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A Gallai-Edmonds-type structure theorem for
path-matchings

Bianca Spille? and László Szegő??

Abstract

As a generalization of matchings, Cunningham and Geelen introduced the
notion of path-matchings. We give a structure theorem for path-matchings
which generalizes the fundamental Gallai-Edmonds structure theorem for match-
ings. Our proof is purely combinatorial.

1 Introduction

Cunningham and Geelen in [1] and [2] introduced the notion of path-matchings as
a generalization of matchings: Let G = (V, T1, T2;E) be an undirected graph and
T1, T2 ⊆ V disjoint stable sets of G. T1 and T2 are called terminal sets. We denote
V − (T1 ∪ T2) by R. If |T1| = |T2| =: k, then a perfect path-matching is a subset
M ⊆ E such that the subgraph GM = (V,M) is a collection of k disjoint paths, all
of whose internal nodes are in R, linking the nodes of T1 to the nodes of T2, together
with a perfect matching of the nodes of R not in any of the paths. A path-matching
with respect to T1, T2 is a set M of edges such that every component of the subgraph
GM = (V,M) having at least one edge is a simple path from T1 ∪ R to T2 ∪ R,
all of whose internal nodes are in R. The one-edge-components in R are called the
matching edges of M . The value of a path-matching M is defined to be the number
val(M) = |M |+ |M ′|, where M ′ denotes the set of the matching edges of M . (That is,
the matching edges count twice.) For example, the value of a perfect path-matching
is |R| + k. Note that T1 (and T2) need not to be stable because edges spanned by
T1 do not play any role here. From now on we do not allow path-matchings having
paths in R of length more than 1, that is, any path of a path-matching has at least
one end-node in T1 or T2. A path is called a (U, V )-path, if one of its end-nodes is in
U and the other in V . For i = 1, 2, a Ti-half-path is a (Ti, R)-path.

?Institute for Mathematical Optimization, University of Magdeburg, Universitätsplatz 2, D-39106
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Section 1. Introduction 2

We define a cut separating the terminal sets T1 and T2 to be a subset X ⊆ V such
that there is no path between T1 −X and T2 −X in G−X. We denote by oddG(X)
the number of connected components of G −X which are disjoint from T1 ∪ T2 and
have an odd number of nodes. Let OddG(X) denote the union of these components.
Let EvenG(X) denote the union of the components of G−X having an even number
of nodes which are disjoint from T1 ∪ T2. For i = 1, 2, let Wi denote the union of
components of G−X which are not disjoint from Ti. See Figure 1.

In [4] the following necessary and sufficient condition was proved for the existence
of a perfect path-matching and then the following min-max formula was derived for
the maximum value of a path-matching.

Theorem 1.1. In G = (V, T1, T2;E) there exists a perfect path-matching if and only
if |T1| = |T2| = k and

|X| ≥ oddG(X) + k for all cuts X.

Theorem 1.2. In G = (V, T1, T2;E) one has the following formula for the maximum
value of a path-matching:

max
M path-matching

val(M) = |R|+ min
X cut

(|X| − oddG(X)). (1)

Tutte’s theorem and the Berge-Tutte-formula are special cases.
A cut X is said to be tight if the minimum is attained for it in (1).

G

 W2 W1

X

 T2

Odd  (X)

 T1

Figure 1: A cut X separating T1 and T2

A graph G = (V,E) is said to be factor-critical if it is connected and each node is
missed by a maximum matching.

Lemma 1.3 (Gallai’s lemma [5]). If G = (V,E) is factor-critical, then |V | is an
odd number and a maximum matching of G has cardinality (|V | − 1)/2.

From Tutte’s theorem we obtain

a connected G is factor-critical if and only if oddG(Y ) ≤ |Y | for all Y ⊆ V, |Y | ≥ 1.
(2)
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As an easy corollary of Gallai’s lemma for a factor-critical graph we have

u, v ∈ V =⇒ there exists a (u, v)-path such that

there exists a perfect matching on the nodes not in the path. (3)

The following theorem plays an important role in Matching Theory.

Theorem 1.4 (The Gallai-Edmonds Structure Theorem [3, 6]). Let
G = (V,E) be a graph. Let D denote the set of nodes which are not covered by at
least one maximum matching of G. Let A be the set of nodes in V −D adjacent to at
least one node in D. Let C = V − A−D. Then:

• The number of covered nodes by a maximum matching in G equals to |V |+ |A|−
c(D), where c(D) denotes the number of components of the graph spanned by D.

