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Constructive characterizations for packing and
covering with trees

András Frank? and László Szegő??

Abstract

We give a constructive characterization of undirected graphs which contain k
spanning trees after adding any new edge. This is a generalization of a theorem
of Henneberg and Laman who gave the characterization for k = 2.

We also give a constructive characterization of graphs which have k edge-
disjoint spanning trees after deleting any edge of them.
Keywords. graph, constructive characterization, packing and covering by trees

AMS subject classification. 05C40

1 Introduction

By a constructive characterization of a graph property, we mean a building procedure
consisting of some simple steps so that the graphs obtained from a specified initial
graph are precisely those having the property. For example, a graph is connected
if and only if it can be obtained from a node by the operation: add a new edge
connecting an existing node with either an existing node or a new one. A slightly less
trivial known result is the so called ear-decomposition of 2-connected graphs, while
W.T. Tutte’s [17] constructive characterization of 3-connected graphs is much deeper.
Note that no constructive characterization is known for general k-connectivity. As far
as edge-connectivity is concerned, the situation is much better. A graph is said to be
k-edge-connected if the deletion of at most k − 1 edges leaves a connected graph.
From now on, adding an edge means adding a new edge connecting two existing nodes.
This new edge can be parallel to existing ones, but it cannot be a loop unless otherwise
stated. In 1976 L. Lovász [9] proved the following result.
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Section 1. Introduction 2

Theorem 1.1 (Lovász). An undirected graph G = (V,E) is 2k-edge-connected if
and only if G can be obtained from a single node by the following two operations:

(i) add a new edge (possibly a loop),

(ii) add a new node z, subdivide k existing edges by new nodes, and identify the k
subdividing nodes with z.

A directed counterpart of this result is due to W. Mader [11]. A digraph is said
to be k-edge-connected if the deletion of at most k − 1 edges leaves a strongly
connected digraph.

Theorem 1.2 (Mader). A directed graph G = (V,E) is k-edge-connected if and
only if G can be obtained from a single node by the following two operations:

(i) add a new edge (possibly a loop),

(ii) add a new node z, subdivide k existing edges by new nodes and identify the k
subdividing nodes with z.

We call the operation (ii) in these theorems pinching k edges (with z).
This kind of characterizations can be very useful. For example, Lovász used his re-

sult to derive Nash-Williams’ theorem [12] on k-edge-connected orientations of graphs,
while Mader used his result to derive Edmonds’ theorem [1] on disjoint arborescences.
k-edge-connectivity is the usual way to formulate one’s intuitive feeling for high

’edge-connection’ of an undirected graph but there may be other possibilities, as well.
We call an undirected graph k-tree-connected if it contains k edge-disjoint spanning
trees. In 1961 W.T. Tutte found the following characterization [16].

Theorem 1.3 (Tutte). An undirected graph G = (V,E) is k-tree-connected if and
only if

e(F) ≥ k(t− 1) (1)

for every partition F = {X1, X2, . . . Xt} of V with non-empty subsets and t ≥ 2, where
e(F) denotes the number of edges connecting distinct classes of F .

By the definition itself, it is straightforward to construct all k-tree-connected graphs:
take k edge-disjoint spanning trees and add some extra edges. In the spirit of Lovász’
theorem, however, it would be desirable to find an operation which constructs a k-
tree-connected graph from one which has one less node or edge. This is indeed possible
as was pointed out in [4] by observing that a combination of Mader’s Theorem 1.2
and Tutte’s Theorem 1.3 gives rise to the following. For a direct proof, see Tay [15].

Theorem 1.4. An undirected graph G = (V,E) is k-tree-connected if and only if G
can be built from a single node by the following two operations:

(i) add a new edge,

(ii) add a new node z and k new edges ending at z,
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(iii) pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

C.St.J.A. Nash-Williams [14] proved the following counterpart of Tutte’s theorem
concerning coverings of trees rather than packing. For a graph G = (V,E), γG(X)
denotes the number of the edges of G with both end-nodes in X ⊆ V .

Theorem 1.5 (Nash-Williams). A graph G = (V,E) is the union of k edge-disjoint
forests if and only if γG(X) ≤ k|X| − k for all nonempty X ⊆ V .

One has the following constructive characterization for these graphs.

Theorem 1.6. An undirected graph G = (V,E) is the union of k edge-disjoint forests
if and only if G can be built from a single node by the following two operations:

(j) add a new node z and at most k new edges ending at z,

(jj) pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

The proof of this theorem easily follows by a proof of Theorem 1.4. (Sketch: It
is clear that a graph G which can be obtained by the operations is the union of
k edge-disjoint forests. The other direction: if there is no node of degree at most
k, then consider a node z of degree at most 2k − 1. We can add edges to G not
incident to z so that G becomes k-tree-connected. Since the inverse of operation (iii)
in Theorem 1.4 can be applied at any node of degree at most 2k− 1 so that it results
in a k-tree-connected graph, we are done.)

In this paper we consider two variants of the notion of k-tree-connectivity. We call a
graphG (with at least 2 nodes) nearly k-tree-connected if G is not k-tree-connected
but adding any new edge to G results in a k-tree-connected graph.

A nearly k-tree-connected graph has a partition F = {X1, X2, . . . Xt} violating (1).
In such a partition each set Xi must be a singleton for otherwise F would violate
(1) even after adding an edge connecting two distinct elements of Xi. Hence a nearly
k-tree-connected graph has exactly one partition F violating (1) and F consists of
singletons. Therefore such a graph G = (V,E) has exactly k(|V | − 1)− 1 edges.

Nearly 2-tree-connected graphs arose in connection with rigidity properties. L.
Henneberg [6] described a way to generate all minimally rigid plane structures, while
G. Laman [8] found a characterization of so-called minimally generically rigid graphs.
By combining these results, one obtains the following.

Theorem 1.7 (Henneberg and Laman). A graph G is nearly 2-tree-connected if
and only if G can be constructed from one (non-loop) edge by the following two oper-
ations:

(i) add a new node z and connect z to two distinct existing nodes,

(ii) subdivide an existing edge uv by a node z and connect z to an existing node
distinct from u and v.

EGRES Technical Report No. 2002-05



Section 1. Introduction 4

We are going to extend this result for arbitrary k ≥ 2. Let Kk−1
2 denote the graph

on two nodes with k − 1 parallel edges.

Theorem 1.8. An undirected graph G = (V,E) is nearly k-tree-connected if and only
if G can be built from Kk−1

2 by applying the following operations:

(O1’) add a new node z and k new edges ending at z so that no k parallel edges can
arise,

(O2’) choose a subset F of i existing edges (1 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

Actually, we will prove this result in a slightly more general form. A graph G =
(V,E) is said to be k-sparse if γG(X) ≤ k|X| − (k + 1) for all X ⊆ V, |X| ≥ 2.
(By convention the graph with a single node is k-sparse.) By Theorem 1.5 of Nash-
Williams, a graph G = (V,E) with |E| = k|V | − (k + 1) is nearly k-tree-connected
if and only if G is k-sparse. Therefore the following constructive characterization of
k-sparse graphs is indeed a generalization of Theorem 1.8.

