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A note on hypergraph connectivity augmentation

Tamás Király? and Márton Makai??

Abstract

We prove an abstract version of an edge-splitting theorem for directed hyper-
graphs that appeared in [1], and use this result to obtain min-max theorems on
hypergraph augmentation problems that are linked to orientations. These prob-
lems include (k, l)-edge-connectivity augmentation of directed hypergraphs, and
(k, l)-partition-connectivity augmentation of undirected hypergraphs by uni-
form hyperedges.

1 Introduction

In [1], Berg, Jackson and Jordán proved an interesting egde-splitting theorem for di-
rected hypergraphs, which led to a solution for the problem of directed hypergraph
edge-connectivity augmentation by uniform hyperarcs. In this note, we show that
their edge-splitting result can be formulated in a more general form (using essentially
the same proof). The result gives a method for solving a broader class of undirected
and directed augmentation problems where the new hyperedges have the same pre-
scribed size. In Section 3 we study problems where the aim is to obtain a directed
hypergraph that covers a given crossing supermodular set function; this includes the
problem of (k, l)-edge-connectivity augmentation. In Section 4 the objective is to ob-
tain an undirected hypergraph that has an orientation covering a non-negative crossing
supermodular set function. A notable special case is the (k, l)-partition-connectivity
augmentation of undirected hypergraphs.

Let V be a finite ground set. For a function m : V → R and a set X ⊆ V , we use
the notation m(X) :=

∑
v∈X m(v). Hyperedges are considered to be multisets, so a

hyperedge can be defined as a function e : V → Z+, but we use the notations v ∈ e
for e(v) > 0 and |e ∩ X| for e(X). A hyperarc a is a hyperedge with a designated
head node h(a) ∈ a; the rest of its nodes are called tail nodes (t(a) = a − h(a)).
An orientation of a hypergraph H = (V, E) is a directed hypergraph obtained by
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designating a head node h(e) for every e ∈ E . A ν-hyperedge is a hyperedge e with
|e| = ν, while an (r, 1)-hyperarc is a hyperarc a with |t(a)| = r. A hyperedge e enters
a set X if e ∩X 6= ∅ and e ∩ (V −X) 6= ∅, while a hyperarc a enters X if h(a) ∈ X
and t(a)∩ (V −X) 6= ∅. For a hypergraph H = (V, E) and a directed hypergraph D =
(V,A) we define dH(X) := |{e ∈ E | e enters X}|, %D(X) := |{a ∈ A | a enters X}|
and δD(X) = %D(V −X), which have the following properties:

dH(X) + dH(Y ) ≥ dH(X ∩ Y ) + dH(X ∪ Y ) for every X,Y ⊆ V , (1)

%D(X) + %D(Y ) ≥ %D(X ∩ Y ) + %D(X ∪ Y ) for every X, Y ⊆ V , (2)

δD(X) + δD(Y ) ≥ δD(X ∩ Y ) + δD(X ∪ Y ) for every X,Y ⊆ V . (3)

For a family F of subsets of V , we use the notation co(F) := {V − X | X ∈ F}.
Two sets X and Y are crossing if all of X − Y, Y −X,X ∩ Y, V − (X ∪ Y ) are non-
empty. A family of sets is cross-free if it does not contain two crossing members. Let
p : 2V → Z∪{−∞} be a set function (we always assume that p(∅) = 0). A hypergraph
H (a directed hypergraph D) is said to cover p if dH(X) ≥ p(X) (%D(X) ≥ p(X)) for
every X ⊆ V . The set function p is crossing supermodular if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (4)

holds whenever X ∩ Y 6= ∅ and V − (X ∪ Y ) 6= ∅.

2 Directed splitting off

A special case of the following theorem (when p(X) = k for every ∅ 6= X ⊂ V for
some positive integfer k) was proved in [1]. Here we show that a more general result
can be proved with essentially the same techniques.

Theorem 2.1. Let p : 2V → Z ∪ {−∞} be a crossing supermodular set function,
mi : V → Z+ and mo : V → Z+ degree specifications such that mo(V ) = rmi(V ) for
some positive integer r, and

mi(X) ≥ p(X) for every X ⊆ V , (5)

mo(V −X) ≥ p(X) for every X ⊆ V . (6)

Then there is a directed (r, 1)-hypergraph D such that δD(v) = mo(v) and %D(v) =
mi(v) for every v ∈ V , and

%D(X) ≥ p(X) for every X ⊆ V .

