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Minimally k-edge-connected directed graphs of
maximal size

Alex R. Berg? and Tibor Jordán??

Abstract

Let D = (V,E) be a minimally k-edge-connected simple directed graph.
We prove that there is a function f(k) such that |V | ≥ f(k) implies |E| ≤
2k(|V | − k). We also determine the extremal graphs whose size attains this
upper bound.

1 Introduction

A number of extremal problems related to graph connectivity have been studied in
recent years. One of the central problems in this area is to determine the maximum
possible size (i.e. number of edges) of a minimally k-(edge)-connected (multi)graph or
directed (multi)graph on n vertices. (Graphs and digraphs in this paper are assumed
to be simple. When multiple edges may be present, we use the terms multigraph or
multidigraph.)

It is easy to show that a minimally k-edge-connected multigraph on n vertices has
at most k(n − 1) edges, and that this value is best possibe for all values of n and
k. Mader [5] proved that this can be improved for graphs: in this case the size is at
most k(n− k), provided n ≥ 3k− 2. The complete bipartite graph Kk,n−k shows that
this bound is tight. Mader [6] verified that the latter bound is valid for minimally
k-connected graphs as well, if n ≥ 3k − 2 holds (see also Cai [1]).

Dalmazzo [3] proved that a minimally k-edge-connected multidigraph on n vertices
has at most 2k(n − 1) edges, and that this is tight for all values of n and k. Mader
[8] showed that a minimally k-connected digraph with n ≥ 4k + 3 contains at most
2k(n − k) edges. The complete bipartite digraph DKk,n−k shows that this upper
bound is also best possible.

One item is missing from this list, as far as the asymptotic extremal value is con-
cerned: the case of minimally k-edge-connected digraphs appears to be open. In the
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present paper we determine the missing extremal value by showing that if multiple
edges are not allowed then Dalmazzo’s upper bound can be improved to 2k(n − k),
provided n is sufficiently large compared to k. Again, DKk,n−k shows that our bound
is best possible. We shall also prove that this digraph is the unique extremal digraph,
for every given (and large enough) value of n. As in most of the other related prob-
lems, there exist ‘small’ digraphs for which this improved upper bound does not hold.
For example, consider the digraph H obtained from a bidirected circuit of length
2k − 1 by adding k − 2 independent vertices and connecting each of them to the
vertices of the circuit in both directions. This digraph has n = 3k − 3 vertices and
4k2−6k+2 > 2k(2k−3) edges. This shows that we need a lower bound on n in terms
of k in order to guarantee the required upper bound. Since our methods are unlikely
to yield the best function of k, we shall not try to improve the (exponential) function
f(k) that follows from our proofs, although a linear function of k might suffice.

Now we introduce some basic definitions and notation. Let D = (V,E) be a mul-
tidigraph. We use d+

D(X) (d−D(X)) to denote the number of edges entering (leaving,
respectively) a set X ⊆ V . If X = {v} is a singleton, we write d+

D(v) (d−D(v)). We
omit the subscript D if the digraph considered is clear from the context. In what
follows ⊂ means proper inclusion and ⊆ means ⊂ or =. For a set X ⊆ V we use
N+(X) to denote the ‘out-neighbours’ of X, i.e. the set of vertices v in V − X for
which there is a vertex u ∈ X with uv ∈ E. The definition of N−(X) is similar. For
some X ⊆ V the subdigraph induced by X is denoted by D[X]. A set X of vertices
is independent in D if |E(D[X])| = 0.

A multidigraph D = (V,E) is k-edge-connected if |V | ≥ 2 and d−(X) ≥ k holds for
every ∅ 6= X ⊂ V . We call D minimally k-edge-connected if D is k-edge-connected
but G − e is no longer k-edge-connected for any e ∈ E. A set X ⊂ V is an in-set
(out-set) if d−(X) = k (d+(X) = k, resp.) holds. It is easy to see that if D is
minimally k-edge-connected then every edge e ∈ E enters an in-set (and hence leaves
an out-set). A vertex v with d+(v) = d−(v) = k will be called an atom.

2 Preliminaries

Two sets X, Y ⊆ V are crossing if X − Y,X ∩ Y, Y − X, and V − (X ∪ Y ) are all
non-empty. A family of sets is cross-free if it contains no two crossing sets. A family
F of in-sets of V is a witness family (of in-sets) of D if every edge e ∈ E enters a
member of F . As we noted, the family of all in-sets of D is a witness family in a
minimally k-edge-connected multidigraph.