Theorem 1.9. An undirected graph G = (V,E) is k-sparse if and only if G can be
built from a single node by applying the following operations:

(O1) add a new node z and at most k new edges ending at z so that no k parallel
edges can arise,

(O2) choose a subset F of i existing edges (1 ≤ i ≤ k − 1), pinch the elements of F
with a new node z, and add k − i new edges connecting z with other nodes so
that there are no k parallel edges in the resulting graph.

We call a graph highly k-tree-connected if the deletion of any existing edge
leaves a k-tree-connected graph. In [5] a constructive characterization was given
(among others) for highly 2-tree-connected graphs. Here we extend this for arbitrary
k ≥ 2.

Theorem 1.10. An undirected graph G = (V,E) is highly k-tree-connected if and
only if G can be built up from a node by the following two operations:

(j) add a new edge (possibly a loop),

(jj) pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

Section 2 includes some further notation and notions along with an important
remark on why the proof of Theorem 1.9 is significantly more difficult than that of
apparently similar results. We provide then some basic lemmas for proving Theorem
1.9 which already give rise to Theorem 1.7 of Henneberg and Laman.

Section 3 provides a necessary and sufficient condition for a given node to admit
the inverse of the operation in Theorem 1.9, while Section 4 serves to prove that
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Section 2. Splittings 5

there always exists a node satisfying this condition, completing this way the proof
of Theorem 1.9. In Section 5 we prove Theorem 1.10. An interesting feature of this
proof is that first a constructive characterization is proved for so-called (k, 1)-edge-
connected digraphs which is used then, via an earlier orientation theorem, for proving
Theorem 1.10.

We will use the following common notations. dG(X, Y ) denotes the number of
edges with one end-node in X − Y and other end-node in Y −X. For a node z ∈ V ,
dG(z) := dG(z, V − z). For a graph G = (V,E), γG(X) denotes the number of the
edges of G with both end-nodes in X ⊆ V . Let ΓG(u) denote the neighbour set of a
node u in G. ∪P :=

⋃
X∈P X for a set-system P .

2 Splittings

In an undirected graph G = (V,E) splitting off a pair of edges e = zu, f =
zv (u 6= v) at a node z ∈ V means the operation of replacing e and f by a new
edge connecting u and v. The edge uv, which may be parallel to existing ones, will
be called a split edge. When the degree of z is even, by a complete splitting
at z we mean the following operation: pair the edges incident to z and split off all
these pairs. Complete splitting may be viewed as the inverse of operation (ii) in
Theorem 1.1 and hence Lovász’ Theorem 1.1 can be formulated in terms of splittings.
To this end, we call a K-edge-connected graph G = (V,E) minimal if G − e is not
K-edge-connected for each edge e ∈ E. It is a known and easily provable property of
minimally K-edge-connected graphs with |V | ≥ 2 that

they always contain a node of degree K. (2)

Now (the non-trivial part of) Lovász’ theorem is equivalent to the following.

Theorem 2.1. A minimally 2k-edge-connected graph G = (V,E) with |V | ≥ 2 con-
tains a node z of degree 2k which admits a complete splitting preserving 2k-edge-
connectivity.

That is, in order to prove Theorem 1.1 one has to show that, among the nodes
of degree 2k guaranteed by property (2), there is at least one admitting a complete
splitting preserving 2k-edge-connectivity. Lovász’ original proof however showed that,
quite ’luckily’, every node of degree 2k admits such a complete splitting.

It turned out that the situation is similar in Theorem 1.4 and 1.6. Every node of
suitable degree admits the inverse of the operations preserving the graph property in
question.

It will also turn out that the situation is again the same in Theorem 1.7 of Henneberg
and Laman (which is the special case k = 2 of Theorem 1.8): every node of degree 2 or
3 admits the corresponding inverse operation preserving near 2-tree-connectivity. But
in Theorem 1.8 for k ≥ 3 a node with suitable degree does not necessarily admit the
corresponding inverse operation preserving near k-tree-connectivity, as shown by an
example of Z. Király. This is why the proof of Theorem 1.9 for k ≥ 3 is significantly
more difficult than that for k = 2.
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Section 2. Splittings 6

In the remaining part of this section we give the basic tools for proving Theorem
1.9.

Let k ≥ 2. A splitting off in G is admissible if the resulting graph on node set
V − z is k-sparse.

Definition 2.2. Let bG denote the following function on the subsets of V with car-
dinality at least 2:

bG(X) := k|X| − (k + 1)− γG(X).

By this definition a graph G = (V,E) is k-sparse if and only if bG(X) ≥ 0 for all
subsets X ⊆ V, |X| ≥ 2. If bG(X) = 0 and X 6= V , then X is said to be a G-tight set.
Furthermore G is nearly k-tree-connected if and only if G is k-sparse and bG(V ) = 0.
We will abbreviate bG by b.

Observation 2.3. Splitting off zu and zv at node z is non-admissible (that is, adding
the edge uv to the induced subgraph of G on V − z does not result in an k-sparse
graph) if and only if there exists a tight subset in V − z containing u and v.

We say that splitting off j disjoint pairs of edges (1 ≤ j ≤ k − 1) at node z is
admissible if it consists of admissible splittings. Obviously the order of the pairs
in a splitting sequence is irrelevant. The length of a splitting sequence S is the
number of its pairs and it is denoted by |S|. GS denotes the graph obtained after
applying the splitting sequence S.

In proving Theorem 1.9 our goal will be to find a node at which applying the inverse
of operation (O1) or (O2) results in a k-sparse graph. That is why an admissible
splitting sequence at z of length dG(z)− k =: i is called a full splitting for dG(z) ≥
k + 1. For the sake of convenience, at a node z with degree at most k the inverse of
operation (O1) (that is, the deletion of z and all of its adjacent edges) is also called
a full splitting.

Note, that bG(X) is an upper bound for the number of split edges induced by
X ⊆ V − z provided by an admissible sequence of splittings at some node z.

The next four claims are about k-sparse graphs and will be crucial in the proof of
Theorem 1.9.

Claim 2.4. If X, Y ⊆ V and |X ∩ Y | ≥ 2, then

b(X) + b(Y ) = b(X ∩ Y ) + b(X ∪ Y ) + d(X, Y ).

Proof. b(X) + b(Y ) = k|X| − (k + 1)− γG(X) + k|Y | − (k + 1)− γG(Y ) = k(|X|+
|Y |)− 2(k+ 1)− (γG(X ∩Y ) +γG(X ∪Y )−dG(X, Y )) = k|X ∩Y |− (k+ 1)−γG(X ∩
Y ) + k|X ∪Y |− (k+ 1)− γG(X ∪Y ) + dG(X,Y ) = b(X ∩Y ) + b(X ∪Y ) + d(X,Y ). 2

Claim 2.5. If X, Y ⊆ V and |X ∩ Y | = 1, then

b(X) + b(Y ) = b(X ∪ Y )− 1 + d(X,Y ).
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Section 3. Full splitting 7

Proof. b(X)+b(Y ) = k|X|−(k+1)−γG(X)+k|Y |−(k+1)−γG(Y ) = k(|X|+ |Y |−
1)−(k+1)−1−(γG(X)+γG(Y )) = k|X∪Y |−(k+1)−1−(γG(X∪Y )−dG(X,Y )) =
b(X ∪ Y )− 1 + d(X,Y ).

