Gi)| by Lemma 4.1. In other words,
|B(ul, Gi) ∩D(ul, Gi)| = b(ul)− 1, D(ul, Gi) \B(ul, Gi) = {ej} and B(ul, Gi) \D(ul, Gi) = {e} for
a unique edge e in E(ul, Gi).

By the definition of R, both edges el and fj−1 are incident with ul and by the degree condition of
Lemma 4.4, el, fj−1 6∈ D(ul, Gi). This yields that el = e = fj−1. That is, ej = fl implies el = fj−1,
and by induction {e1, e2, . . . , ek} = {f1, f2, . . . , fk} follows. From the structure of R, we also get
that edges e1, e2, . . . , ek (in cyclic order ej , el, ej−1, el−1 . . . , el+1) form an odd cycle C of Gi.

Now let M be a stable b-matching of (Gi,Oi, b). Pick some vertex (say ul = vj) of C. If
f ∈ E(ul, Gi) and ej 6= f 6= el then f ∈ B(ul, Gi) ∩ D(ul, Gi), so f ∈ M . At most one of ej and
el can belong to M because dGi(ul) > b(ul) and M is a b-matching. As el ∈ D(ul, Gi), if el 6∈ M
then M must b-dominate el at ul, so ej ∈ M follows. We got that from two neighbouring edges of
C exactly one belongs to C. As C is an odd cycle, this is impossible. That is, no stable b-matching
of (Gi,Oi, b) exists.

Proof of part B. Property (2) holds trivially. Let N be a stable b-matching of (Gi,Oi, b). Clearly, if
N contains none of the ej ’s then N is a stable b-matching of (Gi+1,Oi+1, b). Assume that ej ∈ N .
Then by Lemma 4.4, dGi(vj) > b(vj), hence |D(vj , Gi)| = b(vj). Moreover, D(vj , Gi) ⊆ N because
ej being maximal in ≺vj

, no edge of Gi is b-dominated by N at vj . By definition, fj−1 6∈ D(vj , Gi),
so fj−1 6∈ N , implying that fj−1 is b-dominated by N at uj−1. But fj−1 is preceeded by exactly
b(uj−1) edges in ≺uj−1 , so all of those edges (in particular ej−1) must belong to N . We got that
ej ∈ N implies ej−1 ∈ N 63 fj−1, hence {e1, e2, . . . ek} ⊆ N and {f1, f2, . . . fk} is disjoint from N .

Define M := N ∪ {f1, f2, . . . fk} \ {e1, e2, . . . ek} . As the ej ’s and the fj ’s cover the same set of
vertices, M is a b-matching. The above argument also shows that M contains the best b(uj) edges
of ≺uj in Gi+1. So if some edge e of Gi+1 is b-dominated by N at uj then e is still b-dominated by
M at uj . As N b-dominates no edge of Gi at vj (because ej ∈ N is ≺vj -maximal), M is a stable
matching of (Gi+1,Oi+1, b). This proves property (3).

Let M be a stable b-matching of (Gi+1,Oi+1, b) and ej = ujvj be an edge that has been deleted in
the elimination of R. Assume that ej is not b-dominated by M at vj . By Lemma 4.4, dGi

(vj) > b(vj),
so |D(vj , Gi)| = b(vj) and ej ∈ D(vj , Gi) by property (5) and Lemma 4.1. If e 6∈ M for some edge
e ∈ D(vj , Gi) other than ej then e has to be b-dominated by M at vj , and this means that ej is
also b-dominated by M at vj , a contradiction. So D(vj , Gi) \ {ej} ⊆M . This yields that fj−1 6∈M
because otherwise ej would be b-dominated by M at vj , as fj−1 6∈ D(vj , Gi) and fj−1 <vj ej . Hence
fj−1 has to be b-dominated by M at its other vertex uj−1. But this is impossible as after the deletion
of ej−1 in the elimination of R, there are only b(uj)− 1 edges left in Gi+1 that preceed fj−1 in ≺uj .
The contradiction shows that no ej can block M , so M is a stable b-matching of (Gi,Oi, b). This
justifies property (4).

After each rotation elimination, the algorithm returns to the first phase. The following pseudocode
summarizes the algorithm.

From Lemmas 4.2, 4.4 and 4.5 we get the following theorem.

Theorem 4.6. Let (G0,O0, b) be an instance of the SMA and let m denote the number of edges of
G0. The EI algorithm finds a stable b-matching of (G0,O0, b) or concludes that no stable matching
of (G0,O0, b) exists in O(m2) time.