Proof. Consider a hyperarc a for which mi(h(a)) > 0, and mo(v) ≥ |t(a) ∩ {v}| for
every v ∈ t(a). We define vectors ma

i : V → Z+, ma
o : V → Z+, and a set function

pa : 2V → Z ∪ {−∞} the following way: ma
i is obtained from mi by decreasing it

by 1 on h(a), ma
o is obtained from mo by decreasing it on the nodes of t(a) by their

multiplicities in t(a), and pa is obtained by decreasing p by 1 on every set entered by
a. The hyperarc a can be split off if ma

i (X) ≥ pa(X) and ma
o(V − X) ≥ pa(X) for

every X ⊆ V . The operation is called a feasible (l, 1)-splitting if |t(a)| = l. Note that
pa is crossing supermodular by (2). The following lemma describes conditions when
a feasible splitting is available.
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Lemma 2.2. Let p : 2V → Z ∪ {−∞} be a crossing supermodular set function, mi :
V → Z+ and mo : V → Z+ degree specifications such that mi(V ) ≤ mo(V ) ≤ rmi(V )
for some integer r, and

mi(X) ≥ p(X) for every X ⊆ V , (7)

mo(V −X) ≥ p(X) for every X ⊆ V . (8)

Let u ∈ V be such that mi(u) > 0. Then there is a hyperarc a with h(a) = u and
|t(a)| ≤ r that can be split off.

Proof. We can assume that mi(V ) ≥ 2. A set X is called in-critical if u ∈ X and
p(X) = mi(X). The maximal in-critical sets are pairwise co-disjoint, since they
intersect, and by the crossing supermodularity of p, the union of two crossing in-
critical sets is in-critical. The complement of a maximal in-critical set is called a
petal. Let F denote the family of maximal in-critical sets, and let α := |F|; F is
called an α-flower.

Claim 2.3. α ≤ r.

Proof. Otherwise we would have∑
X∈F

p(X) =
∑
X∈F

mi(X) > rmi(V ) ≥ mo(V ) ≥
∑
X∈F

mo(V −X),

which contradicts (8).

First, suppose that α = 1 (a = {u} is obviously good for α = 0), and let P be
the single petal; mo(P ) ≥ mi(V − P ) > 0. A set X is called out-critical if u /∈ X
and mo(V − X) = p(X) > 0; if there are no such sets, then for any v ∈ P with
mo(v) > 0 the arc a = vu can be split off. By the crossing supermodularity of p, the
non-empty intersection of two out-critical sets is also out-critical. Since u /∈ X and
mi(X) ≥ mo(V − X) for any out-critical set, there are no two disjoint out-critical
sets, so there is a unique minimal out-critical Y . One of P − Y and Y − P is empty,
otherwise mo(P − Y ) +mi(Y − P ) < mo(V − Y ) +mi(V − P ) = p(Y ) + p(V − P ) ≤
p(Y − P ) + p(V − (P − Y )) ≤ mi(Y − P ) + mo(P − Y ) would be a contradiction.
Also, mo(Y ) = mo(V ) −mo(V − Y ) ≥ mi(V ) −mo(V − Y ) ≥ mi(V ) −mi(Y ) > 0,
hence mo(Y ∩P ) > 0. Let v ∈ Y ∩P be a node with mo(v) > 0. Then the arc a = vu
can be split off.

If α ≥ 2, we define a by selecting as tail nodes one arbitrary node v with mo(v) > 0
from each petal. We prove that a can be split off. By the construction of a, (7) holds
after the splitting.

Suppose that there is a set X which violates (8) after the splitting, i.e. ma
o(V −X) <

pa(X). This means that if a enters X, then p(X) > mo(V −X)−|(t(a))∩(V −X)|+1
and if a does not enter X, then u /∈ X and p(X) > mo(V −X)− |(t(a)) ∩ (V −X)|.
In both cases p(X) > mo(V −X)− |a ∩ (V −X)|+ 1.

There is a petal P such that P −X 6= ∅ and X−P 6= ∅ (this is trivial if X is subset
of a petal; if it is not, then any petal P is good for which P ∩a /∈ X, and such a petal
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exists otherwise mo(V −X) = ma
o(V −X) < pa(X) ≤ p(X) contradicting (8)). The

crossing supermodularity of p implies that

mi(V−P )+mo(V−X)−|a∩(V−X)|+1 < p(V−P )+p(X) ≤ p(X−P )+p(V−(P−X)),

so

mi(X − P ) +mo(P −X)− |a ∩ (P −X)|+ 1 < p(X − P ) + p(V − (P −X)),

mo(P −X)− |a ∩ (P −X)|+ 1 < p(V − (P −X)),

which would imply that V − (P −X) violates (8), since |a ∩ (P −X)| ≤ 1.