2

Claim 2.6. If X1, X2, X3 ⊆ V and |Xj ∩Xl| = 1 for 1 ≤ j < l ≤ 3 and |X1 ∩X2 ∩
X3| = 0, then

b(
3⋃

j=1

Xj) ≤
3∑

j=1

b(Xj)− k + 2.

Proof. b(
⋃3

j=1Xj) = k|
⋃3

j=1Xj| − (k+ 1)− γG(
⋃3

j=1Xj) ≤ k(
∑3

j=1 |Xj| − 3)− (k+

1)−
∑3

j=1 γG(Xj) =
∑3

j=1(k|Xj| − (k+ 1)− γG(Xj))− k+ 2 =
∑3

j=1 b(Xj)− k+ 2. 2

Remark. Especially, all of X1, X2, X3 cannot be tight at the same time for k ≥ 3.

Claim 2.7. Let X ⊂ V be a maximal tight set containing the distinct nodes c1, c2.
Let d be a node in V −X. If there is a tight set containing c1 and d, then there is no
tight set containing c2 and d.

Proof. According to Claim 2.4, P ∩ X = {c1} since X is maximal. By Claims 2.4
and 2.6 we obtain that there is no tight set containing c2 and d. 2

Let G be a k-sparse graph. Since
∑

v∈V dG(v) = 2|E| ≤ 2k|V | − 2(k + 1) < 2k|V |,
it follows that there is a node z of G with dG(z) ≤ 2k − 1.

Claim 2.8. Let G = (V,E) be a k-sparse graph. dG(u, v) ≤ k − 1 for any two nodes
u, v.

Proof. By the definition of k-sparse graphs, γG({u, v}) ≤ k|{u, v}| − (k+ 1) = k− 1
for set {u, v}. 2

3 Full splitting

The main task in proving Theorem 1.9 will be to show the existence of a node ad-
mitting a full splitting. This will be done in two steps. In this section we derive
a necessary and sufficient condition for an arbitrary specified node to admit a full
splitting, while in the next section we show that a k-sparse graph always has a node
satisfying this condition.

Let G be a k-sparse graph.

Proposition 3.1. If a node z of G has degree at most k + 1, then z admits a full
splitting.

Proof. If dG(z) is at most k, then if we delete z with its adjacent edges, then we
obviously get a k-sparse graph, that is, z admits a full splitting.
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Section 3. Full splitting 8

We claim that there always exists a full splitting at a node z with degree k + 1.
We will find a pair of edges zu and zv with u 6= v such that G− z + uv is a k-sparse
graph.

There is no tight set X ⊆ V − z which contains all the neighbours of z because,
if there was one, then bG(X + z) = bG(X) + k − dG(z) = 0 + k − (k + 1) < 0 which
contradicts that G is k-sparse. Since there are no edges with multiplicity greater than
k − 1 by Claim 2.8, the neighbour-set of z in G has at least two elements, hence by
Claim 2.7 there is an admissible splitting off at z, which is full at the same time for
a node with degree k + 1. 2

If G is nearly 2-tree-connected, then |E| = 2|V |−3 and hence there exists a node of
degree 2 or 3. Therefore Proposition 3.1 immediately gives the proof of the Theorem
1.7 of Henneberg and Laman: every node with degree 2 or 3 admits a full splitting.
Similarly, a 2-sparse graph has a node of degree at most 3, hence Theorem 1.9 follows
for k = 2. It is not true that a k-sparse graph always contain a node of degree at most
k + 1, there is a graph (on 8 nodes) showing that such a node z does not necessarily
exist. Hence Proposition 3.1 does not prove Theorem 1.9. From now on let k ≥ 3. For
k = 3 Z. Király observed [7] that a node z with degree k+ 2 = 5 does not necessarily
admit a full splitting. His example is shown in Figure 1.

a2

z

ta a
1 3

Figure 1: k = 3, z does not admit a full splitting

Call a node z small if k+ 2 ≤ dG(z) ≤ 2k−1. For a node z, let i denote dG(z)−k.

Theorem 3.2. A small node z of G does not admit a full splitting if and only if z has
a neighbour t and there is a family Pz of subsets of V − z with at least two elements
such that:

X ∩ Y = {t} for X, Y ∈ Pz, (3a)

∑
X∈Pz

b(X) < dG(z, t)− (k − i)− dG(z, V − z − ∪Pz). (3b)
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Section 3. Full splitting 9

Remark. In the graph of Figure 1, Xj := {t, aj} for j = 1, 2, 3.
Proof. Suppose first that t and Pz satisfy (3a), (3b) and let S be an admissible
splitting sequence. The number of split edges incident to t with other end-nodes
outside of ∪Pz is at most dG(z, V − z − ∪Pz). The number of split edges incident
to t with their other end-nodes in ∪Pz is at most

∑
X∈Pz

b(X). In a full splitting we
would have at least dG(z, t) − (k − i) split edges incident to t which implies by (3b)
that S is not full.

To see the other direction, let S be a longest admissible splitting sequence at z for
which the following pair is lexicographically maximal: (|ΓGS (z)|, |Pmax|) where Pmax

denotes a maximal tight set in GS which includes ΓGS (z) but does not contain z. If
there is no such a tight set, then let Pmax := ∅. Since z does not admit a full splitting,
|S| < i. From now on GS-tight is abbreviated by tight.

CASE 1. |ΓGS (z)| ≥ 2.

Claim 3.3. There exists a maximal tight subset Pmax of V − z containing all the
neighbours of z.

Proof. Let za and zb denote two non-parallel edges in GS . Since (za, zb) is not an
admissible splitting off, there is a tight set X ⊆ V − z containing a and b. According
to Claim 2.4, there is a maximal tight set Pmax ⊆ V − z containing a and b.

If there is another neighbour c of z which is not in Pmax, then there is a tight set
Y ⊆ V − z containing a and c, since (za, zc) is not an admissible splitting off. Since
Pmax is maximal, Y ∩ P = {a}. By Claim 2.7 (zb, zc) is an admissible splitting off, a
contradiction, that is, Pmax contains all the neighbours of z. 2

Claim 3.4. There exists a split edge which is disjoint from the nodes of Pmax.

Proof. Since there is no admissible splitting off at z in GS , according to Claim 3.3
there exists a maximal tight set Pmax ⊆ V − z. Let j, h,m denote the number of split
edges with exactly, respectively, 2, 1, 0 end-node in Pmax. j + h + m = |S| < i since
S is not full.

k|Pmax + z| − (k + 1) ≥ γG(Pmax + z) = γGS (Pmax) + j + h+ dGS (z, Pmax)

= γGS (Pmax) + j + h+ (k + i− 2(j + h+m))

= γGS (Pmax) + k + (i− (j + h+m))−m > k|Pmax| − (k + 1) + k −m

= k|Pmax + z| − (k + 1)−m,

which implies m > 0. 2

Claim 3.5. |ΓGS (z)| = 2.

