Egerváry Research Group

 on Combinatorial Optimization

Technical ReportS

TR-2003-02. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www. cs.elte.hu/egres. ISSN 1587-4451.

On the Maximum Even Factor in Weakly Symmetric Graphs

Gyula Pap and László Szegő

On the Maximum Even Factor in Weakly Symmetric Graphs ${ }^{\S}$

Gyula Pap** and László Szegő**

Abstract

As a common generalization of matchings and matroid intersection, W.H. Cunningham and J.F. Geelen introduced the notion of path-matchings, then they introduced the more general notion of even factor in weakly symmetric digraphs. Here we give a min-max formula for the maximum cardinality of an even factor. Our proof is purely combinatorial. We also provide a Gallai-Edmonds-type structure theorem for even factors.

1 Introduction

Motivated by developing a strongly polynomial separation algorithm for the matchable set polyhedron, W.H. Cunningham and J.F. Geelen introduced the notion of pathmatchings [4]. Their algorithmic approach led them to the notion of even factors [5].

In a directed graph, an arc is called symmetric, if the reversed arc is in the arc set of the graph, too. A directed graph is symmetric, if all its arcs are symmetric. The directed graph $G=(V, E)$ is said to be weakly symmetric, if the arcs in each strongly connected component are symmetric. A set K of edges is called an even factor if graph $G_{K}=(V, K)$ is a collection of node-disjoint directed paths and even directed circuits. The problem is to find an even factor with maximum cardinality. If the graph is arbitrary, not necessarily weakly symmetric, then the problem is NP-hard, see [5].

In this paper we give a min-max formula for the maximum cardinality of an even factor and a Gallai-Edmonds-type structure theorem describing the structure of maximum even factors in weakly symmetric graphs.

[^0]A set $X \subseteq V$ is said to be a cut. We define $N_{G}^{+}(X):=\{v \in V-X$: there is a node $u \in X$ such that $u v \in E\}$ and let $G[X]$ be the graph with node set X and arc set $\{u v \in E: u, v \in X\}$. In a directed graph $G=(V, E)$, consider the strongly connected components: a component C having no edge $u v \in E$ such that $u \in V-C$ and $v \in C$, is called a source component. Let $\operatorname{odd}_{G}[X]$ denote the number of the source components of $G[X]$ having an odd number of nodes. Let $\operatorname{Odd} d_{G}[X]$ denote the union of these components. $\nu(G)$ denotes the cardinality of a maximum even factor of G. We prove the following formula for $\nu(G)$.

Theorem 1.1. In a weakly symmetric directed graph G one has the following formula for the maximum cardinality of an even factor.

$$
\begin{equation*}
\nu(G)=|V|+\min _{X \subseteq V}\left(\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]\right) . \tag{1}
\end{equation*}
$$

This formula is a direct extension of the Tutte-Berge-formula and also of Kőnig's theorem. The path-matching problem is also a special case of even factors in weakly symmetric graphs. In [3] and [4] Cunningham and Geelen gave a min-max formula for the maximum value of a path-matching. In $[8]$ Theorem 1.2 , a simplified reformulation of this formula was proved. In the following part, we will discuss corollaries of Theorem I. D.

Cunningham and Geelen defined a path-matching as follows. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be an undirected graph and $T_{1}, T_{2} \subseteq V^{\prime}$ disjoint stable sets of G^{\prime}. We denote $V^{\prime}-\left(T_{1} \cup T_{2}\right)$ by R. A path-matching with respect to T_{1}, T_{2} is a set M of edges such that every component of the subgraph $G_{M}=\left(V^{\prime}, M\right)$ having at least one edge is a simple path from $T_{1} \cup R$ to $T_{2} \cup R$, all of whose internal nodes are in R. The one-edge-components in R are called the matching edges of M. The value of a path-matching M is defined to be the number $\operatorname{val}(M)=|M|+\left|M^{\prime}\right|$, where M^{\prime} denotes the set of the matching edges of M. (That is, the matching edges count twice.)

We define a cut for path-matchings separating the terminal sets T_{1} and T_{2} to be a subset $Y \subseteq V^{\prime}$ for which there is no path between $T_{1}-Y$ and $T_{2}-Y$ in $G^{\prime}-Y$.

From now on we denote by $\operatorname{odd}_{G^{\prime}}(Y)$ the number of connected components of $G^{\prime}-Y$ which are disjoint from $T_{1} \cup T_{2}$ and have an odd number of nodes. In [[]$]$ the following was proved.

Theorem 1.2. For the maximum value of a path-matching one has the following formula.

$$
\begin{equation*}
\max _{\text {M a path-matching }} \operatorname{val}(M)=|R|+\min _{Y \text { a cut }}\left(|Y|-o d d_{G^{\prime}}(Y)\right) . \tag{2}
\end{equation*}
$$

Now we show how Theorem 1.1 implies Theorem 1.2. Given an instance G^{\prime}, T_{1}, T_{2} of the maximum path-matching problem we construct an instance of the maximum even factor problem as follows: We replace each edge in $i_{G^{\prime}}(R):=\left\{u v \in E^{\prime}: u, v \in R\right\}$ by a pair of oppositely directed arcs; and orient each other edge, such that nodes in T_{1} become source nodes and nodes in T_{2} become sink nodes. The resulting digraph G is weakly symmetric.

