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On the Maximum Even Factor in Weakly
Symmetric Graphs§

Gyula Pap?? and László Szegő∗∗

Abstract

As a common generalization of matchings and matroid intersection, W.H. Cun-
ningham and J.F. Geelen introduced the notion of path-matchings, then they
introduced the more general notion of even factor in weakly symmetric digraphs.
Here we give a min-max formula for the maximum cardinality of an even fac-
tor. Our proof is purely combinatorial. We also provide a Gallai-Edmonds-type
structure theorem for even factors.

1 Introduction

Motivated by developing a strongly polynomial separation algorithm for the matchable
set polyhedron, W.H. Cunningham and J.F. Geelen introduced the notion of path-
matchings [4]. Their algorithmic approach led them to the notion of even factors
[5].

In a directed graph, an arc is called symmetric, if the reversed arc is in the arc set
of the graph, too. A directed graph is symmetric, if all its arcs are symmetric. The
directed graph G = (V,E) is said to be weakly symmetric, if the arcs in each strongly
connected component are symmetric. A set K of edges is called an even factor if
graph GK = (V,K) is a collection of node-disjoint directed paths and even directed
circuits. The problem is to find an even factor with maximum cardinality. If the
graph is arbitrary, not necessarily weakly symmetric, then the problem is NP-hard,
see [5].

In this paper we give a min-max formula for the maximum cardinality of an even
factor and a Gallai-Edmonds-type structure theorem describing the structure of max-
imum even factors in weakly symmetric graphs.
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gyuszko@cs.elte.hu
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Section 1. Introduction 2

A set X ⊆ V is said to be a cut. We define N+
G (X) := {v ∈ V − X : there is

a node u ∈ X such that uv ∈ E} and let G[X] be the graph with node set X and
arc set {uv ∈ E : u, v ∈ X}. In a directed graph G = (V,E), consider the strongly
connected components: a component C having no edge uv ∈ E such that u ∈ V − C
and v ∈ C, is called a source component. Let oddG[X] denote the number of the
source components of G[X] having an odd number of nodes. Let OddG[X] denote the
union of these components. ν(G) denotes the cardinality of a maximum even factor
of G. We prove the following formula for ν(G).

Theorem 1.1. In a weakly symmetric directed graph G one has the following formula
for the maximum cardinality of an even factor.

ν(G) = |V |+ min
X⊆V

(|N+
G (X)| − oddG[X]). (1)

This formula is a direct extension of the Tutte-Berge-formula and also of Kőnig’s
theorem. The path-matching problem is also a special case of even factors in weakly
symmetric graphs. In [3] and [4] Cunningham and Geelen gave a min-max formula for
the maximum value of a path-matching. In [8] Theorem 1.2, a simplified reformulation
of this formula was proved. In the following part, we will discuss corollaries of Theorem
1.1.

Cunningham and Geelen defined a path-matching as follows. Let G′ = (V ′, E ′) be
an undirected graph and T1, T2 ⊆ V ′ disjoint stable sets of G′. We denote V ′−(T1∪T2)
by R. A path-matching with respect to T1, T2 is a set M of edges such that every
component of the subgraph GM = (V ′,M) having at least one edge is a simple path
from T1∪R to T2∪R, all of whose internal nodes are in R. The one-edge-components
in R are called the matching edges of M . The value of a path-matching M is defined
to be the number val(M) = |M | + |M ′|, where M ′ denotes the set of the matching
edges of M . (That is, the matching edges count twice.)

We define a cut for path-matchings separating the terminal sets T1 and T2 to be a
subset Y ⊆ V ′ for which there is no path between T1 − Y and T2 − Y in G′ − Y .

From now on we denote by oddG′(Y ) the number of connected components of G′−Y
which are disjoint from T1∪T2 and have an odd number of nodes. In [8] the following
was proved.