Proof. Suppose indirectly that |ΓGS (z)| ≥ 3 and let a1, a2, a3 denote three of these
neighbours. By Claim 3.4, there is a split edge uv disjoint from Pmax. Let J = {1, 2, 3}.

By Claim 2.7, S − (zu, zv) ∪ (zu, zaj) is an admissible splitting sequence for at
least two elements j of J . We may suppose that S ′ := S − (zu, zv) ∪ (zu, za1) is an
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Section 3. Full splitting 10

admissible splitting sequence. But then the maximal GS′-tight set containing all the
remaining neighbours of z in GS′ contains v and includes Pmax, that is, S ′ contradicts
the choice of S. 2

Let s and t denote the two neighbours of z in GS . Since S is not a full splitting:
dGS (z) ≥ dG(z) − 2(i − 1) = k + i − 2(i − 1) = k − i + 2 ≥ 3. Therefore one of the
nodes t and s, say t, is connected to z by at least two paralell edges.

Claim 3.6. dGS (z, s) = 1.

Proof. Let us suppose indirectly that dGS (z, s) ≥ 2. By Claim 3.4, there is a split
edge uv disjoint from Pmax. According to Claim 2.7, S ′ := S − (zu, zv) ∪ (zu, zt) or
S ′ := S−(zu, zv)∪(zu, zs) is an admissible splitting sequence. But then |ΓG′S

(z)| = 3,
a contradiction. 2

An edge not incident to t is called t-disjoint. Let u ∈ V − t − s be an arbitrary
node for which there is a t-disjoint split edge uv. There is a tight set X ⊆ V − z
containing u and t, otherwise S ′ := S−(zu, zv)∪(zu, zt) is an other longest admissible
splitting sequence for which if v 6= s, then |ΓGS′

(z)| = 3, if v = s, then dGS′
(z, t) ≥

dGS′ (z, s) ≥ 2, which contradicts the choice of S by Claims 3.5 and respectively 3.6.
Let Pu be such a tight set containing minimal number of t-disjoint split edges which
is inclusionwise maximal. Similarly, there is a tight set X ⊆ V − z containing s and t,
otherwise S ∪ (zs, zt) is a longer admissible splitting sequence than S. Let Ps be such
a tight set containing minimal number of t-disjoint split edges which is inclusionwise
maximal.

Let Pz := {X ⊆ V − z : ∃u ∈ V incident to a t-disjoint split edge such that
X = Pu or X = Ps}. For nodes u 6= v, Pu can be equal to Pv, but there is only one
copy of them in Pz. Now we prove some essential properties of Pz.

X1
Xm

s t

z

X2

Figure 2: A set-system Pz.

Proposition 3.7. There is no t-disjoint split edge in a member X of Pz.

Proof. First let us assume that X = Ps. Let us suppose indirectly that there is a
t-disjoint split edge ab in Ps. S ′ := S − (za, zb) ∪ (zt, zs) is an admissible splitting
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Section 3. Full splitting 11

sequence with three remaining neighbours of z in GS′ , which contradicts the choice
of S by Claim 3.5.

Now let us assume X = Pu and u 6= s. By the definition of Pu we have a t-disjoint
split edge uv. Let us suppose indirectly that there is a t-disjoint split edge ab in Pu.
We may suppose that b 6= u.

If v 6= s, then v /∈ Pu (if v ∈ Pu, then S − (zu, zv) ∪ (zt, zu) is an admissible
splitting sequence with the same length but with one more remaining neighbour of z).
Pv ∩Pu = {t} according to Claim 2.4. S − (za, zb)− (zu, zv)∪ (zt, zu)∪ (zv, za) is an
other longest splitting sequence with one more remaining neighbour of z, so it cannot
be admissible, that is, there is a set Y ⊆ V − z containing a, u, v, t, which is tight in
GS . Y does not contain b, hence the tight set Y ∩ Pu contains a smaller number of
split edges than Pu, a contradiction. If v = s and v /∈ Pu, then the proof is the same.

Supppose that v = s and v ∈ Pu. Let us consider a split edge cd which is disjoint
from Pmax and hence from Pu (such an edge exists according to Claim 3.4). By
the previous paragraph tight sets Pc and Pd do not contain t-disjoint split edges.
According to Claim 2.4, Pc ∩ Pmax = {t}.

According to Claim 2.7, S ′ := S − (zc, zd) ∪ (zc, zs) is an admissible splitting
sequence. For S ′′ := S ′ − (zu, zv) ∪ (zt, zu), the cardinality of ΓGS′′ = {t, s, d} is 3,
hence S ′′ cannot be admissible, that is, there is a tight set Y ⊆ V − z containing
c, s, u, t in GS . Y ∪ Pmax contradicts the maximality of Pmax.

2

Now it follows that (3b) holds for Pz.

Claim 3.8. Let X, Y be two distinct members of Pz. X ∩ Y = {t}.

Proof. Let us suppose X = Pu and Y = Pv for some u, v ∈ V . By Proposition 3.7,
Pu 6⊂ Pv. If |Pu ∩ Pv| ≥ 2, then by Claim 2.4 dGS (Pu, Pv) = 0 and Pu ∪ Pv is tight.
Since it does not contain any t-disjoint split edge, it contradicts the maximal choice
of Pu. 2

Hence (3a) holds for Pz.

CASE 2. |ΓGS (z)| = 1. Let t denote the only neighbour of z in GS .

Claim 3.9. There exists a t-disjoint split edge.

Proof. Let l and m be the number of split edges incident to, respectively, not incident
to t. Since S is not full, l +m = |S| < i. In the original graph G by Claim 2.8:

k − 1 ≥ dG(z, t) = dG(z)− l − 2m = k + i− l − 2m = k + (i− l −m)−m > k −m,

which implies that m > 1. 2

Since S is not a full splitting: dGS (z) ≥ k + i− 2(i− 1) = k − i + 2 ≥ 3. Now we
define Pz. Let u ∈ V − t be an arbitrary node for which there is a t-disjoint split edge
uv. There is a tight set X ⊆ V − z containing u and t, otherwise S ′ := S − (zu, zv)∪
(zu, zt) is an other longest admissible splitting sequence for which |ΓGS′ (z)| = 2, which
contradicts the choice of S. Let Pu be such a tight set containing minimal number of
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t-disjoint split edges which is inclusionwise maximal. Let Pz := {X ⊆ V − z : ∃u ∈ V
incident to a t-disjoint split edge such that X = Pu}. (The only difference to the case
above is that there is no set Ps here.)

Proposition 3.10. There is no t-disjoint split edge in an arbitrary element of Pz.