A path-matching in G^{\prime} corresponds to an even factor in G, when we replace each matching edge by the two-arc dicircuit. An even factor in G corresponds to a pathmatching in G^{\prime}, when we replace the even dicircuits by a matching (a dicircuit can only be in R). Corresponding solutions have same size and value. It is easy to see, that a path-matching is maximum in G^{\prime} if and only if the corresponding even factor is maximum in G.

By Theorem 1.1 we have a cut $X \subseteq V$ in G so that $|V|+\left|N_{G}^{+}(X)\right|-o d d_{G}[X]=$ $\max _{\text {even factor }}|K|=\max _{\text {path-matching }} \operatorname{val}(M)$. It is easy to see, that $Y:=N_{G}^{+}\left(X-T_{2}\right) \cup$ $\left(T_{1}-X\right)$ is a cut for path-matchings in G^{\prime}. We have

$$
\begin{gathered}
|R|+|Y|-\operatorname{odd}_{G^{\prime}}(Y) \leq \\
|R|+\left(\left|N_{G}^{+}\left(X-T_{2}\right)\right|+\left|T_{1}-X\right|\right)-\left(\operatorname{odd}_{G}[X]-\left|T_{1} \cap X\right|-\left|T_{2}-N_{G}^{+}\left(X-T_{2}\right)\right|\right)= \\
\left(|R|+\left|T_{1}\right|+\left|T_{2}\right|\right)+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]= \\
|V|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X] .
\end{gathered}
$$

Hence the maximum value of a path-matching equals to $|R|+|Y|-\operatorname{odd}_{G^{\prime}}(Y)$ for cut Y, which finishes the proof.

We also mention, that Menger's theorem on node-connectivity follows by a reduction to path-matchings.

When considering only acyclic digraphs, source components can only be source nodes. A single node is considered to be a dipath of length zero.

Theorem 1.3. Let $D=(V, A)$ be a directed acyclic graph. The minimum number of dipaths covering all the nodes of D equals to

$$
\begin{equation*}
\max _{X \subseteq V}(|A|-|B|), \tag{3}
\end{equation*}
$$

where the maximum is taken over the disjoint sets $A, B \subseteq V$ such that no dipath in $G-B$ connects nodes of A.

Proof. For each dipath P in $D,|V(P) \cap A| \leq|V(P) \cap B|+1$, hence the maximum is a lower bound for the number of dipaths.

An even factor of a directed acyclic graph is a dipath-cover. There exist k dipaths covering all the nodes of D if and only if D has an even factor of cardinality $|V|-k$. By Theorem 1.1 we have a set $X \subseteq V$ such that $k=\operatorname{odd}_{D}[X]-\left|N_{D}^{+}(X)\right|$, and there exist k dipath covering the nodes. Then the choice of $A:=O d d_{D}[X]$ and $B:=N_{D}^{+}(X)$ finishes our proof.

We mention the following well-known consequence without defining the notions which are used.

Theorem 1.4 (Dilworth [6]). Let $P=(V, \leq)$ be a partially ordered set. The minimum number of chains covering all the elements of X is equal to the cardinality of a maximum antichain.

Proof. Let $D=(V, E)$ be a directed graph so that $u v$ is an edge iff $u \leq v . D$ is acyclic.

Take a pair A, B where the maximum is attained in Theorem 1.3. Trivially, $B=\emptyset$ and A is an antichain. By Theorem 1.3 we also have a dipath cover of $|A|-|B|=|A|$ dipaths.

In [9] Felsner gave a min-max result for the maximum number of nodes that can be covered by l directed paths in a directed acyclic graph. Theorem 1.3 can be proved from his result.
In the proof of Theorem 1.1, we will use the following well-known facts about factor-critical graphs. An undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is said to be factor-critical if it is connected and each node is missed by a maximum matching. A symmetric directed graph is defined to be factor-critical, if the underlying undirected graph is factorcritical.

Lemma 1.5 (Gallai's lemma [10]). If $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is factor-critical, then $\left|V^{\prime}\right|$ is an odd number and a maximum matching of G has cardinality $\left(\left|V^{\prime}\right|-1\right) / 2$.

