# Egerváry Research Group 

 on Combinatorial Optimization

TECHNICAL REPORTS

TR-2002-04. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

# A Gallai-Edmonds-type structure theorem for path-matchings 

Bianca Spille and László Szegő

# A Gallai-Edmonds-type structure theorem for path-matchings 

Bianca Spille^ and László Szegő*ぇ


#### Abstract

As a generalization of matchings, Cunningham and Geelen introduced the notion of path-matchings. We give a structure theorem for path-matchings which generalizes the fundamental Gallai-Edmonds structure theorem for matchings. Our proof is purely combinatorial.


## 1 Introduction

Cunningham and Geelen in [I] and [Z] introduced the notion of path-matchings as a generalization of matchings: Let $G=\left(V, T_{1}, T_{2} ; E\right)$ be an undirected graph and $T_{1}, T_{2} \subseteq V$ disjoint stable sets of $G . T_{1}$ and $T_{2}$ are called terminal sets. We denote $V-\left(T_{1} \cup T_{2}\right)$ by $R$. If $\left|T_{1}\right|=\left|T_{2}\right|=: k$, then a perfect path-matching is a subset $M \subseteq E$ such that the subgraph $G_{M}=(V, M)$ is a collection of $k$ disjoint paths, all of whose internal nodes are in $R$, linking the nodes of $T_{1}$ to the nodes of $T_{2}$, together with a perfect matching of the nodes of $R$ not in any of the paths. A path-matching with respect to $T_{1}, T_{2}$ is a set $M$ of edges such that every component of the subgraph $G_{M}=(V, M)$ having at least one edge is a simple path from $T_{1} \cup R$ to $T_{2} \cup R$, all of whose internal nodes are in $R$. The one-edge-components in $R$ are called the matching edges of $M$. The value of a path-matching $M$ is defined to be the number $\operatorname{val}(M)=|M|+\left|M^{\prime}\right|$, where $M^{\prime}$ denotes the set of the matching edges of $M$. (That is, the matching edges count twice.) For example, the value of a perfect path-matching is $|R|+k$. Note that $T_{1}$ (and $T_{2}$ ) need not to be stable because edges spanned by $T_{1}$ do not play any role here. From now on we do not allow path-matchings having paths in $R$ of length more than 1, that is, any path of a path-matching has at least one end-node in $T_{1}$ or $T_{2}$. A path is called a $(U, V)$-path, if one of its end-nodes is in $U$ and the other in $V$. For $i=1,2$, a $T_{i}$-half-path is a $\left(T_{i}, R\right)$-path.

[^0]We define a cut separating the terminal sets $T_{1}$ and $T_{2}$ to be a subset $X \subseteq V$ such that there is no path between $T_{1}-X$ and $T_{2}-X$ in $G-X$. We denote by $\operatorname{odd}_{G}(X)$ the number of connected components of $G-X$ which are disjoint from $T_{1} \cup T_{2}$ and have an odd number of nodes. Let $\operatorname{Odd}_{G}(X)$ denote the union of these components. Let $E v e n_{G}(X)$ denote the union of the components of $G-X$ having an even number of nodes which are disjoint from $T_{1} \cup T_{2}$. For $i=1,2$, let $W_{i}$ denote the union of components of $G-X$ which are not disjoint from $T_{i}$. See Figure 1.

In [4] the following necessary and sufficient condition was proved for the existence of a perfect path-matching and then the following min-max formula was derived for the maximum value of a path-matching.

Theorem 1.1. In $G=\left(V, T_{1}, T_{2} ; E\right)$ there exists a perfect path-matching if and only if $\left|T_{1}\right|=\left|T_{2}\right|=k$ and

$$
|X| \geq \operatorname{odd}_{G}(X)+k \quad \text { for all cuts } X .
$$

Theorem 1.2. In $G=\left(V, T_{1}, T_{2} ; E\right)$ one has the following formula for the maximum value of a path-matching:

$$
\begin{equation*}
\max _{M \text { path-matching }} \operatorname{val}(M)=|R|+\min _{X}\left(|X|-\operatorname{odd}_{G}(X)\right) . \tag{1}
\end{equation*}
$$

Tutte's theorem and the Berge-Tutte-formula are special cases.
A cut $X$ is said to be tight if the minimum is attained for it in (1) .