Proof. Assume X = Pu. By the definition of Pu we have a t-disjoint split edge uv.
Let us suppose indirectly that there is a t-disjoint split edge ab in Pu. We may suppose
that b 6= u. v /∈ Pu, otherwise S−(zu, zv)∪(zt, zu) is an admissible splitting sequence
with the same length but with one more remaining neighbour of z. Pv ∩ Pu = {t}
according to Claim 2.4. S − (za, zb)− (zu, zv)∪ (zt, zu)∪ (zv, za) is an other longest
splitting sequence with one more remaining neighbour of z, so it cannot be admissible,
that is, there is a set Y ⊆ V − z containing a, u, v, t, which is tight in GS . Y does not
contain b, hence the tight set Y ∩ Pu contains a smaller number of split edges than
Pu, a contradiction. 2

Now it follows that (3b) holds for Pz.

Claim 3.11. Let X,Y be two distinct members of Pz. X ∩ Y = {t}.

Proof. Let us suppose X = Pu and Y = Pv for some u, v ∈ V . By Proposition 3.7,
Pu 6⊂ Pv. If |Pu ∩ Pv| ≥ 2, then by Claim 2.4 dGS (Pu, Pv) = 0 and Pu ∪ Pv is tight.
Since it does not contain any t-disjoint split edge, it contradicts the maximal choice
of Pu. 2

Hence (3a) holds for Pz.
We have showed that if a small node z does not admit a full splitting, then the

neighbour t of z and set-system Pz satisfy both (3a) and (3b). 2 2

4 Construction of k-sparse graphs

Proof of Theorem 1.9. It is easy to see that any application of operation (O1) or
(O2) in a k-sparse graph results in a k-sparse graph. Now we want to prove that a
k-sparse graph G always can be built up in the way described in Theorem 1.9. By
induction it suffices to show that there is a k-sparse graph G′ = (V ′, E ′) so that G
arises from G′ by one application of operation (O1) or (O2).

The existence of such a G′ is clearly equivalent to the following statement. There
is a node z of G for which

(α) dG(z) ≤ 2k − 1, and

(β) there is a full splitting at z (that is, dG(z) ≤ k or there are i := dG(z)−k disjoint
pairs of edges incident to z so that after splitting off these i pairs and deleting
the remaining k − i edges at z we obtain a k-sparse graph G′ = (V − z, E ′)).

As was shown in Section 3, if k = 2, then any node satisfying (α) will automatically
satisfy (β). The main ingredient of proving the existence of a node z satisfying both
(α) and (β) is Theorem 3.2.
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Let G be a k-sparse graph with at least two nodes. If there is a node z with degree
at most k + 1, then we are done by Proposition 3.1. Therefore we may assume that
every node of G has degree at least k+ 2. Furthermore let us suppose indirectly that
there is no small node admitting a full splitting. Recall the definition of a small node
in Section 3.

By Theorem 3.2, for any small node z there exists a set-sestem Pz. Let ϕ(Pz) :=
dG(z, t)− (k − i)− dG(z, V − z − ∪Pz)−

∑
X∈Pz

b(X). Note that ϕ(Pz) + (k + i) is
a lower bound for the number of parallel edges between z and t remaining after some
admissible splittings. Property (3b) in Theorem 3.2 is equivalent to ϕ(Pz) > 0.

Let us choose Pz to be lexicographically maximal with respect to the following
triple: (ϕ(Pz),−|Pz|, | ∪ Pz|). Let τ(z) denote the node t in Theorem 3.2 for a small
node z, which is called the blocking node of z.

We will show that the degree of a blocking node is big, and by |E| ≤ k|V | − (k+ 1)
there must be a small node without a blocking node. First we prove two lemmas
which will be useful for proving that the degree of a blocking node is big. Recall, that
for a small node z, i := dG(z)− k. From now on dG is abbreviated by d.

Lemma 4.1. |Pz| ≥ 3 for any small node z not admitting a full splitting.

Proof. Suppose first that Pz = {X}.

b(X + z) = b(X) + k − d(z,X) (by the definition of b)

= b(X) + k − (d(z)− d(z, V − z −X))

= b(X) + k − (k + i− d(z, V − z −X)) = (b(X) + d(z, V − z −X) + (k − i))− k

< d(z, t)− k (by (3b) of Theorem 3.2)

< 0 (by Claim 2.8),

a contradiction.
Second, let Pz = {X1, X2}. Since ϕ(Pz) > ϕ({X1 ∪X2}),

d(z, t)− (k − i)− d(z, V − z − (X1 ∪X2))− (b(X1) + b(X2)) >

> d(z, t)− (k − i)− d(z, V − z − (X1 ∪X2)− b(X1 ∪X2)),

hence b(X1 ∪ X2) > b(X1) + b(X2). By Lemma 2.5, this implies b(X1 ∪ X2) =
b(X1) + b(X2) + 1 and d(X1, X2) = 0. By the definition of b we have

0 ≤ b(X1 ∪X2 + z) = b(X1 ∪X2) + k − d(z,X1 ∪X2)

= (b(X1) + b(X2) + 1) + k − d(z,X1 ∪X2)

= b(X1) + b(X2) + 1 + k − (d(z)− d(z, V − z − (X1 ∪X2)))

= b(X1) + b(X2) + d(z, V − z − (X1 ∪X2)) + (k − i) + i− d(z) + 1

< d(z, t)− d(z) + i+ 1 ≤ (k − 1)− (k + i) + i+ 1 = 0, by (3b) and Claim 2.8,

a contradiction. 2
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Lemma 4.2. If P ∈ Pz contains a small node z′ such that τ(z) = τ(z′) = t and
P ′ ∈ Pz′ and P ′ − P 6= ∅, then z ∈ P ′.

Proof. Let us suppose indirectly that z /∈ P ′. Let i := d(z)− k and i′ := d(z′)− k.
Case 1. |P ∩ P ′| ≥ 2.

By the lexicographically maximal choice of Pz, ϕ(P ′z) < ϕ(Pz) holds for P ′z :=
Pz − P + (P ∪ P ′). By the definition of ϕ, we have d(z, t) − (k − i) − d(z, V − z −⋃

X∈P ′z
X)−

∑
X∈P ′z

b(X) <

< d(z, t)− (k − i)− d(z, V − z −
⋃

X∈Pz
X)−

∑
X∈Pz

b(X), and hence

−d(z, V − z −
⋃

X∈P ′z

X)−
∑

X∈P ′z

b(X) < −d(z, V − z −
⋃

X∈Pz

X)−
∑

X∈Pz

b(X).

By the definition of P ′z, we obtain−d(z, V−z−
⋃

X∈Pz
X)+d(z, P ′−P )−

∑
X∈Pz

b(X)+
b(P )− b(P ∪P ′) < −d(z, V −z−

⋃
X∈Pz

X)−
∑

X∈Pz
b(X), from which d(z, P ′−P )+

b(P )− b(P ∪ P ′) < 0, and

b(P ) < b(P ∪ P ′)− d(z, P ′ − P ) ≤ b(P ∪ P ′) (4)

follows.
On the other hand by the lexicographically maximal choice of Pz′ , ϕ(P ′z′) ≤ ϕ(Pz′)

holds for P ′z′ := Pz′ − P ′ + (P ∩ P ′). By the definition of ϕ we have d(z′, t) − (k −
i′) − d(z′, V − z′ −

⋃
X∈P ′

z′
X) −

∑
X∈P ′

z′
b(X) ≤ d(z′, t) − (k − i′) − d(z′, V − z′ −⋃

X∈Pz′
X)−

∑
X∈Pz′

b(X), and hence

−d(z′, V − z′ −
⋃

X∈P ′
z′

X)−
∑

X∈P ′
z′

b(X) ≤ −d(z′, V − z′ −
⋃

X∈Pz′

X)−
∑

X∈Pz′

b(X).