EGRES Technical Report No. 2003-03



Section 5. A splitting property of the SMA 8

The EI algorithm
Input: SMA instance (G0,O0, b)
Output: stable b-matching of (G0,O0, b), if one exists

begin
i:=0
while E(Gi) is not a b-matching do

begin
if(Gi,Oi, b) does not have the first-last property

then find e ∈ E(Gi) that violates (5)
delete e to get (Gi+1,Oi+1, b)

else find rotation ({e1, e2, . . . , ek}, {f1, f2, . . . , fk})
if{e1, e2, . . . , ek} = {f1, f2, . . . , fk}

then STOP: No stable b-matching of (G0,O0, b) exists
else delete {e1, e2, . . . , ek} to get (Gi+1,Oi+1, b)

end if
end if
increase i by 1

end
STOP: Output stable b-matching E(Gi) of (G0,O0, b)

end

Table 1: Pseudocode of the extension of Irving’s algorithm

Proof. In step i, the algorithm deletes at least one edge of Gi. So there are at most m steps. Finding
all sets B(u, Gi) takes O(m) time. Each edge deletion costs constant time if edges are stored in
doubly linked lists along orders ≺v. We can update sets B(u, Gi) after the deletion of k edges in
O(k) time. We can recognize the edge to be deleted in the first phase in O(m) time. Finding
a rotation according to Lemma 4.4 takes O(min(m, n)) time, so altogether we get O(m2) for the
complexity of the EI algorithm.

5 A splitting property of the SMA

In this section, we show an interesting splitting property of the SMA. This property was observed
recently independently by Fleiner [5] and Teo et. al. [17] for bipartite instances. Fleiner generalized
the result to nonbipartite instances by reducing it to the bipartite case in [4]. Here, we give a direct
proof of this as a by-product of the justification of the EI algorithm.

Let G be a graph and u, v be vertices of G. The contraction of u and v in G results in the graph in
which u and v are merged to one vertex and all edges incident to u or v are joined to the supervertex
instead. The contraction may result in parallel edges and loops, so the number of edges does not
change after the operation. Graph G′ is the contraction-minor of G if G′ can be constructed from
G in a sequence of contractions.

We say that SA instance (G(b),O(b)) is a b-split of SMA instance (G,O, b) if G is a contraction
minor of G(b) such that each vertex v of G is contracted out of b(v) vertices of G(b), moreover, the
linear ordes of O(b) are restricted orders of O on the supervertices. (As an abuse of notation, we shall
call graph G(b) also the b-split of G.) The contraction construction gives a bijection between edges
of G and that of G(b), hence for any subset F of edges of G we can talk about the corresponding
subset F (b) of edges of G(b). An equivalent form of the following theorem is formulated for bipartite
SMA instances in [5] and for bipartite SMA instances with the many-to-one property in [17].

Theorem 5.1. Any SMA instance (G,O, b) has a b-split (G(b),O(b)) such that for any stable b-
matching M of (G,O, b), M (b) is a stable matching of (G(b),O(b)).
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Proof. To prove the theorem, we shall construct a b-split G(b) of G in such a way that for any stable
b-matching M of (G,O, b), M (b) is a matching of G(b). If we do so, then the induced (G(b),O(b))
will automatically satisfy the stability requirements of Theorem 5.1 because if edge e is b-dominated
by M at v then the corresponding edge e(b) of G(b) will be dominated by M (b) at that vertex of e(b)

that is contracted into supervertex v.
We may assume that (G,O, b) has a stable b-matching, otherwise Theorem 5.1 is trivial. So let

the EI algorithm with input (G0,O0, b) = (G,O) terminate at (Gk,Ok, b) where E(Gk) is a (stable)
b-matching. Theorem 5.1 for (Gk,Ok, b) is trivial: we only have to find a b-split G

(b)
k of Gk that has

no adjacent edges. Then G
(b)
k induces (G(b)

k ,O(b)
k ). We shall construct G(b) = G

(b)
0 by induction, i.e.

we assume that we know b-split (G(b)
i+1,O

(b)
i+1) of (Gi+1,Oi+1, b) that satisfies Theorem 5.1 and we

construct b-split (G(b)
i ,O(b)

i ) of (Gi,Oi, b) with the same property.
If the EI algorithm has executed a first phase step and deleted e = uv to get (Gi+1,Oi+1, b) from

(Gi,Oi, b) then we construct G
(b)
i by introducing an arbitrary edge e(b) in G

(b)
i+1 that corresponds to e

via the contraction. By Observation 4.3, e is not in any stable b-matching of (G,O, b), so (G(b)
i ,O(b)

i )
satisfies the requirements of Theorem 5.1.