The next lemma can be proved by using the so-called “uncrossing method”.

Lemma 2.1. [2, Lemma 2],[4, Section 5] Let D be a minimally k-edge-connected
multidigraph. Then D has a cross-free witness family of in-sets.

A family L of non-empty subsets of a groundset M is called laminar if for any pair
X,Y ∈ L either X ∩ Y = ∅ or X ⊂ Y or Y ⊂ X holds. For a set X ∈ L we define
the core of X, denoted by C(X), as follows:

C(X) = X −
⋃
{Y : Y ⊂ X, Y ∈ L} (1)
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Let c(X) = |C(X)|. A laminar family L is strongly laminar if M = ∪X∈LX, the
members of L are pairwise distinct, and C(X) 6= ∅ for every X ∈ L. Given a strongly
laminar family L on M , let s(L) =

∑
X∈L(c(X)− 1) be the surplus of L. It is easy to

see that a strongly laminar family L on M satisfies

|L| = |M | − s(L) ≤ |M | (2)

Let D = (V,E) be a minimally k-edge-connected multidigraph and let r ∈ V be a
designated vertex, called the root. Let W = V − r. We say that a pair (Li,Lo) is a
witness pair of D (with root r) if

(a) Li is a strongly laminar family of in-sets of D on groundset W ,
(b) Lo is a strongly laminar family of out-sets of D on groundset W ,
(c) Li ∪ Lo is laminar,
(d) every edge of D enters a member of Li or leaves a member of Lo.

The next lemma is easy to verify (see also the proof of Lemma 2.5).

Lemma 2.2. Let D = (V,E) be a minimally k-edge-connected multidigraph and let
r ∈ V . Then D has a witness pair with root r.

Lemma 2.2 gives rise to a short proof of Dalmazzo’s result on the maximal size of
minimally k-edge-connected multidigraphs and illustrates one of the proof techniques
we shall use later.

Theorem 2.3. [3] Let D = (V,E) be minimally k-edge-connected multidigraph. Then
|E| ≤ 2k(|V | − 1).

Proof: Let r ∈ V be a designated root vertex. By Lemma 2.2 there exists a witness
pair (Li, Lo) of D on groundset V − {r}. By property (d) every edge of D enters an
in-set in Li or leaves an out-set in Li. Thus, by using (2), we get

|E| ≤ k|Li|+ k|Lo| ≤ 2k(|V | − 1). (3)

This proves the theorem. •

The bound in Theorem 2.3 is best possible for all values of k ≥ 1 and |V | ≥ 2. It is
also known [3] that the size of D attains the upper bound if and only if D is obtained
from a tree by replacing every edge uv by k parallel edges from u to v and k parallel
edges from v to u. Theorem 2.3 solves our extremal problem for digraphs as well,
when k = 1. Thus in what follows we shall always assume that k ≥ 2.

It will be convenient to work with strong witness pairs, i.e. witness pairs satisfying
the following two additional properties:

(e) all singleton in-sets in W belong to Li and all singleton out-sets in W belong Lo,
(f) the root r is an atom and W = ∪Li

X = ∪LoY .

To show that a strong witness pair exists we need the following theorem of Mader.
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Theorem 2.4. [7] Every minimally k-edge-connected multidigraph has a vertex v with
d+(v) = d−(v) = k.

Lemma 2.5. Let D = (V,E) be a minimally k-edge-connected multidigraph. Then
D has a strong witness pair.

Proof: (sketch) By Lemma 2.1 we can pick a cross-free witness family L of in-sets
of D. We can assume that all singleton in-sets and all in-sets whose complement is a
singleton belong to L. Let the root vertex r be an atom. This choice is possible by
Theorem 2.4. Let W = V − r. Since r is an atom, we have {r},W ∈ L. Define two
families as follows:

L′i = {X ∈ F : r /∈ X}

L′o = {X : V −X ∈ F : r /∈ X}

Since L is a cross-free witness family of in-sets, L′i and L′o are laminar families that
satisfy conditions (c) and (d). By deleting sets from L′i (resp. L′o) whose core is empty,
we obtain a strong witness pair (Li,Lo) of D with root r. Note that by deleting a
set whose core is empty we cannot not violate condition (d). Properties (e) and (f)
follow from the choice of r and L. •

For a strong witness pair (Li,Lo) we call s(Li) and s(Lo) the in-surplus and the
out-surplus of this pair, respectively.

