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A Gallai-Edmonds-type structure theorem for
path-matchings

Bianca Spille* and Laszlé Szego™

Abstract

As a generalization of matchings, Cunningham and Geelen introduced the
notion of path-matchings. We give a structure theorem for path-matchings
which generalizes the fundamental Gallai-Edmonds structure theorem for match-
ings. Our proof is purely combinatorial.

1 Introduction

Cunningham and Geelen in [0} and [?] introduced the notion of path-matchings as
a generalization of matchings: Let G = (V,Ty,Ty; E) be an undirected graph and
Ty, T, C V disjoint stable sets of G. T} and T5 are called terminal sets. We denote
V —(ThUT,) by R. If |Ty| = |Ts| =: k, then a perfect path-matching is a subset
M C F such that the subgraph Gy = (V, M) is a collection of k disjoint paths, all
of whose internal nodes are in R, linking the nodes of T to the nodes of T, together
with a perfect matching of the nodes of R not in any of the paths. A path-matching
with respect to 17,75 is a set M of edges such that every component of the subgraph
Gy = (V, M) having at least one edge is a simple path from T} U R to T U R,
all of whose internal nodes are in R. The one-edge-components in R are called the
matching edges of M. The value of a path-matching M is defined to be the number
val(M) = |M|+|M'|, where M’ denotes the set of the matching edges of M. (That is,
the matching edges count twice.) For example, the value of a perfect path-matching
is |R| + k. Note that T} (and T5) need not to be stable because edges spanned by
Ty do not play any role here. From now on we do not allow path-matchings having
paths in R of length more than 1, that is, any path of a path-matching has at least
one end-node in 77 or Ty. A path is called a (U, V')-path, if one of its end-nodes is in
U and the other in V. For i = 1,2, a T;-half-path is a (T}, R)-path.
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Section 1. Introduction 2

We define a cut separating the terminal sets T and T5 to be a subset X C V such
that there is no path between 73 — X and 75 — X in G — X. We denote by oddg(X)
the number of connected components of G — X which are disjoint from 77 U7, and
have an odd number of nodes. Let Oddg(X) denote the union of these components.
Let Fveng(X) denote the union of the components of G — X having an even number
of nodes which are disjoint from 77 U T;. For ¢ = 1,2, let W, denote the union of
components of G — X which are not disjoint from 7;. See Figure 1.

In [4] the following necessary and sufficient condition was proved for the existence
of a perfect path-matching and then the following min-max formula was derived for
the maximum value of a path-matching.

Theorem 1.1. In G = (V,T},Ts; E) there exists a perfect path-matching if and only
if Ty = |Tz| = k and

| X| > odde(X) + k for all cuts X.

Theorem 1.2. In G = (V,T1,Ts; E) one has the following formula for the maximum
value of a path-matching:

max val(M) = |R| +)r(n}:£1t(|X| —oddg(X)). (1)

M path-matching

Tutte’s theorem and the Berge-Tutte-formula are special cases.
A cut X is said to be tight if the minimum is attained for it in ([l).

- Qde(X)
HDQ OO
X u

Figure 1: A cut X separating 77 and T5

A graph G = (V, E) is said to be factor-critical if it is connected and each node is
missed by a maximum matching.

Lemma 1.3 (Gallai’s lemma [8]). If G = (V, E) is factor-critical, then |V| is an
odd number and a mazimum matching of G has cardinality (|V|—1)/2.

From Tutte’s theorem we obtain

a connected G is factor-critical if and only if oddg(Y) < |Y|forallY CV, |Y| > 1.

(2)
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Section 1. Introduction 3

As an easy corollary of Gallai’s lemma for a factor-critical graph we have

u,v € V = there exists a (u,v)-path such that

there exists a perfect matching on the nodes not in the path. (3)

The following theorem plays an important role in Matching Theory.