Figure 1: A cut $X$ separating $T_{1}$ and $T_{2}$

A graph $G=(V, E)$ is said to be factor-critical if it is connected and each node is missed by a maximum matching.

Lemma 1.3 (Gallai's lemma [5]). If $G=(V, E)$ is factor-critical, then $|V|$ is an odd number and a maximum matching of $G$ has cardinality $(|V|-1) / 2$.

From Tutte's theorem we obtain
a connected $G$ is factor-critical if and only if $o d d_{G}(Y) \leq|Y|$ for all $Y \subseteq V,|Y| \geq 1$.

As an easy corollary of Gallai's lemma for a factor-critical graph we have
$u, v \in V \Longrightarrow$ there exists a $(u, v)$-path such that
there exists a perfect matching on the nodes not in the path.
The following theorem plays an important role in Matching Theory.
Theorem 1.4 (The Gallai-Edmonds Structure Theorem [3, 6]). Let $G=(V, E)$ be a graph. Let $D$ denote the set of nodes which are not covered by at least one maximum matching of $G$. Let $A$ be the set of nodes in $V-D$ adjacent to at least one node in $D$. Let $C=V-A-D$. Then:

- The number of covered nodes by a maximum matching in $G$ equals to $|V|+|A|-$ $c(D)$, where $c(D)$ denotes the number of components of the graph spanned by $D$.
- The components of the subgraph induced by $D$ are factor-critical.
- The subgraph induced by C has a perfect matching.
- The bipartite graph obtained from $G$ by deleting $C$ and the edges in $A$ and by contracting each component of $D$ to a single node has the following property: there is a matching covering A after deleting any node obtained by a component of $D$.
- If $M$ is any maximum matching of $G$, then $E(D) \cap M$ covers all the nodes except one of any component of $D, E(C) \cap M$ is a perfect matching and $M$ matches all the nodes of $A$ with nodes in distinct components of $D$.


Figure 2: The Gallai-Edmonds decomposition of a graph $G$

Here we will prove the following generalization of the Gallai-Edmonds Structure Theorem for path-matchings. Our proof is purely combinatorial and is an extension of the proof of Theorem 1.2 in [ 4$]$. The careful investigation of the augmenting path algorithm of Spille and Weismantel $[\boxed{\square}, \underline{\square}]$ for path-matchings gives an algorithmic proof but for the sake of brevity here we omit the details.

Define

$$
\nu\left(G=\left(V, T_{1}, T_{2} ; E\right)\right):=\max _{M \text { path-matching in } G} \operatorname{val}(M) .
$$

Theorem 1.5 (Structure Theorem for Path-Matchings). Let $G=\left(V, T_{1}, T_{2} ; E\right)$ be a graph. Define the following sets.

$$
\begin{aligned}
F & :=\{v \in R: \nu(G-v)=\nu(G)\}, \\
F_{1} & :=\left\{v \in R: \nu\left(G^{\prime}=\left(V, T_{1}, T_{2}+v ; E\right)\right)=\nu(G)\right\}, \\
F_{2} & :=\left\{v \in R: \nu\left(G^{\prime \prime}=\left(V, T_{1}+v, T_{2} ; E\right)\right)=\nu(G)\right\}, \\
H_{1} & :=\left\{v \in T_{1}: \nu(G-v)=\nu(G)\right\}, \\
D_{1} & :=F \cup F_{1} \cup H_{1}, \\
A_{1} & :=\left\{v \in V-D_{1}: \exists u \in D_{1} \text { such that } u v \in E\right\} \cup\left(T_{1}-D_{1}\right), \\
C_{1} & :=V-A_{1}-D_{1} .
\end{aligned}
$$