Recall the definition of $\operatorname{od} d_{G^{\prime}}(Y)$ which denotes the number of components of $G^{\prime}-Y$ having an odd number of nodes. It follows from Tutte's theorem, that
a connected graph G^{\prime} is factor-critical if and only if

$$
\begin{equation*}
\operatorname{odd}_{G^{\prime}}(Y) \leq|Y|-1 \text { for all sets } Y \subseteq V^{\prime},|Y| \geq 1 \tag{4}
\end{equation*}
$$

The following is an easy corollary of Gallai's lemma for a factor-critical symmetric digraph $G=(V, E)$:

$$
\begin{align*}
s, t \in V \Longrightarrow & \text { there exists an even factor } K \text { of cardinality }|V|-1 \\
& \text { such that }\left|K \cap \varrho_{G}(s)\right|=\left|K \cap \delta_{G}(t)\right|=0 \text {, and } \\
& K \text { consists of an even length } s-t \text { path and two-arc dicircuits. } \tag{5}
\end{align*}
$$

Our proof of Theorem 1.1 is a direct extension of the one of Theorem 1.2 appeared in [8] which mimicked Anderson's simple proof on Tutte's theorem on perfect matchings. In Section 3 an extension of Theorem [1.1, a Gallai-Edmonds-type structure theorem is given for even factors and its proof is based on a thorough investigation of the proof of Theorem [.].].

2 Proof

A cut X is defined to be tight if the minimum in (11) is equal to $\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]$. A cut X is called trivial if one of the following holds:
(i) The source components of $G[X]$ are single nodes, $V=\left(X \cup N_{G}^{+}(X)\right)$ and there is no arc $u v$ such that $u \in N_{G}^{+}(X)$.
(ii) X is a stable set in G, and there is no arc $u v$ such that $u \in X$ and $v \in V-X$.

The concept of the definition is the following. Having a nontrivial cut contributes to running the inductive proof in CASE 2. The forthcoming dividing procedure of CASE 2 does not necessarily result in graphs with smaller number of edges than of G, but in case of a nontrivial cut, it does.

Observation 2.1. $X=V$ is the only tight cut of type (i).
Proof. If $X \neq V$ is a tight cut of type (i), then $|V|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]>|V|+$ $\left|N_{G}^{+}\left(X \cup N_{G}^{+}(X)\right)\right|-\operatorname{odd}_{G}\left[X \cup N_{G}^{+}(X)\right]=|V|-o d d_{G}[V]$, a contradiction.

Let G be a symmetric digraph and let G_{u} denote the underlying undirected graph of G.

Claim 2.2. Let K be a maximum even factor of G and M be a maximum matching of $G_{u} .|K|=2|M|$.

Proof of Theorem 1.1. First we prove that for any even factor K and cut X we have $|K| \leq|V|+\left|N_{G}^{+}(X)\right|-$ odd $_{G}[X]$. The sum of the following three observations gives this.

$$
\begin{gather*}
\left|i_{G}(X) \cap K\right| \leq|X|-\operatorname{odd}_{G}[X], \tag{6}\\
\left|\delta_{G}(X) \cap K\right| \leq\left|N_{G}^{+}(X)\right|, \tag{7}\\
\left|\left(i_{G}(V-X) \cup \delta_{G}(V-X)\right) \cap K\right| \leq|V|-|X|, \tag{8}
\end{gather*}
$$

where $i_{G}(X)$ denotes the set of the arcs of G with both ends in X and $\delta_{G}(X)$ denotes the set of the arcs of G with tail in X and head in $V-X$.

The proof that there is a cut X and an even factor K such that $|K|=|V|+$ $\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]$ goes by an induction on $|E|$. If $|E| \leq 1$, then the theorem is obviously true. If G is strongly connected, then a maximum even factor corresponds to a maximum matching by Claim 2.2, formula (11) follows from Berge-Tutte-formula. Hence we assume that there is at least one arc $u v$ in G so that arc $v u$ does not exist. It is easy to see, that if $X=\emptyset$ is a tight cut, then there exists a nonempty tight cut: for example, a strongly connected sink component.

CASE 1. Every tight cut is trivial.
We use $\tau_{G}(X):=|V|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]$ as the value of cut X in G. Let $\tau_{G}:=\min _{X \text { a cut }} \tau_{G}(X)$ be the value of a tight cut in G. Let $u v=e \in E$ be an arc having its tail u in a source component C of G and having its head v in $V-C$. We observe, that $G-e$ is a weakly symmetric digraph.

For any cut X we have

$$
\begin{equation*}
\tau_{G-e}(X) \leq \tau_{G}(X) \leq \tau_{G-e}(X)+1 \tag{9}
\end{equation*}
$$

In (9) we have $\tau_{G}(X)=\tau_{G-e}(X)+1$ if and only if for $e=u v$ either
A) $u \in X$ and $v \in V-X-N_{G-e}^{+}(X)$ or
B) $u \in X$ and $v \in O d d_{G-e}[X]$ and u, v are in different strongly connected components of $G[X]-e$.

If $\tau_{G-e}=\tau_{G}$, then we are done by induction. Otherwise (9) implies, that for a tight cut X in G

$$
\tau_{G}=\tau_{G}(X)=\tau_{G-e}(X)+1
$$

Take a tight cut X in G. By assumption, X is a trivial cut in G. Arc e accords to A) or B), so X cannot be of type (ii). Thus X is a trivial tight cut of type (i), by Observation $2.11 X=V$.