3 Finding a large independent set of atoms

In this section we shall consider a minimally k-edge-connected digraph D = (V,E)
and a strong witness pair L = (Li,Lo) of D with root r. Our goal is to show that
if the size of D is large then there is a small subset S ⊂ V such that V − S is an
independent set of atoms. To show this we shall improve on our count in (3) by taking
into account the in-surplus and the out-surplus of the strong witness pair as well as
edges which are counted several times.

An edge e ∈ E is a multiedge in D (with respect to the given strong witness pair),
if e enters at least two in-sets of Li, or leaves at least two out-sets of Lo, or leaves an
out-set of Lo as well as enters an in-set of Li. We denote the number of multiedges
by m(L). The next inequality is a sharper version of (3) that we obtain by using the
equality of (2) and the fact that multiedges are counted more than once.

|E| ≤ 2k(|V | − 1)− k(s(Li) + s(Lo))−m(L) (4)

The in-multiplicity of an edge e ∈ E (denoted by im(e)) is the number of in-sets
of Li entered by e. The out-multiplicity is defined in a similar way and is denoted by
om(e). A similar counting argument shows that for any e ∈ E we have

|E| ≤ 2k(|V | − 1)− k(s(Li) + s(Lo))− (im(e)− 1) (5)
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Consider a laminar family F and X,Y ∈ F . We say that Y is a child of X if Y ⊂ X
holds and there is no Z ∈ F with Y ⊂ Z ⊂ X. We say that X is a leaf if it has no
children and we call X a semi-leaf if X is not a leaf but every child of X is a leaf. A
strong semi-leaf is a semi-leaf X whose children are all singleton leaves and for which
c(X) = 1 holds. It is easy to see that if X is an in-set in D then, since there are
no multiple edges, either |X| = 1 or |X| ≥ k holds. Moreover, if |X| = k then each
vertex v in X has d−(v) = k. These observations and the fact that Li is strongly
laminar imply the next lemma.

Lemma 3.1. Let X be a leaf of Li. Then either |X| = 1 or |X| ≥ k + 1.

Lemma 3.2. Let X be a strong semi-leaf in Li. Then at least one of the following
holds:
(a) there is an edge which enters X as well as one of the children of X,
(b) D[X − C(X)] contains a circuit.

Proof: Let v be a singleton leaf in X. Since X is strong, we have c(X) = 1 ≤ k − 1.
Hence, since D is simple, either there is an edge with tail in V − X and head v (in
which case (a) holds) or there is an edge with tail in X − C(X) and head v. If the
latter holds for all leaves in X then (b) must hold. •

Lemma 3.3. Let K be a circuit in D with V (K) ⊆W . Then either
(a) V (K) ⊆ C(Y ) for some Y ∈ Lo, or
(b) there is an edge e ∈ E(K) which leaves a set Y ′ ∈ Lo.

Proof: Let u ∈ V (K). Since {C(Y ) : Y ∈ Lo} partitions W (by property (f)), we
have that u ∈ C(Y ) for some Y ∈ Lo. If V (C) intersects W − Y (or Y ′, for some
child Y ′ of Y ), then there is an edge of C which leaves Y (or Y ′), and hence (b) holds.
Otherwise (a) holds. •

3.1 Semi-leaves and strong semi-chains

It follows from (4) and (5) that a digraph with |E| ≥ 2k(|V |−k) must have k(s(Li)+
s(Lo)) +m(L) ≤ 2k(k − 1) and also im(e), om(e) ≤ 2k(k − 1) + 1 for all e ∈ E. This
motivates the assumptions of the following lemmas.

Lemma 3.4. Suppose that k(s(Li) + s(Lo)) + m(L) ≤ 2k(k − 1). Then Li has at
most 2k(k − 1) semi-leaves.

Proof: Let p denote the number of semi-leaves in Li. By definition, every non-strong
semi-leaf X ′ either contains a non-singleton leaf or has c(X ′) ≥ 2. Therefore X ′ or a
subset of X ′ contributes to s(Li) by at least one.