Then:
(S1) $A_{1}$ is a cut and $\nu(G)=|R|+\left|A_{1}\right|-\operatorname{odd}_{G}\left(A_{1}\right)$ (that is, $A_{1}$ is a tight cut).
(S2) The components of the subgraph induced by $D_{1}$ and disjoint from $T_{1}$ are factorcritical.
(S3) $F$ is the union of some components of $D_{1}$ which are disjoint from $T_{1}$.
(S4) $F_{1} \cap F_{2} \subseteq F$ and $F_{1} \cap F_{2}$ is the union of some components of $D_{1}$ disjoint from $T_{1}$.
(S5) The components of the subgraph induced by $C_{1}$ which are disjoint from $T_{1}$ and $T_{2}$ have a perfect matching.
(S6) For any component $K$ of $F$, there is a maximum path-matching $M$ for which there is no edge of $M$ coming out of $K$.
(S7) If $M$ is any maximum path-matching of $G$, then $\operatorname{val}(E(K) \cap M)=|K|-1$ for any component $K$ of $F \cup F_{1}$ which is disjoint from $T_{1}$.
(S8) If $M$ is any maximum path-matching of $G$, then $\operatorname{val}\left(E\left(C_{1}\right) \cap M\right)=\left|C_{1}\right|$.
(S9) If $M$ is any maximum path-matching of $G$, then any component $K$ of $D_{1}$ is either traversed by one path $P$ of $M$ and $K \cap P$ is connected, or there is exactly one matching edge with one end-node in $K$ and the other in $X$, or there is no edge of $M$ coming out of $K$; and there is no edge of $M$ spanned by $X$, and there is no edge of $M$ coming out of any even component of $G-X$ which is disjoint from $T_{1}$ and $T_{2}$.

We may define $D_{2}, A_{2}, C_{2}$ similarly, that is, surprisingly there are two kinds of structure theorems for path-matchings.

The special case of $T_{1}=T_{2}=\emptyset$ gives the original Gallai-Edmonds structure theorem: $F_{1}-F=F_{2}-F=H_{1}=\emptyset, D=F=D_{1}, A=A_{1}, C=C_{1}$.

The above sets $F, F_{1}, F_{2}$, and $H_{1}$ can be interpreted as follows:
$F$ is the set of nodes $v \in R$ for which there is a maximum path-matching $M$ not
covering $v . F_{i}-F$ is the set of nodes $v \in R$ which are not in $F$ and there is a maximum path-matching $M$ so that $v$ is an end-node of a $T_{i}$-half-path of $M(i=1,2) . H_{1}$ is the set of nodes $v \in T_{1}$ for which there is a maximum path-matching $M$ not covering $v$.
$F_{1} \cap F_{2} \subseteq F$ means that if a node $v$ is an end-node of a $T_{i}$-half-path for a maximum path-matching $K_{i}$ for $i=1,2$, then there is a maximum path-matching $K$ not covering $v$.

For $G=(V, E)$ and $K \subseteq V$, define $E[K]:=\{u v \in E: u, v \in K\}$ and $G[K]:=$ $(K, E[K])$.

## 2 Proofs

2.1 (Optimality Criteria). Let $M$ be a path-matching and $X$ a cut in $G$. $M$ is a maximum path-matching and $X$ is a tight cut if and only if the following statements hold:
(O1) $M$ induces a perfect matching on Even $_{G}(X)$, $\operatorname{val}\left(E\left[\right.\right.$ Even $\left.\left._{G}(X)\right] \cap M\right)=\mid$ Even $_{G}(X) \mid$.
(O2) For any component $K$ of $O d d_{G}(X), M$ induces a matching and an even path (possibly $\emptyset$ ) on $K$ covering all (but possibly one) nodes of $K, \operatorname{val}(E[K] \cap M)=$ $|K|-1$.
(O3) For $i=1,2, M$ induces $T_{i}$-half-paths and matching edges on $W_{i}$ covering all the nodes of $W_{i}-T_{i}$.
(O4) For any node $v \in X, v$ is either covered by a matching edge of $M$, by a $\left(T_{1}, T_{2}\right)$ path of $M$, or by a $T_{i}$-half-path of $M$ but $v$ is not the $R$-end-node $(i=1,2)$. $M$ induces no edge on $X$.
(O5) For any $R$-end-node $v$ of a $T_{i}$-half-path of $M, v \in \operatorname{Odd}_{G}(X) \cup W_{i}(i=1,2)$. For any $v \in R$ not covered by $M, v \in \operatorname{Odd}_{G}(X)$.