• The components of the subgraph induced by D are factor-critical.

• The subgraph induced by C has a perfect matching.

• The bipartite graph obtained from G by deleting C and the edges in A and by
contracting each component of D to a single node has the following property:
there is a matching covering A after deleting any node obtained by a component
of D.

• If M is any maximum matching of G, then E(D)∩M covers all the nodes except
one of any component of D, E(C) ∩M is a perfect matching and M matches
all the nodes of A with nodes in distinct components of D.

D

A

C

Figure 2: The Gallai-Edmonds decomposition of a graph G

Here we will prove the following generalization of the Gallai-Edmonds Structure
Theorem for path-matchings. Our proof is purely combinatorial and is an extension
of the proof of Theorem 1.2 in [4]. The careful investigation of the augmenting path
algorithm of Spille and Weismantel [8, 9] for path-matchings gives an algorithmic
proof but for the sake of brevity here we omit the details.

Define
ν(G = (V, T1, T2;E)) := max

Mpath-matching in G
val(M).
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Theorem 1.5 (Structure Theorem for Path-Matchings). Let G = (V, T1, T2;E)
be a graph. Define the following sets.

F := {v ∈ R : ν(G− v) = ν(G)},
F1 := {v ∈ R : ν(G′ = (V, T1, T2 + v;E)) = ν(G)},
F2 := {v ∈ R : ν(G′′ = (V, T1 + v, T2;E)) = ν(G)},
H1 := {v ∈ T1 : ν(G− v) = ν(G)},
D1 := F ∪ F1 ∪H1,

A1 := {v ∈ V −D1 : ∃ u ∈ D1 such that uv ∈ E} ∪ (T1 −D1),

C1 := V − A1 −D1.

Then:

(S1) A1 is a cut and ν(G) = |R|+ |A1| − oddG(A1) (that is, A1 is a tight cut).

(S2) The components of the subgraph induced by D1 and disjoint from T1 are factor-
critical.

(S3) F is the union of some components of D1 which are disjoint from T1.

(S4) F1 ∩ F2 ⊆ F and F1 ∩ F2 is the union of some components of D1 disjoint from
T1.

(S5) The components of the subgraph induced by C1 which are disjoint from T1 and
T2 have a perfect matching.

(S6) For any component K of F , there is a maximum path-matching M for which
there is no edge of M coming out of K.

(S7) If M is any maximum path-matching of G, then val(E(K) ∩M) = |K| − 1 for
any component K of F ∪ F1 which is disjoint from T1.

(S8) If M is any maximum path-matching of G, then val(E(C1) ∩M) = |C1|.

(S9) If M is any maximum path-matching of G, then any component K of D1 is
either traversed by one path P of M and K ∩P is connected, or there is exactly
one matching edge with one end-node in K and the other in X, or there is no
edge of M coming out of K; and there is no edge of M spanned by X, and there
is no edge of M coming out of any even component of G−X which is disjoint
from T1 and T2.

We may define D2, A2, C2 similarly, that is, surprisingly there are two kinds of
structure theorems for path-matchings.

The special case of T1 = T2 = ∅ gives the original Gallai-Edmonds structure theo-
rem: F1 − F = F2 − F = H1 = ∅, D = F = D1, A = A1, C = C1.

The above sets F , F1, F2, and H1 can be interpreted as follows:
F is the set of nodes v ∈ R for which there is a maximum path-matching M not
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covering v. Fi−F is the set of nodes v ∈ R which are not in F and there is a maximum
path-matching M so that v is an end-node of a Ti-half-path of M (i = 1, 2). H1 is the
set of nodes v ∈ T1 for which there is a maximum path-matching M not covering v.
F1∩F2 ⊆ F means that if a node v is an end-node of a Ti-half-path for a maximum

path-matching Ki for i = 1, 2, then there is a maximum path-matching K not covering
v.

For G = (V,E) and K ⊆ V , define E[K] := {uv ∈ E : u, v ∈ K} and G[K] :=
(K,E[K]).

2 Proofs

2.1 (Optimality Criteria). Let M be a path-matching and X a cut in G. M is a
maximum path-matching and X is a tight cut if and only if the following statements
hold:

(O1) M induces a perfect matching on EvenG(X),
val(E[EvenG(X)] ∩M) = |EvenG(X)|.

