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On the stable b-matching polytope

Tamás Fleiner?

Abstract

We characterize the bipartite stable b-matching polytope in terms of linear con-
straints. The stable b-matching polytope is the convex hull of the characteristic
vectors of stable b-matchings, that is, of stable assignments of a two-sided mul-
tiple partner matching model. Our proof uses the comparability theorem of
Roth and Sotomayor [13] and follows a similar line as Rothblum did in [14] for
the stable matching polytope.
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1 Introduction

In this paper, we consider a well-known generalization of the stable marriage problem
of Gale and Shapley [9]. Their stable marriage model consists of finitely many men and
women with strict preferences on the possible marriage partners. A stable marriage
scheme is a matching of the marriage graph so that no man and woman exists that
mutually prefer each other to their eventual marriage partner. Gale and Shapley
have proved that the so called deferred acceptance algorithm always finds such a
marriage scheme for any preference profiles of the agents. In [9], Gale and Shapley
also considered the stable admissions problem, where one side of the market is a set
of colleges, the other side is a set of students. Here again, each agent has a strict
preference order on the acceptable members of the other side of the market, moreover
each college has a quota for admissible students. In the stable admissions problem,
we are looking for a stable market situation, that is, for a set of college-student pairs
so that each student is in at most one pair, no college turns up in more pairs than its
quota and there exists no college c and student s so that both s and c can improve
on their situation if c admits s (and possibly quit other admissions). It turned out
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that a natural modification of the deferred acceptance algorithm always finds a stable
assignment.

Here, we consider the stable b-matching problem, a generalization of the stable
admissions problem where each agent in both sides of the market has a quota. We
shall give a linear description for the bipartite stable b-matching polytope. Formally,
a bipartite preference system is a pair (G,O) where G = (U ∪V,E) is a finite bipartite
graph with bipartition (U, V ), and O = {≤z: z ∈ U ∪ V } is a family of linear orders,
≤z being an order on the set D(z) of edges incident with the vertex z. For a quota
function b : U ∪ V → N, a stable b-matching of bipartite preference model (G,O) is a
subset M of the edge set E such that

1. each agent z is incident with at most b(z) edges of M , that is, dM(z) ≤ b(z) for
any z ∈ U ∪ V , or in other words, M is a b-matching and

2. M is dominating, i.e. any edge e ∈ E outside M has an end node z such that
z is incident with b(z) edges of M and for any edge m of M incident with z we
have m >z e.

(Here, dM(z) denotes the number of edges of M that is incident with z.) A sta-
ble 1-matching is called a stable matching. We denote by P b(G,O) the convex hull
of characteristic vectors in R

E of stable b-matchings of bipartite preference system
(G,O). It is well-known that in any bipartite preference system there exists a stable
b-matching and a standard modification of the deferred acceptance algorithm finds
one. Actually, it finds an optimal one, that is, any agent of U gets the best partners
he can have in a stable stable b-matching and agents of V receive the worst possible
partners or vice versa.

The area of stable matchings has become quite popular after the results of Gale and
Shapley. From the different generalizations and approaches, we focus on the ones that
connect the area to linear programming. Vande Vate seems to be the first who started
this direction by giving a linear description of the convex hull of the characteristic
vectors of stable matchings in [16].

Theorem 1.1 (Vande Vate ’89 [16]). Let (G,O) be a bipartite preference system
with |U | = |V | and E = U × V . Then

P 1(G,O) = {x ∈ R
E : x ≥ 0, x(D(z)) = 1 ∀ z ∈ U ∪ V, x(ψ(e)) ≤ 1 ∀ e ∈ E}

where ψ(uv) := {f ∈ E : f ≤u uv or f ≤v uv} .

Rothblum gave a shorter proof of a modified description for a more general problem
in [14], and his proof was further simplified by Roth et al. in [11].

Theorem 1.2 (Rothblum ’92 [14]). Let (G,O) be a bipartite preference system.
Then

P 1(G,O) = {x ∈ R
E : x ≥ 0, x(D(z)) ≤ 1 ∀ z ∈ U ∪ V, x(φ(e)) ≥ 1 ∀ e ∈ E}

where φ(uv) := {f ∈ E : f ≥u uv or f ≥v uv} .

EGRES Technical Report No. 2002-03



Section 1. Introduction 3

Based on these results, standard tools of linear programming allow us to find a max-
imum weight stable matching in polynomial time. Eventually, a linear programming
approach has been developed to the theory of stable matchings by Abeledo, Blum,
Roth, Rothblum, Sethuraman, Teo and others (see [3, 4, 1, 2, 11, 15]).

But these results handle only the stable matching problem and do not say much
about stable b-matchings. The following theorem of Bäıou and Balinski [5] is an excep-
tion as it gives a linear description of the stable admissions polytope and generalizes
Theorem 1.2.