Theorem 1.2. For the maximum value of a path-matching one has the following
formula.

max
M a path-matching

val(M) = |R|+ min
Y a cut

(|Y | − oddG′(Y )). (2)

Now we show how Theorem 1.1 implies Theorem 1.2. Given an instance G′, T1, T2 of
the maximum path-matching problem we construct an instance of the maximum even
factor problem as follows: We replace each edge in iG′(R) := {uv ∈ E ′ : u, v ∈ R} by
a pair of oppositely directed arcs; and orient each other edge, such that nodes in T1

become source nodes and nodes in T2 become sink nodes. The resulting digraph G is
weakly symmetric.
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A path-matching in G′ corresponds to an even factor in G, when we replace each
matching edge by the two-arc dicircuit. An even factor in G corresponds to a path-
matching in G′, when we replace the even dicircuits by a matching (a dicircuit can
only be in R). Corresponding solutions have same size and value. It is easy to see,
that a path-matching is maximum in G′ if and only if the corresponding even factor
is maximum in G.

By Theorem 1.1 we have a cut X ⊆ V in G so that |V | + |N+
G (X)| − oddG[X] =

maxeven factor |K| = maxpath-matching val(M). It is easy to see, that Y := N+
G (X − T2)∪

(T1 −X) is a cut for path-matchings in G′. We have

|R|+ |Y | − oddG′(Y ) ≤

|R|+ (|N+
G (X − T2)|+ |T1 −X|)− (oddG[X]− |T1 ∩X| − |T2 −N+

G (X − T2)|) =

(|R|+ |T1|+ |T2|) + |N+
G (X)| − oddG[X] =

|V |+ |N+
G (X)| − oddG[X].

Hence the maximum value of a path-matching equals to |R|+ |Y | − oddG′(Y ) for cut
Y , which finishes the proof.

We also mention, that Menger’s theorem on node-connectivity follows by a reduc-
tion to path-matchings.

When considering only acyclic digraphs, source components can only be source
nodes. A single node is considered to be a dipath of length zero.

Theorem 1.3. Let D = (V,A) be a directed acyclic graph. The minimum number of
dipaths covering all the nodes of D equals to

max
X⊆V

(|A| − |B|), (3)

where the maximum is taken over the disjoint sets A,B ⊆ V such that no dipath in
G−B connects nodes of A.

Proof. For each dipath P in D, |V (P )∩A| ≤ |V (P )∩B|+ 1, hence the maximum is
a lower bound for the number of dipaths.

An even factor of a directed acyclic graph is a dipath-cover. There exist k dipaths
covering all the nodes of D if and only if D has an even factor of cardinality |V | − k.
By Theorem 1.1 we have a set X ⊆ V such that k = oddD[X]− |N+

D (X)|, and there
exist k dipath covering the nodes. Then the choice of A := OddD[X] and B := N+

D (X)
finishes our proof.

We mention the following well-known consequence without defining the notions
which are used.
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Theorem 1.4 (Dilworth [6]). Let P = (V,≤) be a partially ordered set. The min-
imum number of chains covering all the elements of X is equal to the cardinality of a
maximum antichain.

Proof. Let D = (V,E) be a directed graph so that uv is an edge iff u ≤ v. D is
acyclic.

Take a pair A,B where the maximum is attained in Theorem 1.3. Trivially, B = ∅
and A is an antichain. By Theorem 1.3 we also have a dipath cover of |A|− |B| = |A|
dipaths.

In [9] Felsner gave a min-max result for the maximum number of nodes that can be
covered by l directed paths in a directed acyclic graph. Theorem 1.3 can be proved
from his result.

In the proof of Theorem 1.1, we will use the following well-known facts about
factor-critical graphs. An undirected graph G′ = (V ′, E ′) is said to be factor-critical
if it is connected and each node is missed by a maximum matching. A symmetric
directed graph is defined to be factor-critical, if the underlying undirected graph is
factorcritical.

Lemma 1.5 (Gallai’s lemma [10]). If G′ = (V ′, E′) is factor-critical, then |V ′| is
an odd number and a maximum matching of G has cardinality (|V ′| − 1)/2.