Hence $C=\{u\}$ is a single node source component in G. Arc $e=u v$ cannot be of type A), because $X=V$. Arc $e=u v$ is of type B), thus $V-u$ is a tight cut in G. By Observation 2.1, $V-u$ can only be a cut of type (ii) in G. Then the arc set E consists of some arcs with tail in u. In this case $\tau_{G}(V-u)=1$, and $K=e$ is an even factor of size 1, this completes the proof in CASE 1.
CASE 2. There exists a nontrivial tight cut. Let us consider a minimal nontrivial nonempty tight cut X.

Claim 2.3. Each source component of $G[X]$ is factor-critical.
Proof. If a source component C has an even number of nodes, then for any $v \in C$ the following holds: $\tau_{G}(X-v) \leq \tau_{G}(X)$, contradicting the minimality of X. Suppose $|C|$ is an odd number. If a subset $\emptyset \neq Y \subseteq C$ gives $\operatorname{odd}_{G_{u}[C]}(Y) \geq|Y|+1$, then we would have $\tau_{G}(X-Y) \leq \tau_{G}(X)$, a contradiction. Thus by parity, for each $\emptyset \neq Y \subseteq C$ odd $_{G_{u}[C]}(Y) \leq|Y|-1$, and $G_{u}[C]$ is factor-critical by (4).

Let $G_{Q}=\left(V_{Q}, E_{Q}\right)$ denote the weakly symmetric graph we get by contracting each component of $O d d_{G}(X)$ to a node. Let Q denote the set of new nodes, $X_{Q}:=$ $X-O d d_{G}[X] \cup Q$. Remark $|Q|=\operatorname{odd}_{G}[X]$ and $V_{Q}=X-O d d_{G}[X] \cup Q \cup(V-X)=$ $X_{Q} \cup(V-X)$. Now we define two subgraphs of G_{Q}.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ denote the weakly symmetric graph having node set $V_{1}:=X_{Q} \cup$ $N_{G}^{+}(X)$ and $\operatorname{arc} \operatorname{set} E_{1}:=\left\{u v \in E_{Q}: u \in X_{Q}\right\}$.

Let $G_{2}=\left(V_{2}, E_{2}\right)$ denote the weakly symmetric graph having node set $V_{2}:=Q \cup$ $\left(V_{Q}-X_{Q}\right)$ and arc set $E_{2}:=\left\{u v \in E_{Q}: v \in V_{2}-N_{G}^{+}(X)\right\}$. These two graphs may have nodes in common, but have disjoint arc sets. Since X is nontrivial, $\left|E_{1}\right|<|E|$ and $\left|E_{2}\right|<|E|$.

We are going to show that G_{Q} has an even factor K_{Q} with cardinality $\left|K_{Q}\right|=$ $\left|V_{Q}\right|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]$, which finishes the proof by the following claim.

Claim 2.4. If K_{Q} is an even factor of G_{Q}, then G has an even factor K with cardinality $|K|:=\left|K_{Q}\right|+\left(\left|O d d_{G}[X]\right|-|Q|\right)$.

Proof. Let K^{\prime} denote the set of arcs of G corresponding to K_{Q}. We claim that K^{\prime} can be completed in G so that it has the desired cardinality. To this end let C denote
 [2.3, C is factor-critical.
K^{\prime} has at most one arc in $\delta_{G}(C)$: choose $t \in C$ as the tail of this arc if present, otherwise choose t arbitrarily. K^{\prime} has at most one arc in $\varrho_{G}(C)$: choose $s \in C$ as the head of this arc if present, otherwise choose s arbitrarily. ($t=s$ may happen.) By (5), there is an even factor K_{C} in $G[C]$ of size $|C|-1$.
$K:=K^{\prime} \cup \bigcup_{c \in Q} K_{C}$ is an even factor K with cardinality $\left|K_{Q}\right|+\left(\left|O d d_{G}[X]\right|-\right.$ $|Q|)$.

Claim 2.5. G_{1} has an even factor K_{1} with cardinality $\left|V_{1}\right|-\operatorname{odd}_{G}[X]$.
Proof. By induction, it is enough to prove, that $\tau_{G_{1}}(Y) \geq\left|V_{1}\right|-\operatorname{odd}_{G}[X]$ holds for all $Y \subseteq V_{1}$.
$\tau_{G_{1}}(Y) \geq \tau_{G_{1}}\left(Y \cup N_{G}^{+}(X)\right)$, hence we suppose, that $N_{G}^{+}(X) \subseteq Y \subseteq V_{1}$. Let $S:=$ $\left\{v \in N_{G}^{+}(X):\right.$ there is no arc $u v$ with $\left.u \in Y-N_{G}^{+}(X)\right\}$.