(O2) For any component K of OddG(X), M induces a matching and an even path
(possibly ∅) on K covering all (but possibly one) nodes of K, val(E[K] ∩M) =
|K| − 1.

(O3) For i = 1, 2, M induces Ti-half-paths and matching edges on Wi covering all the
nodes of Wi − Ti.

(O4) For any node v ∈ X, v is either covered by a matching edge of M , by a (T1, T2)-
path of M , or by a Ti-half-path of M but v is not the R-end-node (i = 1, 2). M
induces no edge on X.

(O5) For any R-end-node v of a Ti-half-path of M , v ∈ OddG(X) ∪Wi (i = 1, 2).
For any v ∈ R not covered by M , v ∈ OddG(X).

Proof. If (O1)–(O5) hold, then

val(M) = |EvenG(X)|+ |OddG(X)| − oddG(X) + |X|+ |W1 − T1|+ |W2 − T2|
= |R|+ |X| − oddG(X),

which proves that M is maximum and X is tight.
If M is a maximum path-matching and X is a tight cut, then let P1, P2, . . . , Pn de-

note the (T1, T2)-paths of M , and let P ′1, P
′
2, . . . P

′
n1

denote the T1-half-paths traversing
X and P ′′1 , P

′′
2 , . . . P

′′
n2

denote the T2-half-paths traversing X. For a path Pi (P ′i , P
′′
i ),

let ti (t′i, t
′′
i respectively) denote the number of components of OddG(X) which are

traversed by Pi (P ′i , P
′′
i respectively). Orient the edges of these paths from T1 to T2.

We have

α ≤
n∑

i=1

ti +

n1∑
i=1

t′i +

n2∑
i=1

t′′i , (4)
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Section 2. Proofs 6

where α denotes the number of components of OddG(X) which are traversed by some
path Pi, P

′
i , P

′′
i . Let β denote the number of components K of OddG(X) for which

a matching edge of M has one end-node in K and the other in X, and no path of
M traverses K. Let γ := oddG(X) − α − β, i.e., γ is the number of components
of OddG(X) not traversed by any edge of M . Since any of the paths Pi has a first
node in X and for any of the paths Pi, P

′
i before traversing a component of OddG(X)

there is a node in X, and for any of the paths Pi, P
′′
i after traversing a component of

OddG(X) there is a node in X, we have

n+ oddG(X)− γ = n+ α + β ≤
n∑

i=1

(ti + 1) +

n1∑
i=1

t′i +

n2∑
i=1

t′′i + β ≤ |X|, (5)

since we determined distinct nodes of X. Hence, n− γ ≤ |X| − oddG(X). Since M is
maximum and X is tight, we obtain

val(M) = |R|+ |X| − oddG(X) ≥ |R| − γ + n.

The value of M is equal to the number of nodes in R covered by M plus the number
of (T1, T2)-paths of M (which is n). Hence, the number of nodes in R not covered
by M is less than or equal to γ. Since any component of OddG(X) not traversed by
any edge of M contains at least one node not covered by M , equality holds through.
Hence, we have equality in (5) and (4). We obtain (O1)–(O5).

G

G

 W2 W1

X

 T2

Odd  (X)

 T1

Even  (X)

Figure 3: A maximum path-matching M and a tight cut X

Proof of Theorem 1.5. Let X be a tight cut for which the union of components of
G−X which are not disjoint from T1 and the odd components which are disjoint from
T1 ∪ T2 is minimal, furthermore X ∩ T1 is maximal. Define DX := W1 ∪OddG(X).

Claim 2.2. Each component of G[DX ] disjoint from T1 is factor-critical.
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Proof. Let K be a component of G[DX ] disjoint from T1. If K has an even number
of nodes, then X + v is a tight cut and DX+v ⊆ DX − v for v ∈ K, contradicting the
choice of X. Hence, K has an odd number of nodes. Let Y ⊆ K be a subset with
oddG[K](Y ) > |Y |. Since

|X ∪ Y | − oddG(X ∪ Y ) = |X| − oddG(X) + |Y | − oddG[K](Y ) + 1 ≤ |X| − oddG(X),

X ∪ Y is a tight cut and DX∪Y ⊆ DX − Y . The choice of X implies Y = ∅. Now (2)
implies that K is factor-critical.