Recall the definition of oddG′(Y ) which denotes the number of components of G′−Y
having an odd number of nodes. It follows from Tutte’s theorem, that

a connected graph G′ is factor-critical if and only if

oddG′(Y ) ≤ |Y | − 1 for all sets Y ⊆ V ′, |Y | ≥ 1. (4)

The following is an easy corollary of Gallai’s lemma for a factor-critical symmetric
digraph G = (V,E):

s, t ∈ V =⇒ there exists an even factor K of cardinality |V | − 1

such that |K ∩ %G(s)| = |K ∩ δG(t)| = 0, and

K consists of an even length s− t path and two-arc dicircuits. (5)

Our proof of Theorem 1.1 is a direct extension of the one of Theorem 1.2 appeared in
[8] which mimicked Anderson’s simple proof on Tutte’s theorem on perfect matchings.
In Section 3 an extension of Theorem 1.1, a Gallai-Edmonds-type structure theorem
is given for even factors and its proof is based on a thorough investigation of the proof
of Theorem 1.1.

2 Proof

A cut X is defined to be tight if the minimum in (1) is equal to |N+
G (X)| − oddG[X].

A cut X is called trivial if one of the following holds:
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Section 2. Proof 5

(i) The source components of G[X] are single nodes, V = (X ∪N+
G (X)) and there

is no arc uv such that u ∈ N+
G (X).

(ii) X is a stable set in G, and there is no arc uv such that u ∈ X and v ∈ V −X.

The concept of the definition is the following. Having a nontrivial cut contributes
to running the inductive proof in CASE 2. The forthcoming dividing procedure of
CASE 2 does not necessarily result in graphs with smaller number of edges than of
G, but in case of a nontrivial cut, it does.

Observation 2.1. X = V is the only tight cut of type (i).

Proof. If X 6= V is a tight cut of type (i), then |V | + |N+
G (X)| − oddG[X] > |V | +

|N+
G (X ∪N+

G (X))| − oddG[X ∪N+
G (X)] = |V | − oddG[V ], a contradiction.

Let G be a symmetric digraph and let Gu denote the underlying undirected graph
of G.

Claim 2.2. Let K be a maximum even factor of G and M be a maximum matching
of Gu. |K| = 2|M |.

Proof of Theorem 1.1. First we prove that for any even factor K and cut X we
have |K| ≤ |V | + |N+

G (X)| − oddG[X]. The sum of the following three observations
gives this.

|iG(X) ∩K| ≤ |X| − oddG[X], (6)

|δG(X) ∩K| ≤ |N+
G (X)|, (7)

|(iG(V −X) ∪ δG(V −X)) ∩K| ≤ |V | − |X|, (8)

where iG(X) denotes the set of the arcs of G with both ends in X and δG(X) denotes
the set of the arcs of G with tail in X and head in V −X.

The proof that there is a cut X and an even factor K such that |K| = |V | +
|N+

G (X)| − oddG[X] goes by an induction on |E|. If |E| ≤ 1, then the theorem is
obviously true. If G is strongly connected, then a maximum even factor corresponds
to a maximum matching by Claim 2.2, formula (1) follows from Berge-Tutte-formula.
Hence we assume that there is at least one arc uv in G so that arc vu does not exist.
It is easy to see, that if X = ∅ is a tight cut, then there exists a nonempty tight cut:
for example, a strongly connected sink component.

CASE 1. Every tight cut is trivial.
We use τG(X) := |V | + |N+

G (X)| − oddG[X] as the value of cut X in G. Let
τG := minX a cut τG(X) be the value of a tight cut in G. Let uv = e ∈ E be an arc
having its tail u in a source component C of G and having its head v in V − C. We
observe, that G− e is a weakly symmetric digraph.
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Section 2. Proof 6

For any cut X we have

τG−e(X) ≤ τG(X) ≤ τG−e(X) + 1. (9)

In (9) we have τG(X) = τG−e(X) + 1 if and only if for e = uv either
A) u ∈ X and v ∈ V −X −N+

G−e(X) or
B) u ∈ X and v ∈ OddG−e[X] and u, v are in different strongly connected compo-

nents of G[X]− e.
If τG−e = τG, then we are done by induction. Otherwise (9) implies, that for a tight

cut X in G
τG = τG(X) = τG−e(X) + 1.

Take a tight cut X in G. By assumption, X is a trivial cut in G. Arc e accords to
A) or B), so X cannot be of type (ii). Thus X is a trivial tight cut of type (i), by
Observation 2.1 X = V .