We have $N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)=N_{G_{1}}^{+}(Y) \cup\left(N_{G}^{+}(X)-S\right)$, thus

$$
\begin{gather*}
\left|N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)\right| \leq\left|N_{G_{1}}^{+}(Y)\right|+\left|N_{G}^{+}(X)\right|-|S|, \tag{10}\\
\quad \operatorname{odd}_{G_{1}}[Y]-|S|=\operatorname{odd}_{G_{1}}\left[X_{Q} \cap Y\right] . \tag{11}
\end{gather*}
$$

Let Y_{G} denote the resulting set after replacing the nodes of $Y \cap Q$ by the corresponding components of $O d d_{G}[X]$. Since X is a tight cut in G,

$$
\begin{equation*}
|V|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X] \leq|V|+\left|N_{G}^{+}\left(X \cap Y_{G}\right)\right|-\operatorname{odd}_{G}\left[X \cap Y_{G}\right] . \tag{12}
\end{equation*}
$$

It is easy to see, that $\operatorname{odd}_{G}[X]=|Q|=\operatorname{odd}_{G_{1}}\left[X_{Q}\right], N_{G}^{+}\left(X \cap Y_{G}\right)=N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)$, and $\operatorname{odd}_{G}\left[X \cap Y_{G}\right]=\operatorname{odd}_{G_{1}}\left[X_{Q} \cap Y\right]$. Then by inequality (12) we get

$$
\begin{equation*}
\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G_{1}}\left[X_{Q}\right] \leq\left|N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)\right|-\operatorname{odd}_{G_{1}}\left[X_{Q} \cap Y\right] . \tag{13}
\end{equation*}
$$

By adding up (10), (11) and (13)

$$
\begin{equation*}
\operatorname{odd}_{G_{1}}[Y]-\operatorname{odd}_{G_{1}}\left[X_{Q}\right] \leq\left|N_{G_{1}}^{+}(Y)\right| . \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left|V_{1}\right|-\operatorname{odd}_{G}[X]=\left|V_{1}\right|-\operatorname{odd}_{G_{1}}\left[X_{Q}\right] \leq\left|V_{1}\right|+\left|N_{G_{1}}^{+}(Y)\right|-\operatorname{odd}_{G_{1}}[Y]=\tau_{G_{1}}(Y) . \tag{15}
\end{equation*}
$$

Claim 2.6. G_{2} has an even factor K_{2} with cardinality $\left|V_{Q}\right|-\left|X_{Q}\right|$.

Proof. By induction, it is enough to prove, that $\tau_{G_{2}}(Z) \geq\left|V_{Q}\right|-\left|X_{Q}\right|$ holds for all $Z \subseteq V_{2}$.
$\tau_{G_{2}}(Z) \geq \tau_{G_{1}}(Z \cup Q)$, hence we suppose, that $Q \subseteq Z \subseteq V_{2}$. Let Z_{G} denote the resulting set after replacing the nodes of Q by the corresponding $\operatorname{Odd}_{G}[X]$ components in Z.

We have $N_{G}^{+}\left(X \cup Z_{G}\right)=\left(N_{G}^{+}(X)-\left(Z \cap N_{G}^{+}(X)\right)\right) \cup N_{G_{2}}^{+}(Z)$, thus

$$
\begin{equation*}
\left|N_{G}^{+}\left(X \cup Z_{G}\right)\right|=\left|N_{G}^{+}(X)\right|-\left|Z \cap N_{G}^{+}(X)\right|+\left|N_{G_{2}}^{+}(Z)\right| . \tag{16}
\end{equation*}
$$

Since X is tight in G,

$$
\begin{equation*}
|V|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X] \leq|V|+\left|N_{G}^{+}\left(X \cup Z_{G}\right)\right|-\operatorname{odd}_{G}\left[X \cup Z_{G}\right] . \tag{17}
\end{equation*}
$$

Now we prove inequality (18). Consider the odd source components of $G_{2}[Z]$. These are all the nodes in $Z \cap N_{G}^{+}(X)$ as single node components and some other components disjoint from $N_{G}^{+}(X)$. The latter type components are odd source components of $G\left[X \cup Z_{G}\right]$, too. This proves

$$
\begin{equation*}
\operatorname{odd}_{G_{2}}[Z]-\left|Z \cap N_{G}^{+}(X)\right| \leq \operatorname{odd}_{G}\left[X \cup Z_{G}\right] . \tag{18}
\end{equation*}
$$

By adding up (16), (17) and (18)

$$
\begin{equation*}
\operatorname{odd}_{G_{2}}[Z]-|Q|=\operatorname{odd}_{G_{2}}[Z]-\operatorname{odd}_{G}[X] \leq\left|N_{G_{2}}^{+}(Z)\right| \tag{19}
\end{equation*}
$$

Thus,

$$
\left|V_{Q}\right|-\left|X_{Q}\right|=\left|V_{2}\right|-|Q| \leq\left|V_{2}\right|+\left|N_{G_{2}}^{+}(Z)\right|-\operatorname{odd}_{G_{2}}[Z] .
$$

Claim 2.7. If K_{1}, K_{2} are even factors in G_{1}, G_{2}, respectively, then $K_{Q}:=K_{1} \cup K_{2}$ is an even factor in G_{Q}.