By the definition of P ′z′ , we obtain −d(z′, V − z′ −
⋃

X∈Pz′
X) − d(z′, P ′ − P ) −∑

X∈Pz′
b(X) + b(P ′)− b(P ∩ P ′) ≤ −d(z′, V − z′ −

⋃
X∈Pz′

X)−
∑

X∈Pz′
b(X), from

which −d(z′, P ′ − P ) + b(P ′)− b(P ∩ P ′) ≤ 0, and

b(P ′) ≤ b(P ∩ P ′) + d(z′, P ′ − P ) (5)

follows.
By adding up (4) and (5) we have

b(P )+b(P ′) < b(P∩P ′)+b(P∪P ′)+d(z′, P ′−P ) ≤ b(P∩P ′)+b(P∪P ′)+d(P−P ′, P ′−P ),

which contradicts Claim 2.4.
Case 2. |P ∩ P ′| = 1.

By the lexicographically maximal choice of Pz, for P ′z := Pz − P + (P ∪ P ′) we
also have (4). On the other hand by the lexicographically maximal choice of Pz′ ,
ϕ(P ′z′) < ϕ(Pz′) holds for P ′z′ := Pz′ − P ′. By the definition of ϕ we have d(z′, t) −
(k− i′)− d(z′, V − z′−

⋃
X∈P ′

z′
X)−

∑
X∈P ′

z′
b(X) < d(z′, t)− (k− i′)− d(z′, V − z′−⋃

X∈Pz′
X)−

∑
X∈Pz′

b(X), and hence

−d(z′, V −
⋃

X∈P ′
z′

X)−
∑

X∈P ′
z′

b(X) < −d(z′, V −
⋃

X∈Pz′

X)−
∑

X∈Pz′

b(X).
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By the definition of P ′z′ , we obtain−d(z′, V−
⋃

X∈Pz′
X)−d(z′, P ′−P )−

∑
X∈Pz′

b(X)+

b(P ′) < −d(z′, V −
⋃

X∈Pz′
X)−

∑
X∈Pz′

b(X), from which −d(z′, P ′−P ) + b(P ′) < 0,
and

b(P ′) ≤ d(z′, P ′ − P )− 1 (6)

follows.
By adding up (4) and (6) we have:

b(P ) + b(P ′) < b(P ∪ P ′) + d(z′, P ′ − P )− 1 ≤ b(P ∪ P ′) + d(P − P ′, P ′ − P )− 1,

which contradicts Claim 2.5. 2

X1

X’m’

t

z

s

X’1

X’m’+1

z’

Figure 3: Set-systems Pz and Pz′ .

Claim 4.3. For a node v in a set X ⊆ V ,

d(v,X − v) ≥ (k − 1)− b(X).

Proof. If |X| ≥ 3, then 0 ≤ b(X − v) = b(X)− k + d(v,X − v). If |X| = 2, then by
Claim 2.8 we are done. 2

Proposition 4.4. Let t be a blocking node. Let li (2 ≤ i ≤ k− 1) denote the number
of small nodes with degree k + i whose blocking node is t. Then

dG(t) ≥
k−1∑
i=2

(k − i+ 1)li + 3(k − 1).

Proof. For every node z∗ with blocking node t (i∗ := d(z∗)− k), according to (3b):

dG(z∗, t) ≥ k − i∗ + 1. (7)

Let z be a small node with degree k + i whose blocking node is t. Let m := |Pz|.
Let l denote the number of the members X1, X2, . . . Xl of Pz containing no small node
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with blocking node t, then by (3b): 0 < dG(z, t)− (k − i)− dG(z, V − z − ∪m
j=1Xj)−∑m

j=1 b(Xj) ≤ dG(z, t)− (k − i)−
∑m

j=1 b(Xj), that is,

(k − i+ 1) +
l∑

j=1

b(Xj) ≤ (k − i+ 1) +
m∑

j=1

b(Xj) ≤ dG(z, t). (8)

By Claim 4.3,

l∑
j=1

((k − 1)− b(Xj)) ≤ dG(t,
l⋃

j=1

Xj − t). (9)

By adding up (8) and (9):

l(k − 1) + (k − i+ 1) ≤ dG(z, t) + dG(t,
l⋃

j=1

Xj − t). (10)

Let L denote the set of small nodes with blocking node t.

Claim 4.5. If X ∈ Pz contains at least one small node with blocking node t, then there
exists a small node z0 ∈ X with blocking node t such that dG(z0, t)+dG(t,X−L−t) ≥
(k − iz0 + 1) + (k − 1).

To prove the claim, let z0 be a small node in X with blocking node t such that the
minimum member Y0 ⊆ X of Pz0 is minimal. Such a set and node exist by Lemmas 4.1
and 4.2, furthermore Y0 does not contain any node of L. By (3b), 0 < dG(z0, t)− (k−
i0)− dG(z0, V − z0−∪Yj∈Pz0

Yj)−
∑

Yj∈Pz0
b(Yj) ≤ dG(z0, t)− (k− i0)−

∑
Yj∈Pz0

b(Yj),

that is,

(k − i0 + 1) + b(Y0) ≤ (k − i0 + 1) +
∑

Yj∈Pz0

b(Yj) ≤ dG(z0, t). (11)

By Claim 4.3,

(k − 1)− b(Y0) ≤ dG(t, Y0 − t) ≤ dG(t,X − L− t). (12)

By adding up (11) and (12) we get the equality of the claim.
Now we have dG(t) ≥

∑
v∈L dG(t, v) + dG(t,

⋃m
j=1Xj − t− L)

=
∑
v∈L

dG(t, v) + dG(t,
l⋃

j=1

Xj − t− L) + dG(t,
m⋃

j=l+1

Xj − t− L)

≥
k−1∑
i=2

(k − i+ 1)li + l(k − 1) + (m− l)(k − 1) (by (7), (10) and Claim 4.5)

=
k−1∑
i=2

(k − i+ 1)li +m(k − 1),
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by Lemma 4.1, m ≥ 3. 2

It follows that a blocking node is not small because its degree is at least 3(k− 1) =
3k−3. Let Lk+i denote the subset of small nodes of degree k+ i whose blocking node
is t.

Claim 4.6. The average degree in W :=
⋃k−1

i=1 Lk+i + t is greater than 2k.

Proof. By Proposition 4.4, the sum of the degrees in W is the following.

f := dG(t) +
k−1∑
i=2

(k + i)|Lk+i| ≥
k−1∑
i=2

(k − i+ 1)|Lk+i|+ 3(k − 1) +
k−1∑
i=2

(k + i)|Lk+i|

= 3k − 3 + (2k + 1)
k−1∑
i=2

|Lk+i|.