We will prove that D1 = DX , A1 = X, and C1 = V − (X ∪DX).
Without loss of generality, X 6= T1 or OddG(T1) 6= ∅. Let us contract each compo-

nent of OddG(X) to a node. Let Q denote the set of new nodes and let GQ denote
the graph obtained this way. Notice that |Q| = oddG(X).

Claim 2.3. If GQ has a path-matching of value k, then G has a path-matching of
value k + |OddG(X)| − oddG(X).

Proof. Let MQ denote the path-matching of GQ with value k. Let M denote the set
of edges of G corresponding to MQ. We claim that M can be completed in G to
be a path-matching with the desired value. To this end, let K denote a component
of OddG(X), and let q denote its corresponding node in GQ. By Claim 2.2, K is
factor-critical.

If MQ covers q by a matching edge, then M covers one node, say v, of K, and by
Gallai’s lemma there is a perfect matching on K − v. If MQ covers q by a path, then
M covers either one node v of K or two distinct nodes, say u and v, of K. In the first
case, Gallai’s lemma applies again, while in the second one, by (3), there is a path P
in K connecting u and v and a perfect matching on K − V (P ), where V (P ) denotes
the nodes of P . If MQ does not cover q, then Gallai’s lemma applies again.

Q

Q
X

W

W

W
W1

2

1

2

T1 T2X

T1

2T

Figure 4: Gl and Gr

Claim 2.4. Let Vl := Q ∪W1 ∪ (X − T1), T
l
1 := (T1 − X) ∪ Q, and T l

2 := X − T1.
Then X − T1 is the unique tight cut in Gl, i.e.,

ν(Gl = (Vl, T
l
1, T

l
2;El)) = |Rl|+ |X − T1|

and for any cut Y 6= X − T1 in Gl, |Y | − oddGl
(Y ) ≥ |X − T1|+ 1.
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Proof. X−T1 = T l
2 is a cut in Gl with oddGl

(X−T1) = 0. Let Y be a tight cut in Gl,
then |Y | − oddGl

(Y ) ≤ |X − T1|. Denote Z := (Y −Q) ∪ (T1 ∩X). Since X is a cut
in G and Y is a cut in Gl, Z is a cut in G. We have oddG(Z) ≥ oddGl

(Y ) + |Q− Y |
and DZ ⊆ DX . Hence,

|Z| − oddG(Z) ≤ (|Y −Q|+ |T1 ∩X|)− (oddGl
(Y ) + |Q− Y |)

= |Y | − oddGl
(Y ) + |T1 ∩X| − |Q|

≤ |X − T1|+ |T1 ∩X| − oddG(X)

= |X| − oddG(X).

Since X is tight, Z is a tight cut. By the choice of X, DZ = DX and |X∩T1| ≥ |Z∩T1|.
This implies Y = X − T1.

l
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G

1T 2

X

T

Q

Y

Odd   (Y)

Figure 5: A tight cut in Gl

Analogously, we obtain

Claim 2.5. Let Vr := Q ∪W2 ∪ (X − T2), T
r
1 := (X − T2), and T r

2 := (T2 −X) ∪Q.
Then X − T2 is a tight cut, i.e.,

ν(Gr = (Vr, T
r
1 , T

r
2 ;Er)) = |Rr|+ |X − T2|.

Claim 2.6. DX = D1.

Proof. (O5) implies D1 ⊆ DX . It remains to prove DX ⊆ D1. Let v ∈ DX = W1 ∪Q.
Let Y be a cut in G′ = Gl − v. Then Y + v is a cut in Gl and Claim 2.4 implies

|Y |+ 1− oddG′(Y ) = |Y + v| − oddGl
(Y + v) ≥ |X − T1|+ 1

and hence,

|Rl|+ min
Y cut in G′

(|Y | − oddG′(Y )) ≥ |Rl|+ |X − T1| = ν(Gl).