Now focus on a strong semi-leaf X. By Lemma 3.2 either X is entered by a multi-
edge or D[X − C(X)] contains a circuit K. In the latter case it follows from Lemma
3.3 that either X contains at least two vertices from C(Y ) for some Y ∈ Lo or some
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3.1 Semi-leaves and strong semi-chains 6

edge in K is a multiedge (since every edge of D[X − C(X)] enters a singleton in-
set). In each of these cases X contributes to s(Lo) + m(L) by at least one. Since
the semi-leaves are pairwise disjoint, we can add up these contributions and conclude
that p ≤ (s(Li)+s(Lo))+m(L) ≤ k(s(Li)+s(Lo))+m(L) ≤ 2k(k−1), as required. •

A decreasing sequence X1 ⊃ X2 ⊃ ... ⊃ Xt of members of Li is a strong semi-chain
of Li if

(i) Xj+1 is a child of Xj, for 1 ≤ j ≤ t− 1,
(ii) c(Xj) = 1 for all 1 ≤ j ≤ t, and
(iii) every member of Li in Xj −Xj+1 is a singleton leaf, for all 1 ≤ j ≤ t− 1.

Lemma 3.5. Suppose that k(s(Li) + s(Lo)) + m(L) ≤ 2k(k − 1) and for every edge
e ∈ E we have im(e) ≤ 2k(k − 1) + 1. Then the length of a strong semi-chain in Li

is less than 8k4.

Proof: For a contradiction suppose that there is a strong semi-chain X = X1 ⊃
X2 ⊃ ... ⊃ Xr of Li with r ≥ 8k4. Let Zj = Xj − Xj+1 denote the cell of Xj,
1 ≤ j ≤ r − 1. Since the cells are pairwise disjoint and m ≤ 2k(k − 1), it follows
that at most 4k(k − 1) cells are incident to multiedges. Let C∗ denote the union
of non-singleton cores of sets of Lo. It is easy to see that s(Lo) ≥ |C∗|/2. Since
ks(Lo) ≤ 2k(k − 1), this implies |C∗| ≤ 4(k − 1). Therefore at most 4(k − 1) cells
intersect C∗. Let us partition X into smaller chains by cutting it at every member Xi

whose cell is either incident to multiedges or intersects C∗. This way we get at most
4k(k − 1) + 4(k − 1) + 1 = 4(k + 1)(k − 1) + 1 subchains.

Since 8k4

4(k+1)(k−1)+1
≥ 2k2 ≥ 2k(k− 1) + 2, it follows that one of these subchains has

length at least 2k(k− 1) + 2. Thus Li contains a strong semi-chain Xl ⊃ Xl+1 ⊃ ... ⊃
Xl+2k(k−1)+1 of length 2k(k− 1) + 2 whose cells are all disjoint from the multiedges as
well as from C∗.

Claim 3.6. D[Zj − C(Xj)] is acyclic for all l ≤ j ≤ l + 2k(k − 1).

Proof: Suppose that K is a circuit in D[Zj − C(Xj)]. By Lemma 3.3 either there is
an edge e ∈ E(K) which leaves a member of Lo (in which case e is a multiedge, since
it enters a singleton leaf of Li) or V (K) ⊆ C(Y ) for some Y ∈ Lo with c(Y ) ≥ 2.
This is a contradiction, since Zj is disjoint from multiedges as well as from C∗. •

Claim 3.7. If Zj − C(Xj) 6= ∅ then Zj − C(Xj) is an independent set of atoms for
all l + 1 ≤ j ≤ l + 2k(k − 1).

Proof: Let {z} = C(Xj) and let v ∈ Zj − z. It follows from the definition of strong
semi-chain that v is a singleton leaf of Li, and hence d−(v) = k holds. We shall prove
that v is a singleton leaf in Lo as well.
D[Zj − z] is acyclic by Claim 3.6. First suppose that v is a source in D[Zj − z].