Proof. If (O1)-(O5) hold, then

$$
\begin{aligned}
\operatorname{val}(M) & =\left|\operatorname{Even}_{G}(X)\right|+\left|\operatorname{Odd}_{G}(X)\right|-\operatorname{odd}_{G}(X)+|X|+\left|W_{1}-T_{1}\right|+\left|W_{2}-T_{2}\right| \\
& =|R|+|X|-\operatorname{odd}_{G}(X),
\end{aligned}
$$

which proves that $M$ is maximum and $X$ is tight.
If $M$ is a maximum path-matching and $X$ is a tight cut, then let $P_{1}, P_{2}, \ldots, P_{n}$ denote the ( $T_{1}, T_{2}$ )-paths of $M$, and let $P_{1}^{\prime}, P_{2}^{\prime}, \ldots P_{n_{1}}^{\prime}$ denote the $T_{1}$-half-paths traversing $X$ and $P_{1}^{\prime \prime}, P_{2}^{\prime \prime}, \ldots P_{n_{2}}^{\prime \prime}$ denote the $T_{2}$-half-paths traversing $X$. For a path $P_{i}\left(P_{i}^{\prime}, P_{i}^{\prime \prime}\right)$, let $t_{i}\left(t_{i}^{\prime}, t_{i}^{\prime \prime}\right.$ respectively) denote the number of components of $O d d_{G}(X)$ which are traversed by $P_{i}\left(P_{i}^{\prime}, P_{i}^{\prime \prime}\right.$ respectively). Orient the edges of these paths from $T_{1}$ to $T_{2}$. We have

$$
\begin{equation*}
\alpha \leq \sum_{i=1}^{n} t_{i}+\sum_{i=1}^{n_{1}} t_{i}^{\prime}+\sum_{i=1}^{n_{2}} t_{i}^{\prime \prime}, \tag{4}
\end{equation*}
$$

where $\alpha$ denotes the number of components of $\operatorname{Odd}_{G}(X)$ which are traversed by some path $P_{i}, P_{i}^{\prime}, P_{i}^{\prime \prime}$. Let $\beta$ denote the number of components $K$ of $\operatorname{Odd}_{G}(X)$ for which a matching edge of $M$ has one end-node in $K$ and the other in $X$, and no path of $M$ traverses $K$. Let $\gamma:=\operatorname{odd}_{G}(X)-\alpha-\beta$, i.e., $\gamma$ is the number of components of $O d d_{G}(X)$ not traversed by any edge of $M$. Since any of the paths $P_{i}$ has a first node in $X$ and for any of the paths $P_{i}, P_{i}^{\prime}$ before traversing a component of $\operatorname{Odd} d_{G}(X)$ there is a node in $X$, and for any of the paths $P_{i}, P_{i}^{\prime \prime}$ after traversing a component of $\operatorname{Odd}_{G}(X)$ there is a node in $X$, we have

$$
\begin{equation*}
n+o d d_{G}(X)-\gamma=n+\alpha+\beta \leq \sum_{i=1}^{n}\left(t_{i}+1\right)+\sum_{i=1}^{n_{1}} t_{i}^{\prime}+\sum_{i=1}^{n_{2}} t_{i}^{\prime \prime}+\beta \leq|X|, \tag{5}
\end{equation*}
$$

since we determined distinct nodes of $X$. Hence, $n-\gamma \leq|X|-\operatorname{odd}_{G}(X)$. Since $M$ is maximum and $X$ is tight, we obtain

$$
\operatorname{val}(M)=|R|+|X|-\operatorname{odd}_{G}(X) \geq|R|-\gamma+n .
$$

The value of $M$ is equal to the number of nodes in R covered by $M$ plus the number of ( $T_{1}, T_{2}$ )-paths of $M$ (which is $n$ ). Hence, the number of nodes in $R$ not covered by $M$ is less than or equal to $\gamma$. Since any component of $O d d_{G}(X)$ not traversed by any edge of $M$ contains at least one node not covered by $M$, equality holds through. Hence, we have equality in (5) and (4). We obtain (O1)-(O5).