EGRES Technical Report No. 2002-04



Section 2. Proofs 9

If v ∈ (T1 −X)∪Q = T l
1 then R′ = Rl implying that ν(G′) = ν(Gl) and hence, there

exists a maximum path-matching Ml in Gl not covering v. If v ∈ W1− T1 = Rl, then
|R′| = |Rl| − 1 implying that ν(G′) ≥ ν(Gl) − 1 and hence, there exists a maximum
path-matching Ml in Gl such that v is not covered by Ml or v is an end-node of a
T l

1-half-path of Ml. By Claim 2.5, there is a path-matching Mr of Gr not covering v
with value |Rr| + |X − T2|. By (O1), there is a perfect matching ME on EvenG(X).
Now M ′ := Ml ∪Mr ∪ME is a nearly path-matching of GQ, where a nearly path-
matching is the disjoint union of a path-matching and some even cycles lying entirely
in R. Its value is the value of the path-matching plus the number of edges in even
cycles, hence,

val(M ′) = |Rl|+ |X − T1|+ |Rr|+ |X − T2|+ |EvenG(X)| = |R|+ |X| − |OddG(X)|.

Moreover, v is not covered by any edge of M ′ or v is an end-node of a T1-half-path of
M ′. Transforming the even cycles of M ′ into the union of matching edges, we obtain
a path-matching M∗ of GQ of the same value.

By Claim 2.3, G has a path-matching M with value

val(M) = val(M ′) + |OddG(X)| − oddG(X) = |R|+ |X| − oddG(X)

and v is not covered by M or v is an end-node of a T1-half-path of M . By Theorem
1.2, M is a maximum path-matching. Consequently, v ∈ D1.

Next we show A1 = X. By definition, A1 = (neighbors of D1 − D1) ∪ (T1 − D1).
Since D1 = W1 ∪ OddG(X), it follows T1 ∩X ⊆ A1 ⊆ X. Let v ∈ X − T1. By (O4),
v has a neighbor w in R − X. By (O1), w 6∈ EvenG(X) and by (O3), w 6∈ Wi − Ti

(i = 1, 2). Hence, w ∈ OddG(X) ⊆ D1. Consequently, v ∈ A1. This proves A1 = X
and (S1) follows.

Because of DX = D1, (S2) is a corollary of Claim 2.2.
Now we prove (S3). (O5) implies F ⊆ OddG(X). Let K be a component of

OddG(X) such that K ∩ F 6= ∅. Let v ∈ K ∩ F . Then there exists a maximum path-
matching M not covering v. Since K is factor-critical, for any node w ∈ K there is a
maximum matching Mw in K not covering w. Hence, M −M [K]∪Mw is a maximum
path-matching not covering w, thus, w ∈ F . This implies K ⊆ F . Consequently, F
is the union of some components of OddG(X), i.e., (S3) holds.

Next we show (S4). Let v ∈ F1 ∩ F2. (O5) implies v ∈ Q. Hence, there exists a
maximum path-matching Ml in Gl such that v is not covered by Ml and there exists
a maximum path-matching Mr in Gr such that v is not covered by Mr. The same
construction as in the proof of DX = D1 leads to a maximum path-matching M in G
not covering v, i.e., v ∈ F . Consequently, F1 ∩F2 ⊆ F . Similar arguments as for (S3)
show that F1 ∩ F2 is the union of some components of D1 which are disjoint from T1.

(S5) follows from C1 = V − (X ∪DX) = EvenG(X) ∪W2 and (O1).
(S6), (S7), (S8), and (S9) are direct corollaries of the Optimality Criteria.

Remark. In [7] by Lovász and Plummer the following structure theorem was given
for bipartite graphs. It easily follows from Theorem 1.5.
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Theorem 2.7. Let G = (U1, U2;E) be a bipartite graph and for i = 1, 2, let Ai :=
A ∩ Ui, Ci := C ∩ Ui, and Di := D ∩ Ui, where A, C, and D are the three sets of the
Gallai-Edmonds structure theorem for G. Then

• D = D1 ∪D2 does not induce any edge of G,

• the subgraph G[C1 ∪ C2] has a perfect matching and hence, |C1| = |C2|,

• NG(D1) = A2 and NG(D2) = A1,

• every maximum matching of G consists of a perfect matching of G[C1 ∪ C2], a
matching of A1 into D2 and a matching of A2 into D1,

• if T is any minimum node-cover (i.e. cut) for G,

A1 ∪ A2 ⊆ T ⊆ A1 ∪ A2 ∪ C1 ∪ C2,

• C1∪A1∪A2 and C2∪A1∪A2 are minimum node-covers (i.e. cuts). Consequently,
A1 ∪ A2 is the intersection of all minimum node-covers (i.e. cuts), and

• the subgraphs induced by A1∪D2 and A2∪D1 have positive surplus when viewed
from A1 and A2 respectively.
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