Since v is a source, D is simple, k ≥ 2, and c(Xj) = 1, there is an edge uv with u /∈ Zj.
Since Zj is disjoint from multiedges, we must have u ∈ Xj+1 (otherwise uv enters two
in-sets: Xj and {v}). It follows from property (f) of strong witness pairs that every
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3.1 Semi-leaves and strong semi-chains 7

edge either enters or leaves a set of Lo or is contained by a core of some set in Lo.
If edge uv leaves a set in Lo or is in the core of some set of Lo then Zj intersects a
multiedge or C∗, contradicting our assumption. Thus uv enters an out-set Y ∈ Lo.
Since Li ∪Lo is laminar (by property (c)), it follows that Y ⊆ Zj. Since Zj ∩C∗ = ∅,
there exists a vertex y ∈ Y such that {y} is a singleton leaf of Lo. If y = v then v is
a singleton leaf in Lo, and d+(v) = k follows, as claimed. Otherwise y ∈ Y − v. Since
k ≥ 2, at least two edges leave y. Since D is simple, there is an edge yw with w 6= z.
Since y ∈ Zj and Zj is disjoint from multiedges, yw cannot leave Y and cannot enter
any vertex in Y − z, a contradiction. This shows that all sources in D[Zj − z] are
atoms.

Hence, since Zj is disjoint from multiedges, it follows that all vertices in D[Zj −
C(Xj)] are sources, and hence all of them are atoms and there are no edges in
D[Zj − C(Xj)], as required. •

Now consider the first two sets X ′ = Xl and X = Xl+1 in the subchain. Let
B = X ′ −X, A = X −Xl+2, {a} = C(X), {b} = C(X ′). Focus on the k ≥ 2 edges
entering X. These edges cannot enter X −A, since X −Xl+2k(k−1)+2 is disjoint from
multiedges and if it enters Xj for j ≥ l + 2k(k − 1) + 2 then it has in-multiplicity
at least 2k(k − 1) + 2, which would contradict our assumption. These edges cannot
enter A− a either, since A− a consists of singleton leaves of Li and A− a is disjoint
from multiedges. Thus these edges enter a. Now there is no edge from B − b to a,
since it would be a multiedge incident to A, because B−b consists of atoms. So, since
D is simple, at most one edge (from b to a) can come from B and at least one edge
must come from V − X ′. However, this contradicts the fact that A is disjoint from
multiedges. This proves the lemma. •

Lemma 3.8. Suppose that k(s(Li)+s(Lo))+m ≤ 2k(k−1) and for every edge e ∈ E
we have im(e) ≤ 2k(k− 1) + 1 and om(e) ≤ 2k(k− 1) + 1. Then there is a set S ⊂ V
with |S| ≤ 130k7 such that V − S is an independent set of atoms.

Proof: Let L∗i = {X : X is a leaf in Li} and let L′i = L − L∗i .

Claim 3.9. |L′i| ≤ 64k7.

Proof: Suppose, for a contradiction, that |L′i| ≥ 64k7 + 1. Clearly, L′i is a laminar
family and the leaves of L′i are precisely the semi-leaves of L. Thus, by Lemma 3.4, L′i
has at most 2k(k−1) leaves. Thus, by considering the natural rooted tree structure of
the laminar family L′i, it is easy to see that L′i has at most 2k(k−1)−1 members with
at least two children. Thus at least |L′i| − 4k(k − 1) + 1 ≥ 64k7 − 4k2 members of L′i
have precisely one child. By deleting those nodes of this rooted tree that correspond
to leaves or sets with at least two children, we obtain a set of disjoint paths. Thus
there must be a chain X of L′i whose length is at least 64k7−4k2

4k2 ≥ 16k5 − 1. By the
hypothesis of the lemma we have s(Li) ≤ 2(k− 1), and hence at most 2(k− 1) mem-
bers X of the chain X of L′i can have c(X) ≥ 2 (in Li) or can contain a non-singleton
leaf (in Li). Thus there is a subchain of X of length at least 16k5−1

2(k−1)+1
≥ 8k4 which
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Section 4. The upper bound and the extremal digraphs 8

corresponds to a strong semi-chain in Li. This contradicts Lemma 3.5. •

Since s(Li) ≤ 2(k−1), it follows from (2) that |Li| ≥ |V |−1−2(k−1) ≥ |V |−2k+1.
By Claim 3.9 we have |L′i| ≤ 64k7, and hence |L∗i | ≥ |V | − 64k7 − 2k + 1. Moreover,
since s(Li) ≤ 2(k−1), it follows from Lemma 3.1 that Li has at most one non-singleton
leaf. Thus Li has at least |V | − 64k7 − 2k singleton leaves. By symmetry, the same
argument implies that Lo has at least |V | − 64k7 − 2k singleton leaves. Therefore
there exist at least |V | − 128k7− 4k atoms in D. Since an edge connecting two atoms
is a multiedge, and m(L) ≤ 2k(k − 1), at most 4k(k − 1) atoms can be connected to
other atoms. So we can conclude that there is a set of independent atoms of size at
least |V | − 128k7 − 4k − 4k(k − 1) ≥ |V | − 130k7. This proves the lemma. •

4 The upper bound and the extremal digraphs

In this section we complete the proof of our main result. To this end we first prove a
lemma which can be used to extend a subgraph of D to a k-edge-connected spanning
subgraph by adding a sufficiently small set of new edges.