Proof of Theorem 2.1: According to Lemma 2.2 we can obtain a directed hypergraph
D∗ by successive feasible splitting off operations such that δD∗(v) = mo(v), %D∗(v) =
mi(v) for every v ∈ V , and %D∗(X) ≥ p(X) for every X ⊆ V . Since mo(V ) = rmi(V ),
|a| ≥ r + 1 holds for at least one hyperarc a of D∗. So there is a feasible (r1, 1)-
splitting with head h(a) for some r1 ≥ r; moreover, by Lemma 2.2 there is also a
feasible (r2, 1)-splitting with head h(a) for some r2 ≤ r.

Lemma 2.4. If for some r1 > r > r2 there is a feasible (r1, 1)-spitting and a feasible
(r2, 1)-splitting with head u , then there is a feasible (r, 1)-splitting with head u.

Proof. Let a be the hyperarc obtained by the (r1, 1)-splitting. By induction, it suffices
to show that for some v ∈ t(a), the hyperarc a′ defined by h(a′) = u, t(a′) = t(a)− v
gives a feasible splitting. If a(v) ≥ 2 for some v we are ready, so suppose a ≤ 1. If
r1 > 2, then suppose indirectly that for every v ∈ t(a) there is an in-critical set Xv

such that a− v ⊆ Xv and v /∈ Xv. We can assume that these are maximal in-critical
sets. Thus the sets {Xv | v ∈ t(a)} form a flower with r1 petals centered on u; but
this contradicts the fact that there is a feasible (r2, 1)-splitting with head u.

If r1 = 2, then r2 = 0, so there are no in-critical sets. As we have seen, there is
a unique minimal out-critical set Y with u /∈ Y . Then t(a) − Y = ∅, otherwise the
(2, 1)-splitting would not be feasible; thus both (1, 1)-splittings are feasible.

We prove Theorem 2.1 by induction on mi(V ). According to Lemma 2.4, there is
a node u ∈ V with mi(u) > 0 for which there exists a feasible (r, 1)-splitting at u; let
a be the resulting (r, 1)-hyperarc. By induction, there is a directed (r, 1)-hypergraph
D′ that satisfies the conditions given by ma

i , m
a
o and pa. The directed hypergraph

obtained by adding a to D′ satisfies the conditions of Theorem 2.1.

3 Directed hypergraph augmentation

As in [1], one can obtain an edge-connectivity augmentation result from Theorem 2.1,
using the following theorem of Fujishige:

Theorem 3.1 (Fujishige). Let p : 2V → Z ∪ {−∞} be a crossing supermodular
function and let

B(p) :=
{
x ∈ R

V | x(Z) ≥ p(Z) ∀Z ⊆ V ; x(V ) = p(V )
}
. (9)
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Section 3. Directed hypergraph augmentation 5

Then B(p) is nonempty if and only if

t∑
i=1

p(Xi) ≤ p(V ),
t∑
i=1

p(V −Xi) ≤ (t− 1)p(V )

both hold for every partition {X1, X2, . . . , Xt} of V . Furthermore, if B(p) is non-
empty, then it is a base polyhedron, thus its vertices are integral.

Theorem 3.2. Let p : 2V → Z ∪ {−∞} be a crossing supermodular set function.
There exists a directed (r, 1)-hypergraph with γ hyperarcs that covers p if and only if

γ ≥
∑
X∈F

p(X), (10)

rγ ≥
∑
X∈F

p(V −X), (11)

(|G| − 1) γ ≥
∑
X∈G

p(V −X) (12)

hold for every sub-partition F and for every partition G of V .

Proof. The necessity of the conditions can be seen easily. To prove sufficiency, one
can construct degree specifications mi and mo that satisfy the conditions of Theorem
2.1. Let us define the set function p′ : 2V → Z+ by p′(V ) = γ, p′(x) = max{0, p(x)}
for singletons and p′(X) = p(X) otherwise. Note that p′ is crossing supermodular. If
F is a partition of V , then (10) implies that∑

X∈F

p′(X) ≤
∑

X∈F , p(X)>0

p(X) ≤ γ,

and either (12), or (10) applied to sub-partitions with one class, implies that∑
X∈co(F)

p′(X) ≤
∑

X∈co(F), p(X)>0

p(X) ≤ (|F| − 1) γ.

Thus, by applying Theorem 3.1 to p′, we get a nonnegative integer vector mi s.t.
mi(X) ≥ p(X) for all X ⊆ V , and mi(V ) = γ.