Theorem 1.4 (The Gallai-Edmonds Structure Theorem [3, 6]). Let
G = (V,E) be a graph. Let D denote the set of nodes which are not covered by at

least one mazimum matching of G. Let A be the set of nodes in V — D adjacent to at
least one node in D. Let C' =V — A— D. Then:

The number of covered nodes by a mazimum matching in G equals to |V|+|A|—
¢(D), where ¢(D) denotes the number of components of the graph spanned by D.

The components of the subgraph induced by D are factor-critical.
The subgraph induced by C has a perfect matching.

The bipartite graph obtained from G by deleting C' and the edges in A and by
contracting each component of D to a single node has the following property:
there is a matching covering A after deleting any node obtained by a component

of D.

If M is any mazimum matching of G, then E(D)NM covers all the nodes except
one of any component of D, E(C)N M s a perfect matching and M matches
all the nodes of A with nodes in distinct components of D.

°
Al

\O/

[

Figure 2: The Gallai-Edmonds decomposition of a graph G

Here we will prove the following generalization of the Gallai-Edmonds Structure
Theorem for path-matchings. Our proof is purely combinatorial and is an extension
of the proof of Theorem [[.2 in [d]. The careful investigation of the augmenting path
algorithm of Spille and Weismantel [8, 9] for path-matchings gives an algorithmic
proof but for the sake of brevity here we omit the details.

Define

v(G=(V,T1,T5; F)) := max val(M).

Mpath-matching in G
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Section 1. Introduction 4

Theorem 1.5 (Structure Theorem for Path-Matchings). Let G = (V,1},T5; E)
be a graph. Define the following sets.

F = {veR:v(G—-v)=v(G)},
F {veR:v(G' = (V,T1,To +v; E)) = v(G)},
F, {veR:v(G"=(V,T1 +v,T»; E)) = v(G)},
Hy = {veTl:v(G-v)=v(G)},
D FUF,UH,,
Ay {v eV —Dy:3u € Dy such that uwv € E} U (T} — Dy),
C; = V—-A —

Then:

(S1)
(S2)

(S3)
(S4)

(S5)

(S6)

(S7)

(S8)
(S9)

Ay is a cut and v(G) = |R| + |A1] — odda (A1) (that is, Ay is a tight cut).

The components of the subgraph induced by D, and disjoint from T} are factor-
critical.

F' is the union of some components of Dy which are disjoint from T.

FiNFy, CF and Fy N Fy is the union of some components of Dy disjoint from
T;.

The components of the subgraph induced by Cy which are disjoint from Ty and
T have a perfect matching.

For any component K of F, there is a maximum path-matching M for which
there is no edge of M coming out of K.

If M is any mazimum path-matching of G, then val(E(K)NM) = |K| —1 for
any component K of F'U Fy which is disjoint from T.

If M is any mazimum path-matching of G, then val(E(Cy) N M) = |CY].

If M is any maximum path-matching of G, then any component K of Dy 1is
either traversed by one path P of M and K N P is connected, or there is exactly
one matching edge with one end-node in K and the other in X, or there is no
edge of M coming out of K; and there is no edge of M spanned by X, and there
is no edge of M coming out of any even component of G — X which is disjoint
from Ty and Ts.

We may define Dy, Ay, Cs similarly, that is, surprisingly there are two kinds of
structure theorems for path-matchings.

The special case of Ty = Ty, = () gives the original Gallai-Edmonds structure theo-
rem: Fl—F:FQ—F:lew,D:F:Dl,A:Al, C’:Cl

The above sets F', F}, Fy, and H; can be interpreted as follows:
F is the set of nodes v € R for which there is a maximum path-matching M not
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Section 2. Proofs 5

covering v. F;—F'is the set of nodes v € R which are not in F' and there is a maximum
path-matching M so that v is an end-node of a T;-half-path of M (i = 1,2). Hj is the
set of nodes v € T for which there is a maximum path-matching M not covering v.

FyNF, C F means that if a node v is an end-node of a T;-half-path for a maximum
path-matching K for i = 1, 2, then there is a maximum path-matching K not covering
v.

For G = (V,E) and K C V, define F[K] := {uww € F : u,v € K} and G[K] :=
(K, E[K]).