Theorem 1.3 (Bäıou and Balinski ’99 [5]). Let (G,O) be a bipartite preference
system and b : U ∪ V → N be a quota function so that b(u) = 1 for all nodes u of U .
Then

P b(G,O) = {x ∈ R
E :x ≥ 0,

x(D(u)) ≤ 1 ∀ u ∈ U, x(D(v)) ≤ b(v) ∀ v ∈ V,
x(C(v, u1, u2, . . . , ub(v))) ≥ b(v)

for all combs C(v, u1, u2, . . . , ub(v))} ,

where a comb is defined for v ∈ V and vu1 <v vu2 <v . . . <v vub(v) as

C(v, u1, u2, . . . , ub(v)) ={uv ∈ E : uv ≥v u1v} ∪
∪ {uiv′ ∈ E : uiv

′ ≥ui
uiv for some i = 1, 2, . . . , b(v)} .

Because of the comb constraints, the above characterization can consist of Ω(nB)
linear inequalities, where n is the number of “colleges” and B is the maximum of all
quotas. But in spite of the exponential number of constraints, it is still possible to
find an optimum weight stable admission by the ellipsoid method, using the separation
algorithm of Bäıou and Balinski. Note however, that the main significance of Theorem
1.3 lies in the the description of the polytope itself and not in the fact that we
can optimize over stable admissions. This is because already Theorem 1.2 is good
enough to find a maximum weight stable admissions scheme by the well known node
splitting construction described in Lemma 5.6 in [13]. In the node splitted matching
model, Rothblum’s description characterizes a stable matching polytope P so that the
stable admissions polytope is a projection of P . Moreover, the related LP needs only
O(n+mB) constraints, where n is the number of agents, m is the number of possible
admissions and B is the maximum of the quotas. Note also that the node splitting
construction does not seem to be sufficient to optimize over stable b-matchings with
Theorem 1.2.

In [8, 6], Fleiner has described an approach to the theory of stable matchings based
on the lattice theoretic fixed point theorem of Tarski. He also proved a generalization
of the stable marriage theorem in a matroid model. Further, by using the theory of
blocking polyhedra and lattice polyhedra, he gave a linear description of the related
matroid-kernel polytope. If this matroid theorem is applied to the special case of the
stable b-matching problem then it gives the following linear description of the stable
b-matching polytope.
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Theorem 1.4 (Fleiner 2000 [8, 7]). Let (G,O) be a bipartite preference system
and b : U ∪ V → N be a quota function. Then

P b(G,O) = {x ∈ R
E :x ≥ 0, x(A) ≤ 1 ∀A ∈ A, x(B) ≥ 1 ∀ B ∈ B}

where

A :={A ⊆ E : |A ∩M | ≤ 1 for any stable b-matching M} and

B :={B ⊆ E : B ∩M 6= ∅ for any stable b-matching M} .

Note that the constraints in Theorem 1.2 are special cases of the ones in Theorem
1.4. However, there are two important differences between Theorem 1.4 and the above
earlier results. A shortage of Fleiner’s description is that it uses implicit constraints,
hence if it is specialized to the stable marriage problem, it might require more con-
straints than Rothblum’s explicit description. (This is why Theorem 1.4 is rather an
extension than a generalization of Theorem 1.2.) A positive feature of Fleiner’s result
is that unlike Bäıou and Balinski, both the matrix and the right hand side vector in
the description contains only 0 and 1 entries.

In the next section, we generalize Theorem 1.2 to the stable b-matching polytope.
To this end, we use the Comparability Theorem of Roth and Sotomayor [13] and
then we follow a similar line as the proof of Rothblum in [14]. The Comparability
Theorem states that in a fixed bipartite preference system, if two stable b-matchings
are different for some agent, then this agent strictly prefers one b-matching to the
other.

Theorem 1.5 (Roth and Sotomayor ’89 [12]). Let M and M ′ be two stable b-
matchings for bipartite preference system (G,O), let z be a vertex of graph G and
Mz := M ∩ D(z) and M ′

z := M ′ ∩ D(z). If Mz 6= M ′
z then |Mz| = |M ′

z| = b(z) and
the b(z) <z-best edges of Mz ∪M ′

z are either Mz or M ′
z.

Actually, in [12, 13] Roth and Sotomayor proves the above theorem only in case
of the stable admissions problem. Gale includes a sketch of the proof of the general
theorem in [10]. For sake of self containedness, we give a short proof of this result.

Proof. For any edge m of M \ M ′, there is an end node w of m with domination
property 2. Orient m to w. Similarly, we can orient all edges of M ′ \M . Property
2. implies that if an edge of M is oriented to some vertex w then no edge of M ′ can
be oriented to w. This means that connected components of MOM ′ are such that
any edge of M \M ′ is oriented to U and all edges of M ′ \M are directed to V of
vice versa. Hence for any vertex z of G where M and M ′ does not coincide, the least
preferred edges are either the edges of M \M ′ or the edges of M ′ \M . Theorem 1.5
follows.