To construct mo consider a nonnegative vector satisfying mo(V − X) ≥ p(X) for
all X ⊆ V , which is minimal in the sense that for every v ∈ V with mo(v) > 0,
there exists a set X for which v /∈ X and mo(V − X) = p(X). Choose a family
G = {X1, X2, . . . , Xl} of such sets with l minimal. Hence, two sets cannot cross, since
we could replace them by their intersection. If the family is composed of co-disjoint
sets, then

mo(V ) =
l∑

i=1

mo(V −Xi) =
l∑

i=1

p(Xi) ≤ rγ.

by (11). If there are two disjoint sets, Xi and Xj, then

mo(V ) ≤ mo(V −Xi) +mo(V −Xj) = p(Xi) + p(Xj) ≤ γ.
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Section 4. Augmentation and orientation 6

Now we can increase mo on an arbitrary node to obtain mo(V ) = rγ, and apply
Theorem 2.1 to construct a directed (r, 1)-hypergraph with degrees mi and mo that
covers p.

The following example demonstrates that condition (12) cannot be left out. Let
V = {v1, v2, v3}, p({v1, v2}) = p({v1, v3}) = p({v2, v3}) = 2 and p(X) = 0 for the
other sets, r = 3, γ = 2. Conditions (10) and (11) are satisfied, but (12) is not, and
there is no directed (3, 1)-hypergraph of 2 hyperarcs covering p. In the graph case
(12) easily follows from (11).

A special case where (12) follows from (10) is the (k, l)-edge-connectivity aug-
mentation of directed hypergraphs (for l ≤ k), which is a generalization of the k-
edge-connectivity augmentation problem studied in [1]. For a directed hypergraph
D and a fixed s ∈ V , let p(X) = k − %D(X) if s /∈ X 6= ∅, p(X) = l − %D(X) if
s ∈ X 6= V and p(X) = 0 otherwise. Let F = {X1, X2, . . . , Xt} be a partition of
V (t ≥ 2). If (10) holds, then

∑
X∈co(F) p(X) = (t − 1)l + k −

∑
X∈co(F) %D(X) ≤

l + (t− 1)k −
∑

X∈co(F) δD(X) = l + (t− 1)k −
∑

X∈F %D(X) =
∑

X∈F p(X) ≤ γ.

Corollary 3.3. A directed hypergraph D = (V,A) can be made (k, l)-edge-connected
with γ new (r, 1)-hyperarcs if and only if

γ ≥
∑
X∈F

p(X),

rγ ≥
∑
X∈F

p(V −X)

hold for every subpartition F of V , where p is the above-defined set-function.

4 Augmentation and orientation

In this section we consider only non-negative crossing supermodular set functions.
We are interested in the problem of adding ν-hyperedges to an initial undirected
hypergraph, so that the resulting hypergraph has an orientation covering a given
set function p. Similar problems for graphs were studied in [2]. As in that case,
we first solve the degree specified problem, and then obtain a min-max formula for
minimum cardinality augmentation. Some new notations are introduced to facilitate
the formulation of the min-max results.

A family F of sets is a composition of a set X ⊆ V if the value
∑

Z∈F χZ(v)−χX(v)
is the same for every v ∈ V . A composition of V is called a regular family. For a set
X and a family F that is a composition of X, let

αX(F) :=
∑
Z∈F

χZ(v)− χX(v) for an arbitrary v ∈ V .

A composition of X is a tree-composition if it is cross-free and it contains no proper
subfamily that is a partition or a co-partition of V . Tree-compositions have the
following properties:
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Section 4. Augmentation and orientation 7

Claim 4.1. If F 6= ∅ is a tree-composition of X that is not a partition of X, then
it contains a subfamily {Z1, . . . , Zt} (t ≥ 2) of pairwise co-disjoint sets such that
∩Zi ⊆ X. If X 6= V , then Zi −X 6= ∅ (i = 1, . . . , t).

For a hypergraph H = (V, E) and a set X ⊆ V , let iH(X) denote the number of
hyperedges e ∈ E with e ∩ (V −X) = ∅. For a regular family F let

eH(F) := α∅(F)|E| −
∑
X∈F

iH(X). (13)

More intuitively, eH(F) = max{
∑

X∈F % ~H(X) | ~H is an orientation of H}.