We also need the following well-known inequality, which is easy to check by counting
the contribution of an edge to the two sides.

Proposition 4.1. Let H = (V,E) be a multidigraph and let X, Y ⊆ V . Then

d−(X) + d−(Y ) ≥ d−(X ∩ Y ) + d−(X ∪ Y ). (6)

Let D = (V,E) be a multidigraph and let u, v ∈ V . We use λD(u, v) to denote
the maximum number of pairwise edge-disjoint directed paths from u to v in D. Let
r ∈ V be a designated root vertex in D and let k be a positive integer. Let

odk
D,r(v) = max{k − λD(r, v); 0}

denote the “out-deficiency” of vertex v with respect to k. Let P k
out(D, r) =

∑
(odk

D,r(v) :
v ∈ V − r). We say that D is k-out-connected from r if λD(r, v) ≥ k holds for all
v ∈ V − r (or equivalently, if odk

D,r(v) = 0 for all v ∈ V − r). Similarly, we define
idk

D,r(v) = max{k − λD(v, r); 0} and P k
in(D, r) =

∑
(idk

D,r(v) : v ∈ V − r), and call D
k-in-connected from r if λD(v, r) ≥ k holds for all v ∈ V − r. We shall omit some of
the indices when they are clear from the context. Note that if D is simultaneously
k-out-connected and k-in-connected from r then D is k-edge-connected.

Lemma 4.2. Let D = (V,E) be a k-edge-connected multidigraph, let r ∈ V be a
designated root vertex, and let D′ = (V,E ′) be a spanning subgraph of D. Then
(a) there is a set of edges Ē ⊆ E−E ′ with |Ē| ≤ P k

out(D
′, r) such that D̄ = (V,E ′∪Ē)

is k-out-connected from r,
(b) there is a set of edges Ẽ ⊆ E−E ′ with |Ẽ| ≤ P k

in(D′, r) such that D̃ = (V,E ′∪ Ẽ)
is k-in-connected from r.
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Section 4. The upper bound and the extremal digraphs 9

Proof: Consider part (a) first. Our proof is by induction on Pout(D
′). If Pout(D

′) = 0
then D′ is k-out-connected from r, and the lemma trivially holds. Now suppose
Pout(D

′) > 0. Let M = max{odD′(v) : v ∈ V − r} and let w ∈ V − r be a vertex
with odD′(w) = M > 0. By Menger’s theorem there is a set, and hence there is a
maximal set X ⊆ V − r with w ∈ X and d−D′(X) = λD′(r, w) = k −M . Since D is
k-edge-connected, there is an edge e = uz ∈ E − E ′ with u ∈ V −X and z ∈ X. By
the maximality of M , and since X separates z and r, we must have odD′(z) = M . Let
D′′ = D′ + e. Clearly, odD′′(v) ≤ odD′(v) for all v ∈ V − r.

We claim that odD′′(z) = odD′(z)− 1. For a contradiction suppose that λD′′(r, z) =
k −M , and hence there is a set Y ⊆ V − r with z ∈ Y and d−D′′(Y ) = k −M . Since
d−D′(Y ) ≥ k −M , we have u ∈ Y and d−D′(Y ) = k −M . By applying (6) to the pair
X,Y in D′, we obtain

k −M + k −M = d−D′(X) + d−D′(Y ) ≥ d−D′(X ∩ Y ) + d−D′(X ∪ Y ) ≥ k −M + k −M,

and hence d−D′(X ∪ Y ) = k − M follows. Since u ∈ Y − X, this contradicts the
maximality of X. This proves that odD′′(z) = odD′(z)− 1 holds.

Thus Pout(D
′′) ≤ Pout(D

′)− 1. By the induction hypothesis there is a set of edges
F with |F | ≤ Pout(D

′′) for which (V,E ′ ∪ {e} ∪ F ) is k-out-connected from r. Thus
Ē = F + e is the required set of edges for D′.