Hence C = {u} is a single node source component in G. Arc e = uv cannot be of
type A), because X = V . Arc e = uv is of type B), thus V − u is a tight cut in G.
By Observation 2.1, V − u can only be a cut of type (ii) in G. Then the arc set E
consists of some arcs with tail in u. In this case τG(V − u) = 1, and K = e is an even
factor of size 1, this completes the proof in CASE 1.

CASE 2. There exists a nontrivial tight cut. Let us consider a minimal nontrivial
nonempty tight cut X.

Claim 2.3. Each source component of G[X] is factor-critical.

Proof. If a source component C has an even number of nodes, then for any v ∈ C
the following holds: τG(X − v) ≤ τG(X), contradicting the minimality of X. Suppose
|C| is an odd number. If a subset ∅ 6= Y ⊆ C gives oddGu[C](Y ) ≥ |Y | + 1, then we
would have τG(X−Y ) ≤ τG(X), a contradiction. Thus by parity, for each ∅ 6= Y ⊆ C
oddGu[C](Y ) ≤ |Y | − 1, and Gu[C] is factor-critical by (4).

Let GQ = (VQ, EQ) denote the weakly symmetric graph we get by contracting
each component of OddG(X) to a node. Let Q denote the set of new nodes, XQ :=
X −OddG[X]∪Q. Remark |Q| = oddG[X] and VQ = X −OddG[X]∪Q∪ (V −X) =
XQ ∪ (V −X). Now we define two subgraphs of GQ.

Let G1 = (V1, E1) denote the weakly symmetric graph having node set V1 := XQ ∪
N+

G (X) and arc set E1 := {uv ∈ EQ : u ∈ XQ}.
Let G2 = (V2, E2) denote the weakly symmetric graph having node set V2 := Q ∪

(VQ −XQ) and arc set E2 := {uv ∈ EQ : v ∈ V2 − N+
G (X)}. These two graphs may

have nodes in common, but have disjoint arc sets. Since X is nontrivial, |E1| < |E|
and |E2| < |E|.

We are going to show that GQ has an even factor KQ with cardinality |KQ| =
|VQ|+ |N+

G (X)| − oddG[X], which finishes the proof by the following claim.

Claim 2.4. If KQ is an even factor of GQ, then G has an even factor K with cardi-
nality |K| := |KQ|+ (|OddG[X]| − |Q|).
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Section 2. Proof 7

Proof. Let K ′ denote the set of arcs of G corresponding to KQ. We claim that K ′

can be completed in G so that it has the desired cardinality. To this end let C denote
a component of OddG[X], and let c denote its corresponding node in GQ. By Claim
2.3, C is factor-critical.
K ′ has at most one arc in δG(C): choose t ∈ C as the tail of this arc if present,

otherwise choose t arbitrarily. K ′ has at most one arc in %G(C): choose s ∈ C as the
head of this arc if present, otherwise choose s arbitrarily. (t = s may happen.) By
(5), there is an even factor KC in G[C] of size |C| − 1.
K := K ′ ∪

⋃
c∈QKC is an even factor K with cardinality |KQ| + (|OddG[X]| −

|Q|).

Claim 2.5. G1 has an even factor K1 with cardinality |V1| − oddG[X].

Proof. By induction, it is enough to prove, that τG1(Y ) ≥ |V1| − oddG[X] holds for all
Y ⊆ V1.
τG1(Y ) ≥ τG1(Y ∪ N+

G (X)), hence we suppose, that N+
G (X) ⊆ Y ⊆ V1. Let S :=

{v ∈ N+
G (X) : there is no arc uv with u ∈ Y −N+

G (X)}.
We have N+

G1
(XQ ∩ Y ) = N+

G1
(Y ) ∪ (N+

G (X)− S), thus

|N+
G1

(XQ ∩ Y )| ≤ |N+
G1

(Y )|+ |N+
G (X)| − |S|, (10)

oddG1 [Y ]− |S| = oddG1 [XQ ∩ Y ]. (11)

Let YG denote the resulting set after replacing the nodes of Y ∩Q by the corresponding
components of OddG[X]. Since X is a tight cut in G,

|V |+ |N+
G (X)| − oddG[X] ≤ |V |+ |N+

G (X ∩ YG)| − oddG[X ∩ YG]. (12)