Theorem 4.2. Let H = (V, E) be a hypergraph, p : 2V → Z+ a non-negative crossing
supermodular set function, and m : V → Z+ a degree specification where m(V ) is
divisible by a fixed integer ν ≥ 2. There exists a ν-uniform hypergraph I such that
H + I has an orientation covering p and dI(v) = m(v) for every v ∈ V if and only if
the following hold for every partition F of V :

m(V )

ν
≥

∑
Z∈F

p(Z)− eH(F), (14)

min
X∈F

m(V −X) ≥
∑
Z∈F

p(Z)− eH(F), (15)

min
F ′⊆F , X=∪F ′

(
m(V −X) + (|F ′| − 1)

m(V )

ν

)
≥

∑
Z∈F

p(V − Z)− eH(co(F)).(16)

Proof. The right hand side of the inequalities is the deficiency of the hyperedges of H.
The necessity of the conditions follows from the observation that the left hand side
is always an upper bound on the contribution of the new hyperarcs. In (14): every
new hyperarc can enter at most one set of F ; in (15): every hyperarc that enters a
set of F must have a node in V −X; in (16): the number of sets of co(F) that a new
hyperarc enters is at most |F ′| − 1 plus the number of nodes it has in V −X.

The proof of sufficiency is similar to that of the augmentation theorem in [2]. We
add a new node z to the set of nodes, and for every v ∈ V we add m(v) parallel edges
between v and z; the resulting hypergraph is denoted by H ′ = (V ′, E ′). Our first aim

is to find an orientation ~H ′ of H ′ that has the following properties:

% ~H′(V ) =
m(V )

ν
, (17)

% ~H′(X) ≥ p(X) if ∅ 6= X ⊂ V , (18)

% ~H′(X + z) ≥ p(X) if ∅ 6= X ⊂ V . (19)

To find such an orientation, we use the following lemma (see e.g. [3]):

Lemma 4.3. Given a hypergraph H ′ and a vector x′ : V ′ → Z+, there is an orienta-
tion ~H ′ of H ′ such that % ~H′(v) = x′(v) for every v ∈ V ′ if and only if x′(V ′) = |E ′|
and x′(Y ) ≥ iH′(Y ) for every Y ⊆ V ′.
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Section 4. Augmentation and orientation 8

We call a vector x : V → Z+ feasible if it is the vector of in-degrees (restricted to
V ) of an orientation satisfying (17)–(19). It is easy to see using Lemma 4.3 that x is

feasible if and only if x(V ) = |E|+ m(V )
ν

and x(Z) ≥ pm(Z) for every Z ⊆ V , where

pm(X) := p(X) + iH(X) +

(
m(X)− ν − 1

ν
m(V )

)+

(X ⊆ V ). (20)

The set function pm is crossing supermodular. A vector x is feasible if and only if it
is an integral element of B(pm) (as defined in (9)).

Claim 4.4. If conditions (14)-(16) are satisfied, then B(pm) is non-empty.

Proof. By Theorem 3.1, it suffices to show that∑
X∈F

pm(X) ≤ |E|+ m(V )

ν
, (21)

∑
X∈F

pm(V −X) ≤ (|F| − 1)

(
|E|+ m(V )

ν

)
(22)

for every partition F . Note that m(X) − ν−1
ν
m(V ) can be positive for at most one

member of a partition. Thus (21) follows from (13), and either (15) or (14), depending
on whether F has such a member or not. The inequality (22) follows from (13) and
(16).

By Theorem 3.1, B(pm) is a base polyhedron with integral vertices, and any such

vertex x is the vector of in-degrees (restricted to V ) of an orientation ~H ′ satisfying
(17)–(19).

Let mi(v) be the multiplicity of the arc zv in ~H ′, mo(v) be the multiplicity of

the arc vz in ~H ′, and let ~H denote the directed hypergraph obtained from ~H ′ by
deleting the node z. Then mi(X) ≥ p(X)− % ~H(X) and mo(V −X) ≥ p(X)− % ~H(X)
for every X ⊆ V . By (2) and the crossing supermodularity of p, the set function
q(X) := p(X)−% ~H(X) is crossing supermodular. Theorem 2.1 asserts the existence of
a directed (ν−1, 1)-hypergraph D that covers q, and satisfies the degree specifications

mi and mo. This means that ~H +D covers p, and the undirected hypergraph I that
underlies D satisfies the degree specification m. Since ~H + D is an orientation of
H + I, this completes the proof of Theorem 4.2.