Part (b) follows from (a) after reversing the directions of all edges in D. •

Note that Lemma 4.2 gives rise to another short proof of Theorem 2.3. To see
this consider the subgraph D′ = (V, ∅) of a minimally k-edge-connected multidigraph
D = (V,E). By applying Lemma 4.2(a) and (b) we obtain two subsets of edges Ē
and Ẽ of E with |Ē|, |Ẽ| ≤ k(|V |−1) such that D′′ = (V, Ē ∪ Ẽ) is k-edge-connected.
Thus D = D′′ must hold, and hence |E| ≤ 2k(|V | − 1) follows.

Theorem 4.3. Let D = (V,E) be a minimally k-edge-connected digraph with |V | ≥
(k − 1)

(
130k7

k

)2
+ 130k7 + 1, where k ≥ 2. Then |E| ≤ 2k(|V | − k), and equality holds

if and only if D = DKk,|V |−k.

Proof: By Lemma 3.8 there is a set S ⊂ V with |S| = 130k7 such that T = V − S
is an independent set of atoms. Since |V | ≥ (k − 1)

(|S|
k

)2
+ 130k7 + 1, we have

|T | = |V | − |S| = |V | − 130k7 ≥ (k − 1)
(

130k7

k

)2
+ 1. Since T is an independent set of

atoms, and D is simple, we have N+(v), N−(v) ⊆ S and |N+(v)| = |N−(v)| = k for
all v ∈ T . The pigeon-hole principle and our bounds on |S| and |T | imply that there
is a set T ′ ⊆ T with |T ′| = k such that N+(v) = N+(w) and N−(v) = N−(w) for all
pairs v, w ∈ T ′. Let us fix such a set T ′ and let us denote the common sets of out-
and in-neighbours by A = N+(v) and B = N−(v), for v ∈ T ′.

Let H = D/T ′ denote the multidigraph obtained from D by contracting the set
T ′ into a new vertex r. H is k-edge-connected, since D is k-edge-connected. We
shall denote the vertex set and edge set of H by V ′ and E ′, respectively. Note that
|V ′| = |V |−k+1. Since T ′ is an independent set, there is a natural bijection between
the edge sets of D and H.
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Claim 4.4. Let H̄ = (V ′, Ē) be a k-edge-connected subgraph of H. Then D̄ = (V, Ē)
is also k-edge-connected.

Proof: For a contradiction suppose that D̄ is not k-edge-connected and let ∅ 6= X ⊂
V be a set of vertices with d+(X) < k. Since H̄ is k-edge-connected, and by the
construction of H̄, we must have X ∩ T ′ 6= ∅ and T ′ −X 6= ∅. Moreover, there is an
edge from each vertex of T ′ ∩X to each vertex of A−X, and there is an edge from
each vertex of B ∩X to each vertex of T ′ −X. Thus

d+(X) ≥ |T ′ ∩X| · |A−X|+ |T ′ −X| · |B ∩X|.

Since d+(X) < k and |T ′| = k, this implies that either A ⊆ X or B∩X = ∅. Consider
the case when A ⊆ X. (The other case is similar.) If |B ∩X| = k then we also have
d+(X) ≥ k, thus we can also assume that B −X 6= ∅. Let b ∈ B −X.

Since H̄ is k-edge-connected, there exist k edge-disjoint paths in D̄ from T ′ to b.
Observe that for every edge tu in D̄ with t ∈ T ′ we have u ∈ A. Thus there exist k
edge-disjoint paths from A to b in D̄. Since A ⊆ X and b /∈ X, this implies d+(X) ≥ k,
a contradiction. This completes the proof of the claim. •

We shall consider two cases.

Case 1. A 6= B.

In this case we define a k-edge-connected spanning subgraph of D by constructing a
k-edge-connected spanning subgraph of H, with the help of Lemma 4.2. Let F denote
the set of edges incident to T ′ in D. This set corresponds to the set of edges incident
to r in H. Since T ′ is a set of independent atoms, we have |F | = 2k2. Consider the
subgraph H ′ = (V ′, F ) of H.