Hence the average degree in W is:

f

1 +
∑k−1

i=2 |Lk+i|
≥ 3k − 3 + (2k + 1)

∑k−1
i=2 |Lk+i|

1 +
∑k−1

i=2 |Lk+i|

=
k − 4 + (2k + 1)(1 +

∑k−1
i=2 |Lk+i|)

1 +
∑k−1

i=2 |Lk+i|
=

k − 4

1 +
∑k−1

i=2 |Lk+i|
+(2k+1) > 2k, since k ≥ 3.

2

In a k-sparse graph G the average degree is

2|E|
|V |
≤ 2(k|V | − (k + 1))

|V |
< 2k.

So there must be a small node z with no blocking node, that is, z admits a full
splitting. End of proof of Theorem 1.9. 2 2

With the same technique a bit stronger result can also be proved.

Theorem 4.7. If G is k-sparse with at least two nodes, then there are at least two
nodes admitting a full splitting.

Proof. According to Theorem 1.9 there is a node s admitting a full splitting. 0 is
a lower bound on the degree of s. Let us suppose indirectly that there is no other
node admitting a full splitting, hence the degree of any other node is at least k + 2
by Proposition 3.1. Let nk+i denote the number of nodes distinct from s of degree
k + i (2 ≤ i ≤ k − 1). Let T ⊆ V be the set of the blocking nodes.

Now we have:

2(k|V | − (k + 1)) = 2k|V | − 2k − 2 ≥ 2|E| ≥

≥ 0 +
∑
t∈T

dG(t) +
k−1∑
i=2

(k+ i)nk+i + 2k(|V | − 1− |T | −
k−1∑
i=2

nk+i) (by Proposition 4.4)
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≥ (3k − 3)|T |+
k−1∑
i=2

(k − i+ 1)nk+i +
k−1∑
i=2

(k + i)nk+i + 2k(|V | − 1− |T | −
k−1∑
i=2

nk+i) =

= 2k|V |+ (k − 3)|T |+
k−1∑
i=2

nk+i − 2k ≥ 2k|V |+ (k − 2)|T | − 2k ≥ 2k|V | − 2k.

∑k−1
i=2 nk+i ≥ |T | holds obviously. We arrived at a contradiction and hence there exists

another node admitting a full splitting. 2

The following theorem can be proved by a slight modification of the above compu-
tation.

Theorem 4.8. If G is nearly k-tree-connected and differs from Kk−1
2 , then there are

at least three nodes admitting a full splitting. 2

The following theorem characterizes the connected k-sparse graphs, which are the
union of k forests after adding an arbitrary edge, according to Nash-Williams’ Theo-
rem 1.5.

Theorem 4.9. A graph G is the union of k spanning trees after adding an arbitrary
edge if and only if it is a connected subgraph of a nearly k-tree-connected graph.

Proof. It is straightforward that any connected subgraph of a nearly k-tree-connected
graph has this property.

By the theorem of Nash-Williams, G = (V,E) is the union of k (not necessarily edge-
disjoint) spanning trees after adding an arbitrary edge if and only if it is connected and
γG(X) ≤ k|X|− (k+1) for all X ⊆ V , |X| ≥ 2. We claim that if |E| < k|V |− (k+1),
then we can add an edge e such that G+ e is also the union of k forests after adding
an arbitrary edge. This will prove the theorem.

Let us consider a maximal tight set X and node u ∈ X and other node v /∈ X. If
we cannot add edge uv, then there exists a tight set Y containing u and v. According
to Claim 2.6, for any node a in X − Y and any node b in Y −X, G+ ab is k-sparse.
2

5 Construction of (k, 1)-edge-connected digraphs and

(k, 1)-partition-connected graphs

In a directed graph by splitting off a pair of edges e = uz, f = zv we mean the
operation of replacing e and f by a new directed edge from u to v. Suppose that the
in-degree and the out-degree of z is the same, that is, %(z) = δ(z). By a complete
splitting at z we mean the following operation: pair the edges entering and leaving
z and split off all these pairs.

For non-negative integers l ≤ k, we call a digraph D (k, l)-edge-connected (in
short, (k, l)-ec) if D has a node s so that there are k (resp., l) edge-disjoint paths
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from s to every other node (there are l edge-disjoint paths from every node to s).
If there is an exceptional node z for which the existence of these edge-disjoint paths
is not required, we say that D is (k, l)-edge-connected apart from z. When the
role of s is emphasized, we say that D is (k, l)-ec with respect to root-node s. (k, k)-
edge-connectivity is abbreviated by k-edge-connectivity and (k, 0)-edge-connectivity
is sometimes called rooted k-edge-connectivity. Note that by Menger’s theorem a
digraph is (k, l)-ec if and only if

%(X) ≥ k for every subset ∅ ⊂ X ⊆ V − s (13)

and

δ(X) ≥ l for every subset ∅ ⊂ X ⊆ V − s (14)

where %(X) := %D(X) and δ(X) := δD(X) denote the number of edges entering and
leaving the subset X, respectively.

We say an undirected graph G = (V,E) is (k, l)-partition-connected if there are
at least k(t − 1) + l edges connecting distinct classes of every partition of V into t
(t ≥ 2) non-empty subsets. Note that (k, 1)-partition-connectivity and highly k-tree-
connectivity are equivalent notions.

The following result exhibits a link between the two concepts. It is a special case
of a general orientation theorem appeared in [2].

Theorem 5.1. Let 0 ≤ l ≤ k be integers. An undirected graph G = (V,E) has a
(k, l)-edge-connected orientation if and only if G is (k, l)-partition-connected.

Mader’s directed splitting off theorem [11] is as follows.

Theorem 5.2. Let D = (U+z, E) be a digraph which is k-edge-connected apart from
z. If %(z) = δ(z), then there is a complete splitting at z resulting in a k-ec digraph on
node-set U .

This result has been extended in [3] as follows.

Theorem 5.3. Let D = (U + z, E) be a digraph which is (k, l)-edge-connected apart
from z. If %(z) = δ(z), then there is a complete splitting at z resulting in a (k, l)-ec
digraph on node-set U .

We need the following corollary of Theorem 5.2.

Theorem 5.4. Let D = (U + z, E) be a digraph which is

(k, 0) -ec apart from z (k ≥ 1) with respect to a root node s ∈ U. (15)

If %(z) > δ(z), then there are %(z)− δ(z) edges entering z so that (15) continues to
hold after discarding these edges. If %(z) = δ(z), then there is a complete splitting at
z preserving (15).
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Proof. For every node v ∈ U+z for which %(v) > δ(v), add %(v)−δ(v) parallel edges
from v to s. In the resulting digraph D′ clearly %′(v) ≤ δ′(v) holds for every node v ∈
U − s. Hence δ′(X) ≥ %′(X) = %(X) ≥ k holds for every subset X ⊆ U − s,X 6= {z},
that is, D′ is k-ec apart from z.