It is easy to see, that oddG[X] = |Q| = oddG1 [XQ], N+
G (X ∩ YG) = N+

G1
(XQ ∩ Y ), and

oddG[X ∩ YG] = oddG1 [XQ ∩ Y ]. Then by inequality (12) we get

|N+
G (X)| − oddG1 [XQ] ≤ |N+

G1
(XQ ∩ Y )| − oddG1 [XQ ∩ Y ]. (13)

By adding up (10), (11) and (13)

oddG1 [Y ]− oddG1 [XQ] ≤ |N+
G1

(Y )|. (14)

Thus,

|V1| − oddG[X] = |V1| − oddG1 [XQ] ≤ |V1|+ |N+
G1

(Y )| − oddG1 [Y ] = τG1(Y ). (15)

Claim 2.6. G2 has an even factor K2 with cardinality |VQ| − |XQ|.
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Proof. By induction, it is enough to prove, that τG2(Z) ≥ |VQ| − |XQ| holds for all
Z ⊆ V2.
τG2(Z) ≥ τG1(Z ∪ Q), hence we suppose, that Q ⊆ Z ⊆ V2. Let ZG denote the

resulting set after replacing the nodes of Q by the corresponding OddG[X] components
in Z.

We have N+
G (X ∪ ZG) = (N+

G (X)− (Z ∩N+
G (X))) ∪N+

G2
(Z), thus

|N+
G (X ∪ ZG)| = |N+

G (X)| − |Z ∩N+
G (X)|+ |N+

G2
(Z)|. (16)

Since X is tight in G,

|V |+ |N+
G (X)| − oddG[X] ≤ |V |+ |N+

G (X ∪ ZG)| − oddG[X ∪ ZG]. (17)

Now we prove inequality (18). Consider the odd source components of G2[Z]. These
are all the nodes in Z∩N+

G (X) as single node components and some other components
disjoint from N+

G (X). The latter type components are odd source components of
G[X ∪ ZG], too. This proves

oddG2 [Z]− |Z ∩N+
G (X)| ≤ oddG[X ∪ ZG]. (18)

By adding up (16), (17) and (18)

oddG2 [Z]− |Q| = oddG2 [Z]− oddG[X] ≤ |N+
G2

(Z)|. (19)

Thus,
|VQ| − |XQ| = |V2| − |Q| ≤ |V2|+ |N+

G2
(Z)| − oddG2 [Z].

Claim 2.7. If K1, K2 are even factors in G1, G2, respectively, then KQ := K1 ∪K2

is an even factor in GQ.

Proof. Since the in-degree %KQ
(v) ≤ 1 and the out-degree δKQ

(v) ≤ 1 for all v ∈ VQ,
we have to prove that there is no odd cycle in KQ. Let C denote a cycle of KQ

which is not a cycle in K1 nor in K2. Since a cycle cannot have an arc uv with
u ∈ V − (X ∪N+

G (X)) and v ∈ X ∪N+
G (X), the nodes of C are in XQ ∪N+

G (X). By
the definition of G1 and G2, C contains a node u in Q. For any node v ∈ Q of C let
arc e = vw be the arc leaving v in C. By the weakly symmetry, arc wv is in G, hence
w ∈ N+

G (X). Hence C is a cycle in the bipartite subgraph of GQ on Q ∪N+
G (X).

Now we have |KQ| = |VQ|+ |N+
G (X)| − oddG[X], thus we have finished the proof of

Theorem 1.1 by Claim 2.4.
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3 A Gallai-Edmonds-type Structure Theorem

The following theorem plays an important role in Matching Theory. It asserts, that
there is a canonical set that attains minimum in the Berge-Tutte formula, and this
set has special properties.

Theorem 3.1 (Gallai-Edmonds Structure Theorem [11, 7]). Let G = (V,E)
be an undirected graph. D denotes the set of nodes which are not covered by at least
one maximum matching of G. Let A be the set of nodes in V −D adjacent to at least
one node in D. Let C = V − A−D. Then:

1. The number of the covered nodes by a maximum matching in G equals to |V |+
|A| − c(D), where c(D) denotes the number of components of the graph spanned
by D.

2. The components of the subgraph induced by D are factor-critical.

3. The subgraph induced by C has a perfect matching.

4. The bipartite graph obtained from G by deleting C and the edges in A and by
contracting each component of D to a single node has the following property:
there is a matching covering A after deleting any node coming from D.