Figure 3: A maximum path-matching $M$ and a tight cut $X$

Proof of Theorem 1.5. Let $X$ be a tight cut for which the union of components of $G-X$ which are not disjoint from $T_{1}$ and the odd components which are disjoint from $T_{1} \cup T_{2}$ is minimal, furthermore $X \cap T_{1}$ is maximal. Define $D_{X}:=W_{1} \cup O d d_{G}(X)$.

Claim 2.2. Each component of $G\left[D_{X}\right]$ disjoint from $T_{1}$ is factor-critical.

Proof. Let $K$ be a component of $G\left[D_{X}\right]$ disjoint from $T_{1}$. If $K$ has an even number of nodes, then $X+v$ is a tight cut and $D_{X+v} \subseteq D_{X}-v$ for $v \in K$, contradicting the choice of $X$. Hence, $K$ has an odd number of nodes. Let $Y \subseteq K$ be a subset with $\operatorname{odd}_{G[K]}(Y)>|Y|$. Since
$|X \cup Y|-\operatorname{odd}_{G}(X \cup Y)=|X|-\operatorname{odd}_{G}(X)+|Y|-\operatorname{odd}_{G[K]}(Y)+1 \leq|X|-\operatorname{odd}_{G}(X)$,
$X \cup Y$ is a tight cut and $D_{X \cup Y} \subseteq D_{X}-Y$. The choice of $X$ implies $Y=\emptyset$. Now (2) implies that $K$ is factor-critical.

We will prove that $D_{1}=D_{X}, A_{1}=X$, and $C_{1}=V-\left(X \cup D_{X}\right)$.
Without loss of generality, $X \neq T_{1}$ or $\operatorname{Odd}_{G}\left(T_{1}\right) \neq \emptyset$. Let us contract each component of $O d d_{G}(X)$ to a node. Let $Q$ denote the set of new nodes and let $G_{Q}$ denote the graph obtained this way. Notice that $|Q|=\operatorname{odd}_{G}(X)$.

Claim 2.3. If $G_{Q}$ has a path-matching of value $k$, then $G$ has a path-matching of value $k+\left|\operatorname{Odd}_{G}(X)\right|-$ odd $_{G}(X)$.

Proof. Let $M_{Q}$ denote the path-matching of $G_{Q}$ with value $k$. Let $M$ denote the set of edges of $G$ corresponding to $M_{Q}$. We claim that $M$ can be completed in $G$ to be a path-matching with the desired value. To this end, let $K$ denote a component of $\operatorname{Odd} d_{G}(X)$, and let $q$ denote its corresponding node in $G_{Q}$. By Claim 2.2, $K$ is factor-critical.

If $M_{Q}$ covers $q$ by a matching edge, then $M$ covers one node, say $v$, of $K$, and by Gallai's lemma there is a perfect matching on $K-v$. If $M_{Q}$ covers $q$ by a path, then $M$ covers either one node $v$ of $K$ or two distinct nodes, say $u$ and $v$, of $K$. In the first case, Gallai's lemma applies again, while in the second one, by (3), there is a path $P$ in $K$ connecting $u$ and $v$ and a perfect matching on $K-V(P)$, where $V(P)$ denotes the nodes of $P$. If $M_{Q}$ does not cover $q$, then Gallai's lemma applies again.