2 Proofs

2.1 (Optimality Criteria). Let M be a path-matching and X a cut in G. M is a
mazximum path-matching and X is a tight cut if and only if the following statements

hold:

(O1) M induces a perfect matching on Eveng(X),
val(E[Eveng(X)| N M) = |Eveng(X)].

(02) For any component K of Oddg(X), M induces a matching and an even path
(possibly ) on K covering all (but possibly one) nodes of K, val(E[K]NM) =
|K|— 1.

(03) Fori=1,2, M induces T;-half-paths and matching edges on W; covering all the
nodes of W; — Tj.

(O4) For any node v € X, v is either covered by a matching edge of M, by a (T1,T3)-
path of M, or by a T;-half-path of M but v is not the R-end-node (i = 1,2). M

induces no edge on X.

(05) For any R-end-node v of a T;-half-path of M, v € Oddg(X)UW; (i =1,2).
For any v € R not covered by M, v € Oddg(X).

Proof. If (01)—(0O5) hold, then

val(M) = |Eveng(X)| + |0dda(X)| — odda(X) + | X| + |W1 — Th| + |[We — Ty
= |R[+ [X] = odda(X),

which proves that M is maximum and X is tight.

If M is a maximum path-matching and X is a tight cut, then let Py, P, ... , P, de-
note the (77, T5)-paths of M, and let P/, P;, ... P, denote the T1-half-paths traversing
X and P/, Py,... P] denote the Ty-half-paths traversing X. For a path P; (P, P;’),
let ¢; (t;,t] respectively) denote the number of components of Oddg(X) which are

traversed by P; (P!, P/’ respectively). Orient the edges of these paths from T} to T5.
We have

agzn:t,-Jrit;Jrit;’, (4)
=1 =1 =1
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Section 2. Proofs 6

where o denotes the number of components of Oddg(X) which are traversed by some
path P;, P/, P/. Let 3 denote the number of components K of Oddg(X) for which
a matching edge of M has one end-node in K and the other in X, and no path of
M traverses K. Let v := oddg(X) — a — 3, i.e., v is the number of components
of Oddg(X) not traversed by any edge of M. Since any of the paths P; has a first
node in X and for any of the paths P;, P/ before traversing a component of Oddg(X)
there is a node in X, and for any of the paths P;, P/ after traversing a component of
Oddg(X) there is a node in X, we have

ntoddg(X)—y=n+a+B<> (Li+1)+> i+ Y t+8<|X], (5
=1 =1 =1

since we determined distinct nodes of X. Hence, n — v < | X| — oddg(X). Since M is
maximum and X is tight, we obtain

val(M) = |R| + | X| — odde(X) > |R| — v + n.

The value of M is equal to the number of nodes in R covered by M plus the number
of (T1,T3)-paths of M (which is n). Hence, the number of nodes in R not covered
by M is less than or equal to . Since any component of Oddg(X) not traversed by
any edge of M contains at least one node not covered by M, equality holds through.
Hence, we have equality in (B) and (). We obtain (O1)—(O5). O

Even (X)

7 =

Odd, (X
w9

‘Uzl
VA%
N

Figure 3: A maximum path-matching M and a tight cut X

N

Z

Proof of Theorem [.5. Let X be a tight cut for which the union of components of
G — X which are not disjoint from 7} and the odd components which are disjoint from
T1 U T; is minimal, furthermore X N T} is maximal. Define Dx := W; U Oddg(X).

Claim 2.2. Fach component of G[Dx| disjoint from Ty is factor-critical.
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Section 2. Proofs 7

Proof. Let K be a component of G[Dx]| disjoint from 7;. If K has an even number
of nodes, then X + v is a tight cut and Dx., C Dx — v for v € K, contradicting the
choice of X. Hence, K has an odd number of nodes. Let Y C K be a subset with
oddar)(Y) > |Y|. Since

X UY|—odda(X UY) = |X]| — odda(X) + Y] — oddgy(Y) + 1 < | X| — odda(X),

X UY is a tight cut and Dxy € Dy — Y. The choice of X implies Y = (). Now (B)
implies that K is factor-critical. O

We will prove that Dy = Dx, A1 = X, and C; =V — (X U Dx).