5. If M is any maximum matching of G, then E(D)∩M covers all the nodes except
one of any component of D, E(C) ∩M is a perfect matching and M matches
all the nodes of A with nodes in distinct components of D.

In [14] a Gallai-Edmonds-type structure theorem was proved for path-matchings as
a generalization of Theorem 3.1. By the same reduction principle as in Section 1, it
can easily be deduced from the even factor structure theorem, which is the following:

Theorem 3.2 (Structure Theorem). Let G = (V,E) be a weakly symmetric di-
graph. Let D := {v ∈ V : there exists a maximum even factor K such that δK(v) = 0}.
Let A := N+

G (D), and C := V −D − A.

1. ν(G) = |V |+ (|N+
G (D)| − oddG[D]),

2. The strongly connected source components of G[D] are factor-critical,

3. For any maximum even factor K, the following properties hold

• For all the nodes v of D except one of any source component of G[D],
%F (v) = 1, where F := iG(D) ∩K.

• A is covered by edges of K coming out of D.

• δK(v) = 1 for any v ∈ C ∪A, furthermore the head of any arc of K coming
out of v is in C ∪OddG[D].
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Proof. Let X be a tight cut such that |X| is minimum. We are going to prove that
X = D.

Claim 3.3. Each source component of G[X] is factor-critical.

Proof. Since X is also minimal tight this is straightforward from Claim 2.3.

First we prove that D ⊆ X. Take any node v ∈ D. Let Kv be an even factor of
size |Kv| = τG = τG(X), with δKv(v) = 0. By formula (1), for K = Kv, we must have
equality in (6), (7), and (8). From equality in (8) we get that v /∈ V −X.

Now we prove X ⊆ D. Consider GQ, G1 and G2 which were defined for any tight
cut in the proof of Theorem 1.1.

Claim 3.4. For any v ∈ XQ, G1 has an even factor K1 with cardinality |V1| −
oddG[X], such that δK1(v) = 0.

Proof. Let G′1 denote the weakly symmetric graph obtained from G1 by deleting the
arcs coming out of v. We have to prove that there is an even factor in G′1 of cardinality
|V1| − oddG[X].

We are going to prove, that τG1(Y ) ≥ |V1| − oddG[X] + 1 for any Y ⊆ V1 − v. By
Theorem 1.1 it is enough, because τG1(Y + v) ≤ τG1(Y )− 1 for any set Y ⊆ V1 − v.

If Y ⊆ V1 − v, then τG1(Y ) ≥ τG1(Y ∪N+
G (X)), hence we suppose, that N+

G (X) ⊆
Y ⊆ V1 − v. Let S := {w ∈ N+

G (X) : there is no arc uw with u ∈ Y −N+
G (X)}. We

have N+
G1

(XQ ∩ Y ) = N+
G1

(Y ) ∪ (N+
G (X)− S), thus

|N+
G1

(XQ ∩ Y )| ≤ |N+
G1

(Y )|+ |N+
G (X)| − |S|, (20)

oddG1 [Y ]− |S| = oddG1 [XQ ∩ Y ]. (21)

Let YG denote the resulting set after replacing the nodes of Y ∩Q by the corresponding
OddG[X] components in Y . Since X is a minimum tight cut in G,

|V |+ |N+
G (X)| − oddG[X] + 1 ≤ |V |+ |N+

G (X ∩ YG)| − oddG[X ∩ YG]. (22)

It is easy to see that oddG[X] = |Q| = oddG1 [XQ], and oddG[X∩YG] = oddG1 [XQ∩Y ].
Then by inequality (22) we get

|N+
G (X)| − oddG[XQ] + 1 ≤ |N+

G1
(XQ ∩ Y )| − oddG1 [XQ ∩ Y ]. (23)

By adding up (20), (21) and (23)

oddG1 [Y ]− oddG[XQ] + 1 ≤ |N+
G1

(Y )|.