Proof. Since the in-degree $\varrho_{K_{Q}}(v) \leq 1$ and the out-degree $\delta_{K_{Q}}(v) \leq 1$ for all $v \in V_{Q}$, we have to prove that there is no odd cycle in K_{Q}. Let C denote a cycle of K_{Q} which is not a cycle in K_{1} nor in K_{2}. Since a cycle cannot have an arc $u v$ with $u \in V-\left(X \cup N_{G}^{+}(X)\right)$ and $v \in X \cup N_{G}^{+}(X)$, the nodes of C are in $X_{Q} \cup N_{G}^{+}(X)$. By the definition of G_{1} and G_{2}, C contains a node u in Q. For any node $v \in Q$ of C let $\operatorname{arc} e=v w$ be the arc leaving v in C. By the weakly symmetry, arc $w v$ is in G, hence $w \in N_{G}^{+}(X)$. Hence C is a cycle in the bipartite subgraph of G_{Q} on $Q \cup N_{G}^{+}(X)$.

Now we have $\left|K_{Q}\right|=\left|V_{Q}\right|+\left|N_{G}^{+}(X)\right|-$ odd $d_{G}[X]$, thus we have finished the proof of Theorem 1.1 by Claim 2.4.

3 A Gallai-Edmonds-type Structure Theorem

The following theorem plays an important role in Matching Theory. It asserts, that there is a canonical set that attains minimum in the Berge-Tutte formula, and this set has special properties.

Theorem 3.1 (Gallai-Edmonds Structure Theorem [17, 7]). Let $G=(V, E)$ be an undirected graph. D denotes the set of nodes which are not covered by at least one maximum matching of G. Let A be the set of nodes in $V-D$ adjacent to at least one node in D. Let $C=V-A-D$. Then:

1. The number of the covered nodes by a maximum matching in G equals to $|V|+$ $|A|-c(D)$, where $c(D)$ denotes the number of components of the graph spanned by D.
2. The components of the subgraph induced by D are factor-critical.
3. The subgraph induced by C has a perfect matching.
4. The bipartite graph obtained from G by deleting C and the edges in A and by contracting each component of D to a single node has the following property: there is a matching covering A after deleting any node coming from D.
5. If M is any maximum matching of G, then $E(D) \cap M$ covers all the nodes except one of any component of $D, E(C) \cap M$ is a perfect matching and M matches all the nodes of A with nodes in distinct components of D.

In [14] a Gallai-Edmonds-type structure theorem was proved for path-matchings as a generalization of Theorem 3.1. By the same reduction principle as in Section [1], it can easily be deduced from the even factor structure theorem, which is the following:

Theorem 3.2 (Structure Theorem). Let $G=(V, E)$ be a weakly symmetric digraph. Let $D:=\left\{v \in V\right.$: there exists a maximum even factor K such that $\left.\delta_{K}(v)=0\right\}$. Let $A:=N_{G}^{+}(D)$, and $C:=V-D-A$.

1. $\nu(G)=|V|+\left(\left|N_{G}^{+}(D)\right|-\operatorname{odd}_{G}[D]\right)$,
2. The strongly connected source components of $G[D]$ are factor-critical,
3. For any maximum even factor K, the following properties hold

- For all the nodes v of D except one of any source component of $G[D]$, $\varrho_{F}(v)=1$, where $F:=i_{G}(D) \cap K$.
- A is covered by edges of K coming out of D.
- $\delta_{K}(v)=1$ for any $v \in C \cup A$, furthermore the head of any arc of K coming out of v is in $C \cup O d d_{G}[D]$.

Proof. Let X be a tight cut such that $|X|$ is minimum. We are going to prove that $X=D$.

Claim 3.3. Each source component of $G[X]$ is factor-critical.
Proof. Since X is also minimal tight this is straightforward from Claim 2.3.
First we prove that $D \subseteq X$. Take any node $v \in D$. Let K_{v} be an even factor of size $\left|K_{v}\right|=\tau_{G}=\tau_{G}(X)$, with $\delta_{K_{v}}(v)=0$. By formula (11), for $K=K_{v}$, we must have equality in (6), (7), and (8). From equality in (8) we get that $v \notin V-X$.

Now we prove $X \subseteq D$. Consider G_{Q}, G_{1} and G_{2} which were defined for any tight cut in the proof of Theorem (1.1).

Claim 3.4. For any $v \in X_{Q}, G_{1}$ has an even factor K_{1} with cardinality $\left|V_{1}\right|-$ odd $_{G}[X]$, such that $\delta_{K_{1}}(v)=0$.

Proof. Let G_{1}^{\prime} denote the weakly symmetric graph obtained from G_{1} by deleting the arcs coming out of v. We have to prove that there is an even factor in G_{1}^{\prime} of cardinality $\left|V_{1}\right|-\operatorname{odd}_{G}[X]$.

We are going to prove, that $\tau_{G_{1}}(Y) \geq\left|V_{1}\right|-\operatorname{odd}_{G}[X]+1$ for any $Y \subseteq V_{1}-v$. By Theorem 1.1 it is enough, because $\tau_{G_{1}}(Y+v) \leq \tau_{G_{1}}(Y)-1$ for any set $Y \subseteq V_{1}-v$.