Without loss of generality, X # T} or Oddg(Ty) # 0. Let us contract each compo-
nent of Oddg(X) to a node. Let ) denote the set of new nodes and let G denote
the graph obtained this way. Notice that |Q| = oddg(X).

Claim 2.3. If G has a path-matching of value k, then G has a path-matching of
value k + |Oddg(X)| — oddg(X).

Proof. Let Mg denote the path-matching of G with value k. Let M denote the set
of edges of G corresponding to Mg. We claim that M can be completed in G to
be a path-matching with the desired value. To this end, let K denote a component
of Oddg(X), and let ¢ denote its corresponding node in Gg. By Claim P.2, K is
factor-critical.

If Mg covers ¢ by a matching edge, then M covers one node, say v, of K, and by
Gallai’s lemma there is a perfect matching on K —v. If Mg covers ¢ by a path, then
M covers either one node v of K or two distinct nodes, say v and v, of K. In the first
case, Gallai’s lemma applies again, while in the second one, by (fJ), there is a path P
in K connecting v and v and a perfect matching on K — V(P), where V(P) denotes

the nodes of P. If Mg does not cover ¢, then Gallai’s lemma applies again. O
T X T. o
1 R = § }Q
1Ly " (w
e

o
jejele)]

Figure 4: G; and G,

Claim 2.4. Let Vi = QUW,U(X —TY), TV == (T, — X)UQ, and T, .= X —Ty.
Then X — T} is the unique tight cut in Gy, i.e.,

V(Gl = (‘/Z?TLT;?EZ)) = |Rl| + |X - T1|

and for any cut’Y # X =Ty in Gy, |Y| —oddg,(Y) > | X —T1| + 1.
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Section 2. Proofs 8

Proof. X —T, =T is a cut in G} with oddg,(X —T;) = 0. Let Y be a tight cut in G,
then |Y| — oddg,(Y) < |X — Ti|. Denote Z := (Y — Q) U (71 N X). Since X is a cut
in G and Y is a cut in Gy, Z is a cut in G. We have oddg(Z) > oddg,(Y) + |Q — Y|
and Dz C Dx. Hence,

IN

|Z| = odda(Z) (Y = QI+ Ty 0 X|) = (odde, (Y) + 1@ = Y1)

Y] = odde,(Y) + [Ty N X[ — ||

S |X —T1| + |T1 ﬂX| - Oddg(X>
= ’X| — Oddg(X>
Since X is tight, Z is a tight cut. By the choice of X, D; = Dy and | XNT}| > |ZNT3|.
This implies Y = X —T7. O
. T2
EU X
.'§ & ‘

Figure 5: A tight cut in G}

Analogously, we obtain

Claim 2.5. Let V, .= QUWLU (X —T3), T := (X —T3), and Ty := (T, — X) U Q.
Then X — T is a tight cut, i.e.,

v(Gr = (Vi, T7, 133 ) = Ry + | X = T

Claim 2.6. Dy = D;.

Proof. (O5) implies D; C Dx. It remains to prove Dx C D;. Let v € Dx = W, UQ.
Let Y beacutin G’ = G; —wv. Then Y + v is a cut in G; and Claim P.4 implies

Y|+ 1—o0dde(Y)=|Y +v| —oddg,(Y +v) > |X —Ti| +1
and hence,

|Rl| + YCIEPE G”(|Y| - Oddgl(Y)) > |Rl| + |X - T1| = l/(Gl).
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Section 2. Proofs 9