By Theorem 5.2 there is a complete splitting at z resulting in a k-ec digraph. It
follows that in case %(z) = δ(z) this complete splitting, when applied to D, preserves
(15). If %(z) > δ(z), then there are %(z)− δ(z) edges entering z such that their pairs
at the complete splitting are necessarily newly added edges from z to s. Therefore
these edges can be deleted from D without destroying (15). 2

W. Mader used Theorem 5.2 to derive Theorem 1.2 on the constructive charac-
terization of k-ec digraphs. Analogously, Theorem 5.4 may be used to derive the
following.

Theorem 5.5. A directed graph D = (V,E) is (k, 0)-edge-connected if and only if D
can be obtained from a single node by the following two operations:

(i) add a new edge,

(ii) add a new node z and add k edges entering z,

(iii) pinch j (1 ≤ j ≤ k − 1) existing edges with a new node z, and add k − j new
edges entering z.

Given these constructive characterizations of (k, k)-ec and (k, 0)-ec digraphs, one
may formulate the following general conjecture.

Conjecture 5.6. A directed graph D is (k, l)-edge-connected (0 ≤ l ≤ k − 1) if and
only if it can be built up from a node by the following two operations:

(j) add a new edge,

(jj) pinch i (l ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges entering z and leaving existing nodes.

Pinching 0 edge with new node z simply means adding a new node z.

Conjecture 5.7. An undirected graph G is (k, l)-partition-connected if and only if it
can be built up from a node by the following two operations:

(j) add a new edge,

(jj) pinch i (l ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges connecting z with existing nodes.

By Theorem 5.1 the second conjecture follows from the first one. Theorem 5.5
asserts the truth of this conjecture for l = 0. The conjecture was proved for l = k− 1
in [5]. Here we verify the conjecture for l = 1. Note that the special case l = 1 of
Conjecture 5.7 is Theorem 1.10. The proof relies on the following lemma.
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Lemma 5.8. Let D = (V,E) be a (k, 1)-edge-connected digraph which is minimal in
the sense that the deletion of any edge destroys (k, 1)-edge-connectivity (k ≥ 2, |V | ≥
2). Then D has a node z with k = %(z) > δ(z) for which there is a set F of %(z)−δ(z)
edges entering z so that D − F is (k, 1)-edge-connected apart from z.

Proof. We claim that there is a node z for which k = %(z) > δ(z). Indeed, by (14),
there is an edge e entering s. Since (13) cannot break down by deleting e, it follows
from the minimality of D that e leaves a subset X ⊂ V − s for which δ(X) = 1. Since
%(X) ≥ k ≥ 2, there must be a node z in X for which %(z) > δ(z).

Let us choose such a node z so that the distance of s from z is as large as possible.

Claim 5.9. Let F be a subset of at most k − 1 edges entering z. Then D′ := D − F
satisfies (14).

Proof. Assume indirectly that there is a subset X ⊆ V − s for which δD′(X) = 0.
As δ(X) ≥ 1, the elements of set of edges of D leaving X are all in F . Therefore
δ(X) ≤ |F | < k and, by %(X) ≥ k, X must contain a node z′ for which %(z′) > δ(z′).
Since the head of each edge leaving X is z, we obtain that each path from z′ to s
must go through z contradicting the maximal-distance choice of z. 2

Claim 5.10. %(z) = k.

Proof. By Claim 5.9 property (14) cannot break down when an edge entering z is
left out. Hence the minimality of D implies that every edge entering z enters a subset
X ⊆ V − s for which %(X) = k. If X and Y are two subsets of V − s containing z
for which k = %(X) = %(Y ), then %(X) + %(Y ) ≥ %(X ∩ Y ) + %(X ∪ Y ) ≥ k + k from
which %(X ∩ Y ) = k follows. This implies that there is a unique smallest subset Z
containing z for which %(Z) = k such that every edge entering z enters Z as well. But
then the in-degree of z cannot exceed k and hence %(z) = k as D is (k, 1)-ec. 2 2

By Theorem 5.4 there is a subset F of edges of D entering z for which |F | =
%(z)− δ(z) < k and the digraph D−F is (k, 0)-ec. Now Claim 5.9 implies that D−F
is actually (k, 1)-ec, completing the proof of the lemma.

Theorem 5.11. A digraph D0 = (V,E) is (k, 1)-edge-connected if and only if D0 can
be built up from a node by the following two operations:

(j) add a new edge,

(jj) pinch i (1 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges entering z and leaving existing nodes.

Proof. It is straightforward to see that the two operations preserve (k, 1)-edge-
connectivity. To prove the reverse direction we use induction on the number of edges.
If there is an edge e whose deletion preserves (k, 1)-edge-connectivity, then D0−e has
a required construction by the inductive hypothesis from which the construction of
D0 can be obtained by giving back e (operation (j)).

Therefore we may assume that D0 is minimally (k, 1)-edge-connected with respect
to edge deletion. We are done if |V | = 1 so assume that |V | ≥ 2.
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By Lemma 5.8 there is a node z with k = %(z) > δ(z) for which there is a subset
F of %(z) − δ(z) edges entering z so that the digraph D0 − F is (k, 1)-ec apart from
z. By Theorem 5.3 there is a complete splitting at z so that the resulting digraph
D1 = (V −z, E1) is (k, 1)-ec. By the inductive hypothesis D1 can be constructed from
a node by the two given operations. But then D0 is also constructible this way as D0

arises from D1 by operation (ii). 2

By combining this result with Theorem 5.1 we obtain Theorem 1.10, which is a
special case of Conjecture 5.7.

6 Conclusion

Algorithmic aspects

Inspired by earlier results of Lovász and Mader, which indicated that constructive
characterizations of graph properties may serve as a powerful proof technique, we
have described constructive characterizations for several variants of the notion of
higher graph connections. One of these results extends a theorem of Henneberg and
Laman while another one generalizes a theorem of the first named author and Z.
Király. We also formulated some natural conjecture concerning further connectivity
properties. Beyond these it remains an interesting research area to find applications
of the present characterizations.

As far as algorithmic aspects are concerned, the proofs of the two main theorems
(Theorem 1.9 and 1.10) give rise to polynomial algorithms. We should, however,
emphasize a significant difference between these algorithms and the ones suggested
by Lovász (or Mader’s) splitting theorems.

Lovász’ theorem asserts that if G = (V +z, E) is a graph which is k-edge-connected
(apart from z) and dG(z) is even, then there exists a pair of edges incident to z whose
splitting preserves these properties. To check algorithmically whether the splitting
of an arbitrarily chosen pair of edges at z preserves k-edge-connectivity needs some
(at most n2) max-flow-min-cut computations which is doable in polynomial time.
That is, Lovász’ theorem itself, without relying on any proof of it, gives rise to an
algorithm to find a full splitting at z. In order to find algorithmically the constructive
characterizaton of a k-sparse graph, as described in Theorem 1.9, one must find a
small node admitting a full splitting. This can be done by trying each small node
separately. To decide whether a particular small node admits a full splitting one may
apply the procedure described in Theorem 3.2. Note that even if a node z is known
to have a full splitting, this fact itself, unlike the situation in Lovász’ theorem, does
not give any clue of how one can find algorithmically such a full splitting.
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