If $Y \subseteq V_{1}-v$, then $\tau_{G_{1}}(Y) \geq \tau_{G_{1}}\left(Y \cup N_{G}^{+}(X)\right)$, hence we suppose, that $N_{G}^{+}(X) \subseteq$ $Y \subseteq V_{1}-v$. Let $S:=\left\{w \in N_{G}^{+}(X):\right.$ there is no arc $u w$ with $\left.u \in Y-N_{G}^{+}(X)\right\}$. We have $N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)=N_{G_{1}}^{+}(Y) \cup\left(N_{G}^{+}(X)-S\right)$, thus

$$
\begin{gather*}
\left|N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)\right| \leq\left|N_{G_{1}}^{+}(Y)\right|+\left|N_{G}^{+}(X)\right|-|S|, \tag{20}\\
\text { odd }_{G_{1}}[Y]-|S|=\text { odd }_{G_{1}}\left[X_{Q} \cap Y\right] . \tag{21}
\end{gather*}
$$

Let Y_{G} denote the resulting set after replacing the nodes of $Y \cap Q$ by the corresponding $O d d_{G}[X]$ components in Y. Since X is a minimum tight cut in G,

$$
\begin{equation*}
|V|+\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}[X]+1 \leq|V|+\left|N_{G}^{+}\left(X \cap Y_{G}\right)\right|-\operatorname{odd}_{G}\left[X \cap Y_{G}\right] . \tag{22}
\end{equation*}
$$

It is easy to see that $\operatorname{odd}_{G}[X]=|Q|=\operatorname{odd}_{G_{1}}\left[X_{Q}\right]$, and $\operatorname{odd}_{G}\left[X \cap Y_{G}\right]=\operatorname{odd}_{G_{1}}\left[X_{Q} \cap Y\right]$. Then by inequality (22) we get

$$
\begin{equation*}
\left|N_{G}^{+}(X)\right|-\operatorname{odd}_{G}\left[X_{Q}\right]+1 \leq\left|N_{G_{1}}^{+}\left(X_{Q} \cap Y\right)\right|-\operatorname{odd}_{G_{1}}\left[X_{Q} \cap Y\right] . \tag{23}
\end{equation*}
$$

By adding up (20), (21) and (23)

$$
\operatorname{odd}_{G_{1}}[Y]-\operatorname{odd}_{G}\left[X_{Q}\right]+1 \leq\left|N_{G_{1}}^{+}(Y)\right| .
$$

Thus,

$$
\left|V_{1}\right|-\operatorname{odd}_{G}\left[X_{Q}\right]+1 \leq\left|V_{1}\right|+\left|N_{G_{1}}^{+}(Y)\right|-\operatorname{odd}_{G_{1}}[Y]=\tau_{G_{1}}(Y) .
$$

Take any $v \in X_{Q}$. By Claim 2.6 there is an even factor K_{2} in G_{2} of cardinality $\left|V_{Q}\right|-\left|X_{Q}\right|$, and by Claim 3.4 there is an even factor K_{1} of cardinality $\left|V_{1}\right|-\operatorname{odd}_{G}[X]$ such that $\delta_{K_{1}}(v)=0$. As was shown, $K_{Q}:=K_{1} \cup K_{2}$ is an even factor in G_{Q}, and it is easy to see, that $\delta_{K_{Q}}(v)=0$. If $v \notin Q$, by (the proof of) Claim 2.7 we get a maximum even factor K in G with $\delta_{K}(v)=0$. If $v \in Q$, then the construction gives a maximum even factor K in G which has no edges coming out of the factorcritical component C corresponding to v. Take any $v^{\prime} \in C$, then for the construction of K_{C} we can choose $t=v^{\prime}$. The maximum even factor K will have $\delta_{K}\left(v^{\prime}\right)=0$.

We have proved, that $X \subseteq D$, which implies 11. Hence 2. follows from Claim 3.3, the further statements follow from equality in (6), (7), and (8).

If we reverse the orientation of the edges, we get the following structural result. $N_{G}^{-}(X):=\{v \in V-X$: there is a node $u \in X$ such that $v u \in E\}$. Let odd $d_{G}^{*}[X]$ denote the number of the strongly connected components of $G[X]$ with no leaving arc (i.e. sink components) having an odd number of nodes.

Theorem 3.5. Let $D^{*}:=\{v \in V$: there exists a maximum even factor K such that $\left.\varrho_{K}(v)=0\right\}$. Let $A^{*}:=N_{G}^{-}\left(D^{*}\right)$, and $C^{*}:=V-D^{*}-A^{*}$.

1. $\nu(G)=|V|+\left(\left|N_{G}^{-}\left(D^{*}\right)\right|-\operatorname{odd} d_{G}^{*}\left[D^{*}\right]\right)$,
2. The strongly connected sink components of $G\left[D^{*}\right]$ are factor-critical,
3. For any maximum even factor K, the following properties hold

- For all the nodes v of D^{*} except one of any sink component of $G[D]$, $\delta_{F}(v)=1$, where $F:=i_{G}\left(D^{*}\right) \cap K$.
- A^{*} is covered by edges of K entering D^{*}.
- $\varrho_{K}(v)=1$ for any $v \in C^{*} \cup A^{*}$, furthermore the tail of any arc of K entering v is in $C^{*} \cup D^{*}$.