If (Gi+1,Oi+1, b) is coming from (Gi,Oi, b) after the elimination of rotation ({e1, e2, . . . , el},
{f1, f2, . . . , fl}) then there are edges f

(b)
1 , f

(b)
2 . . . , f

(b)
l of G

(b)
i+1 that correspond to f1, f2, . . . fl. To

construct Gi, introduce edges e
(b)
1 , e

(b)
2 . . . , e

(b)
l in such a way that e

(b)
1 , f

(b)
1 , e

(b)
2 , f

(b)
2 , . . . , e

(b)
l , f

(b)
l

form a circuit.
Let M be a stable b-matching of (Gi,Oi, b) and M (b) be the corresponding edge set in Gi. If M is

disjoint from {e1, e2, . . . , el} then M is a stable b-matching of (Gi+1,Oi+1, b), hence M (b) is a match-
ing by the induction hypothesis. Otherwise, by the proof of part B of Lemma 4.5, {e1, e2, . . . , el} ⊆
M , and N := N ∪{f1, f2, . . . fk}\{e1, e2, . . . ek} is a stable b-matching of (Gi+1,Oi+1, b), hence N (b)

is a matching by the induction hypothesis. To get M (b), we only have to switch along alternating
cycle e

(b)
1 , f

(b)
1 , e

(b)
2 , f

(b)
2 , . . . , e

(b)
l , f

(b)
l , so M (b) is a matching, too.

Note that in [5, 4] it is indicated how it is possible to construct (G(b),O(b)) with the help of the
Gale-Shapley algorithm (see also [17]). Note also, that from Theorem 5.1 one might come to the false
impression that b-splitting gives a way to reduce the SMA to the SR. (Or, as b-splitting preserves
bipartiteness, to reduce the bipartite stable b-matching problem to the stable marriage problem.)
It is not difficult to construct a bipartite SMA instance (G,O, b) in such a way that any b-split
(G(b),O(b)) that satisfies Theorem 5.1 has a stable matching M (b) that corresponds to a nonstable
b-matching M of (G,O, b).

6 Conclusion: other extensions

In this work we have reduced the SMA to the SR. So if we have an algorithm that decides for
any SR instance whether a stable matching exists and finds one if exists one, then we can use that
algorithm to find a stable b-matching if exists for any SMA instance. We can also use our reduction
to find a maximum weight stable b-matching as soon as we have an algorithm that finds a maximum
weight stable matching for SR instances. That is, if we have a weight function w : E → R on the
edges then we can ask for a stable (b-)matching M with maximum weight w(M) :=

∑
{w(m) : m ∈

M}. Rothblum in [12] gave a compact characterization of the stable matching polytope for any
SM instance, and standard tools of linear programming allow us to find a maximum weight stable
matching efficiently. Using our reduction, we can find a maximum weight stable b-matching for any
bipartite SMA instance.

There are other known extensions of the notion of a stable matching than the ones that we have
studied above. If, instead of linear orders ≺v, we have linear pseudoorders, i.e. indifference is allowed
then we can define the notion of (b-)domination similarly as in Sections 2 and 3. This gives rise to
the notion of a super stable (b-)matching. In [9], Irving and Manlove extend Irving’s algorithm to
find a super stable matching if it exists.
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The notion of bistability is due to Weems [18] and it describes a bistable matching as a stable
matching of both SR instances (G,O) and (G,O−1), where O−1 denotes the set of reverse orders of
orders of O. Weems in [18] extends the Gale-Shapley algorithm to find a bistable matching for the
bipartite case, if one exists. Based on a polyhedral approach, Sethuraman and Teo in [13] suggested
an efficient way to find a bistable matching for any SR instance.

In the above work, we reduced some other extensions of the notion of the SR and the SM to the
SR or to the SM. It is a natural question to ask whether the decision of the existence of a super stable
(b-)matching or a bistable (b-)matching can also be reduced to the SR or to the SM (depending on
the bipartiteness of the underlying graph). If one would succeed to do so, then it probably would
become easy to handle combined notions like super bistable b-matchings as well.
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