Ifve (T —X)UQ =T! then R = R; implying that v(G’) = v(G)) and hence, there
exists a maximum path-matching M; in G; not covering v. If v € Wy — T} = Ry, then
|R'| = |R;| — 1 implying that v(G’) > v(G;) — 1 and hence, there exists a maximum
path-matching M; in G; such that v is not covered by M; or v is an end-node of a
Ti-half-path of M;. By Claim R.5, there is a path-matching M, of G, not covering v
with value |R,| + |X — T3|. By (O1), there is a perfect matching Mg on Eveng(X).
Now M’ := M; U M, U Mg is a nearly path-matching of G, where a nearly path-
matching is the disjoint union of a path-matching and some even cycles lying entirely
in R. Its wvalue is the value of the path-matching plus the number of edges in even
cycles, hence,

val(M') = |R)| +|X = Ti| + |R,| + | X — To| + | Bveng(X)| = |R| + | X| — |Odde(X)].

Moreover, v is not covered by any edge of M’ or v is an end-node of a Tj-half-path of
M'. Transforming the even cycles of M’ into the union of matching edges, we obtain
a path-matching M™ of G of the same value.

By Claim B3, G has a path-matching M with value

val(M) = val(M') 4+ |0ddg(X)| — oddg(X) = |R| + | X| — oddg(X)

and v is not covered by M or v is an end-node of a Tj-half-path of M. By Theorem
[2, M is a maximum path-matching. Consequently, v € D;. O

Next we show A; = X. By definition, A; = (neighbors of D; — Dy) U (T} — Dy).
Since Dy = Wy U Oddg(X), it follows 71 N X C A; C X. Let v € X —T. By (0O4),
v has a neighbor w in R — X. By (O1), w ¢ Eveng(X) and by (03), w ¢ W, —T;
(1 =1,2). Hence, w € Oddg(X) C D;. Consequently, v € A;. This proves A; = X
and (S1) follows.

Because of Dy = Dy, (S2) is a corollary of Claim 2.2

Now we prove (S3). (O5) implies F© C Oddg(X). Let K be a component of
Oddg(X) such that K N F # (). Let v € KN F. Then there exists a maximum path-
matching M not covering v. Since K is factor-critical, for any node w € K there is a
maximum matching M,, in K not covering w. Hence, M — M[K|UM,, is a maximum
path-matching not covering w, thus, w € F. This implies K C F. Consequently, F’
is the union of some components of Oddg(X), i.e., (S3) holds.

Next we show (S4). Let v € Fy N Fy. (05) implies v € Q. Hence, there exists a
maximum path-matching M; in GG; such that v is not covered by M; and there exists
a maximum path-matching M, in G, such that v is not covered by M,. The same
construction as in the proof of Dy = D; leads to a maximum path-matching M in G
not covering v, i.e., v € F. Consequently, F; N Fy C F. Similar arguments as for (S3)
show that F} N Fy is the union of some components of D; which are disjoint from 77.

(S5) follows from C; =V — (X U Dx) = Eveng(X) U W5 and (O1).

(S6), (S7), (S8), and (S9) are direct corollaries of the Optimality Criteria. O
Remark. In [7] by Lovasz and Plummer the following structure theorem was given
for bipartite graphs. It easily follows from Theorem [[35.
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Theorem 2.7. Let G = (Uy,Us; E) be a bipartite graph and for i = 1,2, let A; =
ANU;, C;:=CNU;, and D; := D NU;, where A, C, and D are the three sets of the
Gallai-Edmonds structure theorem for G. Then

e D = Dy U Dy does not induce any edge of G,
e the subgraph G[Cy U Cy] has a perfect matching and hence, |Cy| = |Cs|,
L] Ng(Dl) = Az and NG'(DQ) = Al,

e cvery mazimum matching of G consists of a perfect matching of G[C1 U Cs], a
matching of Ay into Dy and a matching of As into Dy,

e if T is any minimum node-cover (i.e. cut) for G,

AlUA CT C A UAUC Uy,

e C1UAUA, and CoUAUAs are minimum node-covers (i.e. cuts). Consequently,
Ay U Ay is the intersection of all minimum node-covers (i.e. cuts), and

o the subgraphs induced by Ay U Dy and AU Dy have positive surplus when viewed
from Ay and As respectively.
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