The following result gives the connection between the two - possibly different canonical tight cuts.

Proposition 3.6. Let W be a component of $D \cap D^{*}$. Then W is a source component of D and a sink component of D^{*}. Furthermore, $D \cap D^{*}=\{v \in V$: there exists a maximum even factor K such that $\left.\varrho_{K}(v)=\delta_{K}(v)=0\right\}$.

Proof. Let $v \in D \cap D^{*}$. After deleting the directed edges entering v the minimum in (1) does not decrease. Hence, by part 3. of Theorem 3.2, v is in a source component of D. Similarly, v is in a sink component of D^{*}. Let W^{\prime} denote the source component of $G[D]$ containing v.

Let K be a maximum even factor for which $\left|\varrho_{K}(v)\right|=0$. By part 3 . of Theorem 3.2, K covers the nodes of W^{\prime} by a path P (perhaps consisting only of the single node v) and by even circuits. Since $\left|\varrho_{K}(v)\right|=0, K$ has at most one $\operatorname{arc}($ of $P)$ in $\delta_{G}\left(W^{\prime}\right)$, and no arc in $\varrho_{G}\left(W^{\prime}\right)$. Let w be an arbitrary node of W^{\prime}. Since W^{\prime} is factor-critical, K can be modified using (5) so, that for the obtained maximum even factor $K^{\prime},\left|\varrho_{K^{\prime}}(w)\right|=0$.

Hence $W^{\prime} \subseteq D^{*}$, we have proved that $D \cap D^{*}$ is the union of some components of $O d d_{G}[D]$. By symmetry, $D \cap D^{*}$ is the union of some components of $O d d_{G}^{*}\left[D^{*}\right]$, the first part of the proposition follows.

Let $v \in D \cap D^{*}$, and let $v_{Q} \in Q$ be the corresponding node in G_{Q}. By the definition of D, G has a maximum even factor K_{1}^{\prime} such that $\delta_{K_{1}^{\prime}}(v)=0 . K_{1}=K_{1}^{\prime} \cap E\left[G_{1}\right]$ is an even factor K_{1} such that $\delta_{K_{1}}\left(v_{Q}\right)=0$. By the definition of D^{*}, G has a maximum even factor K_{2}^{*} such that $\varrho_{K_{2}^{*}}(v)=0 . K_{2}=K_{2}^{*} \cap E\left[G_{2}\right]$ is an even factor K_{2} such that $\varrho_{K_{2}}\left(v_{Q}\right)=0$. Then $K=K_{1} \cup K_{2}$ is a maximum even factor of G_{Q} such that $\varrho_{K}\left(v_{Q}\right)=\delta_{K}\left(v_{Q}\right)=0$. Then choosing $s=t=v$, the construction of 2.4 gives a maximum even factor K in G such that $\varrho_{K}(v)=\delta_{K}(v)=0$.

References

[1] I. Anderson, Perfect matchings of a graph, Journal of Combinatorial Theory Ser. В 10 (1971), 183-186.
[2] W.H. Cunningham, Matching, Matroids and Extensions, Math. Program. Ser. B 91 (2002) 3, 515-542.
[3] W.H. Cunningham and J.F. Geelen, The Optimal Path-Matching Problem, Proceedings of thirty-seventh Symposium on the Foundations of Computing, IEEE Computer Society Press, (1996), 78-85.
[4] W.H. Cunningham and J.F. Geelen, The Optimal Path-Matching Problem, Combinatorica, 17/3 (1997), 315-336.
[5] W.H. Cunningham and J.F. Geelen, Combinatorial Algorithms for PathMatching, manuscript, (2000).
[6] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 2, (1950), 161-166.
[7] J. Edmonds, Paths, trees, and flowers, Canadian Journal of Mathematics 17, (1965), 449-467.
[8] A. Frank and L. Szegő, A Note on the Path-Matching Formula, J. of Graph Theory 41/2, (2002) 110-119.
[9] S. Felsner, Orthogonal structures in directed graphs, J. of Combin. Theory Ser. B, 57 (1993), no. 2, 309-321.
[10] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 135-139.
[11] T. Gallai, Maximale Systeme unabhängiger Kanten, A Magyar Tudományos Akadémia - Matematikai Kutatóintézetének Közleményei 8, (1964), 135-139.
[12] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197.
[13] L. Lovász, M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
[14] B. Spille and L. Szegő, A Gallai-Edmonds-type Structure Theorem for PathMatchings, submitted

[^0]: ${ }^{\S}$ Research supported by the Hungarian National Foundation for Scientific Research Grant, OTKA T029772.
 **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117. The author is a member of the Egerváry Research Group (EGRES). e-mail: gyuszko@cs.elte.hu
 **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117. This author is supported by an FKFP grant no. 0143/2001. The author is a member of the Egerváry Research Group (EGRES). e-mail: szego@cs.elte.hu