Given a characterization of the degree specifications that allow a good augmen-
tation, it is often possible to deduce a characterization of the minimum number of
hyperedges needed. In the present case we obtain the following theorem:

Theorem 4.5. Let H = (V, E) be a hypergraph, p : 2V → Z+ a non-negative crossing
supermodular set function, and ν ≥ 2 an integer. There exists a ν-uniform hypergraph
I with γ hyperedges such that H + I has an orientation covering p if and only if

γ (ν + αX(F1) + (ν − 1)αX(F2)) ≥
∑

Z∈F1+co(F2)

p(Z)− eH (F1 + co(F2)) (23)
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Section 4. Augmentation and orientation 9

whenever F1 and F2 are tree-compositions of some set X ⊆ V , F1 +F2 is cross-free,
and αX(F2) ≤ 0 (i.e. either F2 is a partition of X, or X = V and F2 = ∅).

Proof. The right hand side of (23) is the deficiency of H relative to the family F1 +
co(F2). The number of sets of F1 that a new hyperarc enters is at most αX(F1), plus
1 if its head is in X. The number of sets of co(F2) that a new hyperarc enters is
at most (ν − 1)αX(F2) plus the number of tail nodes it has in X. This shows the
necessity of (23). To prove sufficiency, we define for every X ⊆ V and compositions
F1,F2 of X:

QX(F1,F2) :=
∑

Z∈F1+co(F2)

p(Z)− eH (F1 + co(F2))− γ(αX(F1) + (ν − 1)αX(F2)),

q(X) := max{QX(F1,F2) : F1 and F2 are tree-compositions of X,

F1 + F2 is cross-free, αX(F2) ≤ 0}.

Condition (23) is equivalent to the inequality maxX⊆V q(X) ≤ νγ; let us assume
that this holds. We can observe that if m : V → Z+ satisfies m(X ′) ≥ q(X ′) for
every X ′ ⊆ V and m(V ) = νγ, then m satisfies (14)–(16). The choice where X ′ = V ,
F1 = F is a partition of V , F2 = ∅, (αX′(F1) = 0, αX′(F2) = −1) easily yields

(14), by γ = m(V )
ν

. With X ′ = V − X, where F1 = F − {X} is a partition of X ′

and F2 = {X ′}, (αX′(F1) = 0, αX′(F2) = 0), (15) follows. To obtain (16), we set
X ′ = V −X, F1 = co(F ′), F2 = F −F ′, (αX′(F1) = |F1| − 1, αX′(F2) = 0). Thus by
Theorem 4.2 the existence of such an m implies the existence of a hypergraph I that
satisfies the requirements. To prove that such an m exists, we use the properties of a
set function slightly different from q:

q′(X) := max{QX(F1,F2) : F1 and F2 are tree-compositions of X}.

Claim 4.6. The value QX(F1,F2) does not decrease if we remove a partition or a
co-partition of V from F1 or F2.

Proof. It is easy to see that if X∩Y = ∅, FX1 ,FX2 are compositions of X, and FY1 ,FY2
are compositions of Y , then

QX(FX1 ,FX2 ) +QY (FY1 ,FY2 ) = QX∪Y (FX1 + FY1 ,FX2 + FY2 ). (24)

The case Y = ∅ proves the claim, since q(V ) ≤ νγ implies that q(∅) ≤ 0.

Claim 4.7. The set function q′ is fully supermodular.

Proof. Let X,Y ⊆ V , and suppose that the maximum in the definition of q′ is reached
on families FX1 ,FX2 , and FY1 ,FY2 , respectively. Let F1 := FX1 +FY1 , F2 := FX2 +FY2 .
We apply the following operations, as long as any of them is possible:

• If Z1, Z2 ∈ F1 are crossing, then replace them in F1 by Z1 ∩ Z2 and Z1 ∪ Z2.

• If Z1, Z2 ∈ F2 are crossing, then replace them in F2 by Z1 ∩ Z2 and Z1 ∪ Z2.
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It is easy to see that after a finite number of steps, the resulting families F ′1 and F ′2
become cross-free. Then F ′i decomposes into a composition FX∩Yi of X∩Y and a com-
position FX∪Yi of X ∪ Y (i = 1, 2); and all of these families are cross-free. The cross-
ing supermodularity of p implies that

∑
Z∈FX

1 +FY
1
p(Z) ≤

∑
Z∈FX∩Y

1 +FX∪Y
1

p(Z) and∑
Z∈FX

2 +FY
2
p(V − Z) ≤

∑
Z∈FX∩Y

2 +FX∪Y
2

p(V − Z). It is easy to check that eH(FX1 +

co(FX2 )) + eH(FY1 + co(FY2 )) ≥ eH(FX∩Y1 + co(FX∩Y2 )) + eH(FX∪Y1 + co(FX∪Y2 )),
and that αX(FXi ) + αY (FYi ) = αX∩Y (FX∩Yi ) + αX∪Y (FX∪Yi ) (i = 1, 2). Hence
Q(FX1 ,FX2 ) + Q(FY1 ,FY2 ) ≤ Q(FX∩Y1 ,FX∩Y2 ) + Q(FX∪Y1 ,FX∪Y2 ); using Claim 4.6,
we obtain that q′(X) + q′(Y ) ≤ q′(X ∩ Y ) + q′(X ∪ Y ).