Figure 4: $G_{l}$ and $G_{r}$

Claim 2.4. Let $V_{l}:=Q \cup W_{1} \cup\left(X-T_{1}\right), T_{1}^{l}:=\left(T_{1}-X\right) \cup Q$, and $T_{2}^{l}:=X-T_{1}$. Then $X-T_{1}$ is the unique tight cut in $G_{l}$, i.e.,

$$
\nu\left(G_{l}=\left(V_{l}, T_{1}^{l}, T_{2}^{l} ; E_{l}\right)\right)=\left|R_{l}\right|+\left|X-T_{1}\right|
$$

and for any cut $Y \neq X-T_{1}$ in $G_{l},|Y|-\operatorname{odd}_{G_{l}}(Y) \geq\left|X-T_{1}\right|+1$.

Proof. $X-T_{1}=T_{2}^{l}$ is a cut in $G_{l}$ with $\operatorname{odd}_{G_{l}}\left(X-T_{1}\right)=0$. Let $Y$ be a tight cut in $G_{l}$, then $|Y|-\operatorname{odd}_{G_{l}}(Y) \leq\left|X-T_{1}\right|$. Denote $Z:=(Y-Q) \cup\left(T_{1} \cap X\right)$. Since $X$ is a cut in $G$ and $Y$ is a cut in $G_{l}, Z$ is a cut in $G$. We have $o d d_{G}(Z) \geq o d d_{G_{l}}(Y)+|Q-Y|$ and $D_{Z} \subseteq D_{X}$. Hence,

$$
\begin{aligned}
|Z|-\operatorname{odd}_{G}(Z) & \leq\left(|Y-Q|+\left|T_{1} \cap X\right|\right)-\left(\operatorname{odd}_{G_{l}}(Y)+|Q-Y|\right) \\
& =|Y|-\operatorname{odd}_{G_{l}}(Y)+\left|T_{1} \cap X\right|-|Q| \\
& \leq\left|X-T_{1}\right|+\left|T_{1} \cap X\right|-\operatorname{odd}_{G}(X) \\
& =|X|-\operatorname{odd}_{G}(X) .
\end{aligned}
$$

Since $X$ is tight, $Z$ is a tight cut. By the choice of $X, D_{Z}=D_{X}$ and $\left|X \cap T_{1}\right| \geq\left|Z \cap T_{1}\right|$. This implies $Y=X-T_{1}$.


Figure 5: A tight cut in $G_{l}$

Analogously, we obtain
Claim 2.5. Let $V_{r}:=Q \cup W_{2} \cup\left(X-T_{2}\right), T_{1}^{r}:=\left(X-T_{2}\right)$, and $T_{2}^{r}:=\left(T_{2}-X\right) \cup Q$. Then $X-T_{2}$ is a tight cut, i.e.,

$$
\nu\left(G_{r}=\left(V_{r}, T_{1}^{r}, T_{2}^{r} ; E_{r}\right)\right)=\left|R_{r}\right|+\left|X-T_{2}\right| .
$$

Claim 2.6. $D_{X}=D_{1}$.
Proof. (O5) implies $D_{1} \subseteq D_{X}$. It remains to prove $D_{X} \subseteq D_{1}$. Let $v \in D_{X}=W_{1} \cup Q$. Let $Y$ be a cut in $G^{\prime}=G_{l}-v$. Then $Y+v$ is a cut in $G_{l}$ and Claim 2.4 implies

$$
|Y|+1-\text { odd }_{G^{\prime}}(Y)=|Y+v|-\text { odd }_{G_{l}}(Y+v) \geq\left|X-T_{1}\right|+1
$$

and hence,

$$
\left|R_{l}\right|+\min _{Y \text { cut in } G^{\prime}}\left(|Y|-\operatorname{odd}_{G^{\prime}}(Y)\right) \geq\left|R_{l}\right|+\left|X-T_{1}\right|=\nu\left(G_{l}\right) .
$$