Thus,

|V1| − oddG[XQ] + 1 ≤ |V1|+ |N+
G1

(Y )| − oddG1 [Y ] = τG1(Y ).
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Take any v ∈ XQ. By Claim 2.6 there is an even factor K2 in G2 of cardinality
|VQ|− |XQ|, and by Claim 3.4 there is an even factor K1 of cardinality |V1|− oddG[X]
such that δK1(v) = 0. As was shown, KQ := K1 ∪ K2 is an even factor in GQ, and
it is easy to see, that δKQ

(v) = 0. If v /∈ Q, by (the proof of) Claim 2.7 we get a
maximum even factor K in G with δK(v) = 0. If v ∈ Q, then the construction gives
a maximum even factor K in G which has no edges coming out of the factorcritical
component C corresponding to v. Take any v′ ∈ C, then for the construction of KC

we can choose t = v′. The maximum even factor K will have δK(v′) = 0.
We have proved, that X ⊆ D, which implies 1. Hence 2. follows from Claim 3.3,

the further statements follow from equality in (6), (7), and (8).

If we reverse the orientation of the edges, we get the following structural result.
N−G (X) := {v ∈ V − X : there is a node u ∈ X such that vu ∈ E}. Let odd∗G[X]
denote the number of the strongly connected components of G[X] with no leaving arc
(i.e. sink components) having an odd number of nodes.

Theorem 3.5. Let D∗ := {v ∈ V : there exists a maximum even factor K such that
%K(v) = 0}. Let A∗ := N−G (D∗), and C∗ := V −D∗ − A∗.

1. ν(G) = |V |+ (|N−G (D∗)| − odd∗G[D∗]),

2. The strongly connected sink components of G[D∗] are factor-critical,

3. For any maximum even factor K, the following properties hold

• For all the nodes v of D∗ except one of any sink component of G[D],
δF (v) = 1, where F := iG(D∗) ∩K.

• A∗ is covered by edges of K entering D∗.

• %K(v) = 1 for any v ∈ C∗ ∪ A∗, furthermore the tail of any arc of K
entering v is in C∗ ∪D∗.

The following result gives the connection between the two – possibly different –
canonical tight cuts.

Proposition 3.6. Let W be a component of D∩D∗. Then W is a source component
of D and a sink component of D∗. Furthermore, D ∩ D∗ = {v ∈ V : there exists a
maximum even factor K such that %K(v) = δK(v) = 0}.

Proof. Let v ∈ D ∩D∗. After deleting the directed edges entering v the minimum in
(1) does not decrease. Hence, by part 3. of Theorem 3.2, v is in a source component
of D. Similarly, v is in a sink component of D∗. Let W ′ denote the source component
of G[D] containing v.

Let K be a maximum even factor for which |%K(v)| = 0. By part 3. of Theorem 3.2,
K covers the nodes of W ′ by a path P (perhaps consisting only of the single node v)
and by even circuits. Since |%K(v)| = 0, K has at most one arc (of P ) in δG(W ′), and
no arc in %G(W ′). Let w be an arbitrary node of W ′. Since W ′ is factor-critical, K can
be modified using (5) so, that for the obtained maximum even factor K ′, |%K′(w)| = 0.
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Hence W ′ ⊆ D∗, we have proved that D ∩ D∗ is the union of some components of
OddG[D]. By symmetry, D ∩D∗ is the union of some components of Odd∗G[D∗], the
first part of the proposition follows.

Let v ∈ D∩D∗, and let vQ ∈ Q be the corresponding node in GQ. By the definition
of D, G has a maximum even factor K ′1 such that δK′1(v) = 0. K1 = K ′1 ∩ E[G1] is
an even factor K1 such that δK1(vQ) = 0. By the definition of D∗, G has a maximum
even factor K∗2 such that %K∗2

(v) = 0. K2 = K∗2 ∩ E[G2] is an even factor K2 such
that %K2(vQ) = 0. Then K = K1 ∪ K2 is a maximum even factor of GQ such that
%K(vQ) = δK(vQ) = 0. Then choosing s = t = v, the construction of 2.4 gives a
maximum even factor K in G such that %K(v) = δK(v) = 0.
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Akadémia – Matematikai Kutatóintézetének Közleményei 8, (1964), 135-139.

EGRES Technical Report No. 2003-02



References 13

[12] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its conse-
quences in combinatorial optimization, Combinatorica 1 (1981), 169–197.

[13] L. Lovász, M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
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