Claim 4.7 and Theorem 3.1 imply that there exists a vector m : V → Z+ with m(V ) =
νγ that satisfies m(X) ≥ q′(X) for every X ⊆ V if and only if maxX⊆V q

′(X) ≤ νγ.

Claim 4.8. If condition (23) holds, then maxX⊆V q
′(X) = maxX⊆V q(X) ≤ νγ.

Proof. Let X be the set where the maximum is reached for q′, and let F1,F2 be tree-
compositions of X for which q′(X) = QX(F1,F2). We transform F1 and F2 using the
following operations until none of them is applicable:

• If Z1, Z2 ∈ F1 are crossing, then replace Z1, Z2 by Z1 ∩ Z2, Z1 ∪ Z2 in F1.

• If Z1, Z2 ∈ F2 are crossing, then replace Z1, Z2 by Z1 ∩ Z2, Z1 ∪ Z2 in F2.

• If F2 is a partition of some Z ⊆ V , and Z1 ∈ F1 and Z2 ∈ F2 are crossing, then
replace Z1 by Z1 − Z2 in F1, and replace Z2 by Z2 − Z1 in F2.

• If {Z1, . . . , Zt} ⊂ F1 or {Z1, . . . , Zt} ⊂ F2 is a partition or a co-partition of V ,
then remove Z1, . . . , Zt from that family.

• If F2 is a composition of Z ⊆ V and it contains a subfamily {Z1, . . . , Zt} (t ≥ 2)
of pairwise co-disjoint sets such that ∅ 6= ∩Zi ⊆ Z, then remove Z1, . . . , Zt from
F2, and add V − Z1, . . . , V − Zt to F1.

It is easy to see that this terminates after a finite number of steps. We denote by
F ′1 and F ′2 the families obtained at the end of the process. Then, by Claim 4.1, F ′1
and F ′2 are tree-compositions of some X ′ ⊆ X, αX′(F ′2) ≤ 0, and F ′1 +F ′2 is cross-free.
Moreover, QX(F1,F2) does not decrease in any of the steps (in the first 3 cases this
follows from the supermodularity of p, in the 4th it is a consequence of Claim 4.6,
and in the 5th it is obvious from the definition of QX(F1,F2)). This proves that
maxX⊆V q

′(X) = maxX⊆V q(X).

By Claim 4.8, νγ ≥ maxX⊆V q
′(X). Thus there exists a vector m : V → Z+ with

m(V ) = νγ that satisfies (14)–(16), therefore by Theorem 4.2 there exists a ν-uniform
hypergraph I with γ hyperedges such that H + I has an orientation covering p. This
concludes the proof of Theorem 4.5.

If the requirement function is monotone decreasing (i.e. p(X) ≥ p(Y ) if ∅ 6=
X ⊆ Y ), or symmetric, then the conditions of Theorem 4.2 and Theorem 4.5 can be
simplified.
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Theorem 4.9. Let H = (V, E) be a hypergraph, p : 2V → Z+ a monotone decreasing
or symmetric non-negative crossing supermodular set function, and m : V → Z+ a
degree specification where m(V ) is divisible by a fixed integer ν ≥ 2. There exists a
ν-uniform hypergraph I with degree-specification m such that H+I has an orientation
covering p if and only if the following hold for every partition F of V :

m(V )

ν
≥

∑
Z∈F

p(Z)− eH(F), (25)

min
X∈F

m(V −X) ≥
∑
Z∈F

p(Z)− eH(F). (26)

Proof. By definition, eH(F) ≤ eH(co(F)) for every partition F of V , and the mono-
tonicity or symmetry of p implies that

∑
Z∈co(F) p(Z) ≤

∑
Z∈F p(Z) also holds. It is

easy to see from this that (16) is implied by (14) if |F ′| = 0 or |F ′| ≥ 2, and it is
implied by (15) if |F ′| = 1.