If $v \in\left(T_{1}-X\right) \cup Q=T_{1}^{l}$ then $R^{\prime}=R_{l}$ implying that $\nu\left(G^{\prime}\right)=\nu\left(G_{l}\right)$ and hence, there exists a maximum path-matching $M_{l}$ in $G_{l}$ not covering $v$. If $v \in W_{1}-T_{1}=R_{l}$, then $\left|R^{\prime}\right|=\left|R_{l}\right|-1$ implying that $\nu\left(G^{\prime}\right) \geq \nu\left(G_{l}\right)-1$ and hence, there exists a maximum path-matching $M_{l}$ in $G_{l}$ such that $v$ is not covered by $M_{l}$ or $v$ is an end-node of a $T_{1}^{l}$-half-path of $M_{l}$. By Claim 2.5, there is a path-matching $M_{r}$ of $G_{r}$ not covering $v$ with value $\left|R_{r}\right|+\left|X-T_{2}\right|$. By (O1), there is a perfect matching $M_{E}$ on Even ${ }_{G}(X)$. Now $M^{\prime}:=M_{l} \cup M_{r} \cup M_{E}$ is a nearly path-matching of $G_{Q}$, where a nearly pathmatching is the disjoint union of a path-matching and some even cycles lying entirely in $R$. Its value is the value of the path-matching plus the number of edges in even cycles, hence,

$$
\operatorname{val}\left(M^{\prime}\right)=\left|R_{l}\right|+\left|X-T_{1}\right|+\left|R_{r}\right|+\left|X-T_{2}\right|+\mid \text { Even }_{G}(X)\left|=|R|+|X|-\left|\operatorname{Odd}_{G}(X)\right| .\right.
$$

Moreover, $v$ is not covered by any edge of $M^{\prime}$ or $v$ is an end-node of a $T_{1}$-half-path of $M^{\prime}$. Transforming the even cycles of $M^{\prime}$ into the union of matching edges, we obtain a path-matching $M^{*}$ of $G_{Q}$ of the same value.

By Claim [2.3, $G$ has a path-matching $M$ with value

$$
\operatorname{val}(M)=\operatorname{val}\left(M^{\prime}\right)+\left|\operatorname{Odd}_{G}(X)\right|-\operatorname{odd}_{G}(X)=|R|+|X|-\operatorname{odd}_{G}(X)
$$

and $v$ is not covered by $M$ or $v$ is an end-node of a $T_{1}$-half-path of $M$. By Theorem 1.2, $M$ is a maximum path-matching. Consequently, $v \in D_{1}$.

Next we show $A_{1}=X$. By definition, $A_{1}=$ (neighbors of $\left.D_{1}-D_{1}\right) \cup\left(T_{1}-D_{1}\right)$. Since $D_{1}=W_{1} \cup O d d_{G}(X)$, it follows $T_{1} \cap X \subseteq A_{1} \subseteq X$. Let $v \in X-T_{1}$. By (O4), $v$ has a neighbor $w$ in $R-X$. By (O1), $w \notin \operatorname{Even}_{G}(X)$ and by (O3), $w \notin W_{i}-T_{i}$ $(i=1,2)$. Hence, $w \in \operatorname{Odd}_{G}(X) \subseteq D_{1}$. Consequently, $v \in A_{1}$. This proves $A_{1}=X$ and (S1) follows.

Because of $D_{X}=D_{1}$, (S2) is a corollary of Claim 2.2.
Now we prove (S3). (O5) implies $F \subseteq O d d_{G}(X)$. Let $K$ be a component of $O d d_{G}(X)$ such that $K \cap F \neq \emptyset$. Let $v \in K \cap F$. Then there exists a maximum pathmatching $M$ not covering $v$. Since $K$ is factor-critical, for any node $w \in K$ there is a maximum matching $M_{w}$ in $K$ not covering $w$. Hence, $M-M[K] \cup M_{w}$ is a maximum path-matching not covering $w$, thus, $w \in F$. This implies $K \subseteq F$. Consequently, $F$ is the union of some components of $\operatorname{Odd}_{G}(X)$, i.e., (S3) holds.