Clearly, λH′(r, v) = k for all v ∈ A. Thus Pout(H
′, r) = k(|V ′| − 1 − |A|) =

k(|V | − 2k). By applying Lemma 4.2(a) to H and its subgraph H ′, we obtain that
there is a set Ē ⊆ E ′ − F with |Ē| ≤ k(|V | − 2k) for which H̄ = (V ′, F ∪ Ē) is
k-out-connected from r.

Let p = |B−A| ≥ 1 and let B−A = {b1, b2, ..., bp}. Since H̄ is k-out-connected from
r, we have dH̄(bi) ≥ k for 1 ≤ i ≤ p. Since D is simple, |B| = k, and there are no edges
from r to B−A in H, it follows that there is an edge ei = wibi in H̄ with wi ∈ V ′−B−r
for all 1 ≤ i ≤ p. Note that ei ∈ Ē for 1 ≤ i ≤ p. Let H∗ = H ′ + {e1, e2, ..., ep}.
Clearly, we have λH∗(v, r) = k for all v ∈ B, and λH∗(y, r) = d+

H∗(y) for all y ∈
V ′ − B − r. By the choice of the edges ei, we have

∑
(d+

H∗(y) : y ∈ V ′ − B − r) = p.
Thus Pin(H∗, r) = k(|V | − 2k)− p. By Lemma 4.2(b) this implies that there is a set
Ẽ ⊆ E ′−(F ∪{e1, e2, ..., ep}) of edges with |Ẽ| ≤ k(|V |−2k)−p such that H∗+Ẽ is k-

in-connected from r. Therefore Ĥ = (V ′, F ∪Ē∪Ẽ) is a k-edge-connected subgraph of
H with |E(Ĥ)| ≤ |F |+|Ē|+|Ẽ| ≤ 2k2+k(|V |−2k)+k(|V |−2k)−p = 2k(|V |−k)−p.
By Claim 4.4 it follows that D has a k-edge-connected spanning subgraph D̂ with at
most 2k(|V | − k) − p edges. Since D is minimally k-edge-connected, we must have
D = D̂, and hence |E| ≤ 2k(|V | − k)− p < 2k(|V | − k). This proves the theorem in
Case 1.

Case 2. A = B.
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As before, let F denote the set of edges incident to T ′. In this case the subgraph of
D induced by F is k-edge-connected. Thus, since D is minimally k-edge-connected,
this implies that A is an independent set in D. Since |E(Dk,|V |−k)| = 2k(|V | − k), we
may assume that D 6= Dk,|V |−k. Now we must have an edge au for some a ∈ A for
which either N+(u) 6= A or N+(u) = A and N−(u) 6= A holds. Thus either there is
a path au, uz or a path zu, ua with z, u /∈ A. By symmetry we may assume that the
first alternative holds. Since D is k-edge-connected, and k ≥ 2, there exists a path P
in D from z to A not using the edge zu (this edge may or may not be an edge of D).
Let W be the subgraph of D induced by the edges E(P ) ∪ {au, uz}. It is easy to see
that |E(W )| ≤ 2|V (W )−A| − 1 and that the subgraph D[T ′ ∪A∪V (W )] is strongly
connected.

Let D′ = (V, F ∪ E(W )) and let r ∈ T ′ be a designated root vertex. Clearly, we
have λD′(r, a) = λD′(a, r) = k for all a ∈ A ∪ (T ′ − r) and λD′(r, w) = λD′(w, r) = 1
for all w ∈ V (W ) − A. Therefore we can deduce that Pout(D

′) = Pin(D′) = k(|V | −
2k) − |V (W ) − A|. By Lemma 4.2(a) and (b) this implies that there exist edge
sets Ē, Ẽ ⊆ E − (F ∪ E(W )) with |Ē|, |Ẽ| ≤ k(|V | − 2k) − |V (W ) − A| such that
D̄ = (V, F ∪ E(W ) ∪ Ē) is k-out-connected from r and D̃ = (V, F ∪ E(W ) ∪ Ẽ) is
k-in-connected from r.

Thus D̂ = (V, F ∪ E(W ) ∪ Ē ∪ Ẽ) is a k-edge-connected spanning subgraph of D
with |E(D̂)| ≤ 2k2 + |E(W )|+ 2k(|V | − 2k)− 2|V (W )−A| ≤ 2k(|V | − k)− 1. Since
D is minimally k-edge-connected, we must have D = D̂, and hence |E| < 2k(|V | − k)
follows. This proves the theorem. •
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