Theorem 4.10. Let H = (V, E) be a hypergraph, p : 2V → Z+ a monotone decreasing
or symmetric non-negative crossing supermodular set function, and ν ≥ 2 an integer.
There exists a ν-uniform hypergraph I with γ hyperedges such that H + I has an
orientation covering p if and only if the following hold:

γ ≥
∑
Z∈F

p(Z)− eH(F) for every partition F , (27)

νγ ≥
∑

Z∈F1+co(F2)

p(Z)− eH (F1 + co(F2)) (28)

whenever F1 and F2 are partitions of some X ⊆ V and F1 is a refinement of F2.

Proof. It suffices to show that if condition (23) is violated for some pair (F1,F2), then
it is also violated by a pair (F ′1,F ′2) that has the additional properties that F ′1 is a
partition of some X ′ ⊆ V , and Y2 6⊂ Y1 for every Y1 ∈ F ′1, Y2 ∈ F ′2. Such families can
be obtained from F1 and F2 by repeating the following operations as long as any of
them is possible:

• If F1 is a composition of Z ⊆ V , it contains a subfamily {W1, . . . ,Ws} (s ≥ 2) of
pairwise co-disjoint sets such that W := ∩Wi ⊆ Z, and F2 contains a partition
{Z1, . . . , Zt} of W , then remove W1, . . . ,Ws from F1 and Z1, . . . , Zt from F2.

• If F1 is a composition of Z ⊆ V and it contains a set W ⊆ Z such that
F2 contains a partition {Z1, . . . , Zt} of W , then replace W in F1 by the sets
Z1, . . . , Zt, and replace Z1, . . . , Zt in F2 by W .

After a finite number of steps, none of the above operations are applicable; let
(F ′1,F ′2) be the pair obtained at that point. Then it folllows from Claim 4.1 that F ′1
must be a partition of some X ′ ⊆ V , and F ′1 is a refinement of F ′2 if F ′2 6= ∅. If
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(27) holds, then the value QX(F1,F2) does not decrease during the above two opera-
tions: in the first case this follows from (24), since QW ({W1, . . . ,Ws}, {Z1, . . . , Zt}) ≤
Q∅({V −W1, . . . , V −Ws, Z1, . . . , Zt}, ∅) ≤ 0; in the second case, it follows because
p(W ) +

∑t
i=1 p(V − Zi) ≤ p(V −W ) +

∑t
i=1 p(Zi) .

The above results have a straightforward application concerning the partition-
connectivity augmentation of undirected hypergraphs. A hypergraph H is called
(k, l)-partition-connected for non-negative integers k ≥ l if eH(F) ≥ (|F|− 1)k+ l for
every partition F . These hypergraphs have the following characterization:

Lemma 4.11 ([3]). A hypergraph is (k, l)-partition-connected if and only if it has a
(k, l)-edge-connected orientation.

From Lemma 4.11 and Theorems 4.9 and 4.10 we obtain the following corollaries:

Corollary 4.12. Let H = (V, E) be a hypergraph, m : V → Z+ a degree specifica-
tion with m(V ) divisible by a fixed integer ν ≥ 2, and k ≥ l non-negative integers.
There exists a ν-uniform hypergraph I such that H + I is (k, l)-partition-connected
and dH(v) = m(v) for all v ∈ V if and only if the following hold for every partition
F of V :

m(V )

ν
≥ (|F| − 1)k + l − eH(F) , (29)

min
i
m(V −Xi) ≥ (|F| − 1)k + l − eH(F) . (30)

Corollary 4.13. Let H = (V, E) be a hypergraph, ν ≥ 2 and k ≥ l non-negative
integers. There is a ν-uniform hypergraph I with γ edges such that H + I is (k, l)-
partition-connected if and only if the following two conditions are met:

1. γ ≥ (|F| − 1)k + l − eH(F) for every partition F ,

2. νγ ≥ |F1|k + |F2|l − eH (F1 + co(F2)) whenever F1 and F2 are partitions of
some X ⊆ V and F1 is a refinement of F2.

References

[1] A. Berg, B. Jackson, T. Jordán, Edge splitting and connectivity augmentation in
directed hypergraphs, EGRES Tech. Rep. 2001-16.

[2] A. Frank, T. Kiraly, Combined connectivity augmentation and orientation prob-
lems, EGRES Tech. Rep. 2001-07.

[3] A. Frank, T. Kiraly, Z. Kiraly, On the orientation of graphs and hypergraphs,
EGRES Tech. Rep. 2001-06.

EGRES Technical Report No. 2002-11


	Introduction
	Directed splitting off
	Directed hypergraph augmentation
	Augmentation and orientation