Next we show (S4). Let $v \in F_{1} \cap F_{2}$. (O5) implies $v \in Q$. Hence, there exists a maximum path-matching $M_{l}$ in $G_{l}$ such that $v$ is not covered by $M_{l}$ and there exists a maximum path-matching $M_{r}$ in $G_{r}$ such that $v$ is not covered by $M_{r}$. The same construction as in the proof of $D_{X}=D_{1}$ leads to a maximum path-matching $M$ in $G$ not covering $v$, i.e., $v \in F$. Consequently, $F_{1} \cap F_{2} \subseteq F$. Similar arguments as for (S3) show that $F_{1} \cap F_{2}$ is the union of some components of $D_{1}$ which are disjoint from $T_{1}$.
(S5) follows from $C_{1}=V-\left(X \cup D_{X}\right)=\operatorname{Even}_{G}(X) \cup W_{2}$ and (O1).
(S6), (S7), (S8), and (S9) are direct corollaries of the Optimality Criteria.
Remark. In [7] by Lovász and Plummer the following structure theorem was given for bipartite graphs. It easily follows from Theorem (1.5).

Theorem 2.7. Let $G=\left(U_{1}, U_{2} ; E\right)$ be a bipartite graph and for $i=1,2$, let $A_{i}:=$ $A \cap U_{i}, C_{i}:=C \cap U_{i}$, and $D_{i}:=D \cap U_{i}$, where $A, C$, and $D$ are the three sets of the Gallai-Edmonds structure theorem for $G$. Then

- $D=D_{1} \cup D_{2}$ does not induce any edge of $G$,
- the subgraph $G\left[C_{1} \cup C_{2}\right]$ has a perfect matching and hence, $\left|C_{1}\right|=\left|C_{2}\right|$,
- $N_{G}\left(D_{1}\right)=A_{2}$ and $N_{G}\left(D_{2}\right)=A_{1}$,
- every maximum matching of $G$ consists of a perfect matching of $G\left[C_{1} \cup C_{2}\right]$, a matching of $A_{1}$ into $D_{2}$ and a matching of $A_{2}$ into $D_{1}$,
- if $T$ is any minimum node-cover (i.e. cut) for $G$,

$$
A_{1} \cup A_{2} \subseteq T \subseteq A_{1} \cup A_{2} \cup C_{1} \cup C_{2},
$$

- $C_{1} \cup A_{1} \cup A_{2}$ and $C_{2} \cup A_{1} \cup A_{2}$ are minimum node-covers (i.e. cuts). Consequently, $A_{1} \cup A_{2}$ is the intersection of all minimum node-covers (i.e. cuts), and
- the subgraphs induced by $A_{1} \cup D_{2}$ and $A_{2} \cup D_{1}$ have positive surplus when viewed from $A_{1}$ and $A_{2}$ respectively.


## References

[1] W. H. Cunningham and J. F. Geelen, The Optimal Path-Matching Problem, Proceedings of thirty-seventh Symposium on the Foundations of Computing, IEEE Computer Society Press (1996), 78-85.
[2] W. H. Cunningham and J. F. Geelen, The Optimal Path-Matching Problem, Combinatorica, 17/3 (1997), 315-336.
[3] J.R. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards Sect. B (1968), 125-130.
[4] A. Frank and L. Szegő, A note on the path-matching formula, Journal of Graph Theory, to appear.
[5] T. Gallai, Neuer Beweis eines Tutte'schen Satzes, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 135-139.
[6] T. Gallai, Maximale Systeme unabhänginger Kanten, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1965), 401-413.
[7] L. Lovász, M.D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
[8] B. Spille and R. Weismantel, A combinatorial algorithm for the independent pathmatching problem, manuscript (2001).
[9] B. Spille and R. Weismantel, A generalization of Edmonds' matching and matroid intersection algorithms, Proceedings of the Ninth International Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 2337, Springer (2002), 9-20.


[^0]:    *Institute for Mathematical Optimization, University of Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, e-mail: spille@imo.math.uni-magdeburg.de Research supported by the European DONET program TMR ERB FMRX-CT98-0202.
    **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary H-1117. The author is a member of the Egerváry Research Group (EGRES). e-mail: szego@cs.elte.hu
    Research supported by the Hungarian National Foundation for Scientific Research Grant, OTKA T037547, and by FKFP grant no. 0143/2001.