2 The stable b-matching polytope

In this section, we formulate and prove our main result. We shall use an immediate
corollary of Theorem 1.5 that seems to be unobserved so far.
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Corollary 2.1. Let (G,O) be a bipartite preference system and b : U ∪ V → N be
a quota function. Then for any vertex z of G, there is a partition of D(z) into b(z)
parts D1(z), D2(z), . . . , Db(z)(z) so that |M ∩Di(z)| ≤ 1 for any stable b-matching M
and any integer i with 1 ≤ i ≤ b(z).

Proof. Fix vertex z. Let D′(z) be the set of those edges of D(z) that can appear in
some stable b-matching. Note that it is enough to partition the set of the ei’s into
b(z) parts with the required property, as we can put edges of D(z) \D′(z) into any of
the parts without violating the Corollary 2.1.

For a stable b-matching M , let Mz := M ∩D(z) denote the set of M -edges incident
with z. If M and M ′ are stable b-matchings and the <z minimal edge of Mz is the
same as the <z-minimal edge of M ′ then Theorem 1.5 yields that Mz = M ′

z. Hence
there is a linear order M1

z ≺ M2
z ≺ . . . on possible sets Mz so that for i < j the

best b(z) edges of M i
z ∪M j

z are the edges of M j
z . By induction on k, we show how to

partition
⋃k
i=1M

i
z into b(z) parts with the required property.

As M1
z is a b-matching, we can partition M1

z into b(z) (possibly empty) parts
D1

1(z), D1
2(z), . . . , D1

b(z)(z), so that each part contains at most one edge. So any stable

b-matching intersects any D1
i (z) in at most one edge. Assume that we have a parti-

tion Dk
1(z), Dk

2(z), . . . , Dk
b(z)(z) of

⋃k
i=1M

i
z with this property. To construct partition

Dk+1
1 (z), Dk+1

2 (z), . . . , Dk+1
b(z) (z) of

⋃k+1
i=1 M

i
z, we keep the old parts Dk

i (z) and assign

the new edges of Mk+1
z \

⋃k
i=1M

i
z into parts so that the required property is preserved.

By Theorem 1.5, |Mk+1
z \Mk

z | = |Mk
z \Mk+1

z |, moreover no edge of Mk+1
z \Mk

z is
present in M i

z for i ≤ k. So we can distribute the edges of Mk+1
z \Mk

z into the parts of
the edges of Mk

z \Mk+1
z in such a way that we put exactly one edge to each of the parts.

By this, we have partitioned
⋃k+1
i=1 M

i
z into b(z) parts Dk+1

1 (z), Dk+1
2 (z), . . . , Dk+1

b(z) (z)

so that any M l
z intersects any part Dk+1

j (z) in at most one edge for l ≤ k + 1 and

1 ≤ j ≤ b(z). Also by Theorem 1.5, if l > k+1 then M l
z∩

⋃k+1
i=1 M

i
z = Mk+1

z ∩
⋃k+1
i=1 M

i
z,

hence the new partition satisfies the induction hypothesis.

Although Corollary 2.1 claims only the existence of the partitions of D(z), by using
the deferred acceptance algorithm, we can efficiently construct them. The above
proof shows that if we construct all the M i

z’s then finding a feasible partition is
straightforward. By the deferred acceptance algorithm, we can find a z-worst stable
b-matching M1 so that M1 ∩D(z) = M1

z . If |M1
z | < b(z) then we have found all M i

v’s
by Theorem 1.5. Otherwise assume that we have found M1

z ,M
2
z . . .M

k
z . Let ek be

the least preferred edge of Mk
z . Delete ek and all edges that are less preferred than

ek by z. Construct another z-worst stable b-matching Mk+1 in the reduced bipartite
preference system. If |Mk+1 ∩D(z)| = b(z), then Mk+1 is a stable b-matching of the
original preference system, as well. That is, Mk+1 ∩D(z) = Mk+1

z .
IfM1

z ,M
2
z . . .M

k
z did not exhaust all theM i

z’s then there is a stable b-matchingMk+1

of the original preference system that is also a stable b-matching in the reduced one so
that Mk+1

z = Mk+1 ∩D(z). This means by Theorem 1.5 that any stable b-matching
in the reduced system contains b(z) edges of D(z). Hence, if |Mk+1 ∩ D(z)| < b(z),
then we see that we have found all the M i

z’s. This argument shows that at most
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|D(z)| executions of the deferred acceptance algorithm finds all M i
z’s, and a partition

described in Corollary 2.1.

Theorem 2.2. Let (G,O) be a bipartite preference system and b : U ∪ V → N be a
quota function. Then for any vertex z of G there is a partition of D(z) into parts
D1(z), D2(z), . . . , Db(z)(z) such that

P b(G,O) = {x ∈ R
E :x ≥ 0, (1)

x(Di(z)) ≤ 1 ∀ z ∈ U ∪ V, 1 ≤ i ≤ b(z),

x(φi,j(uv)) ≥ 1 ∀uv ∈ E, 1 ≤ i ≤ b(u), 1 ≤ j ≤ b(v)} ,

where

φi,j(uv) := {uv} ∪ {uv′ : uv′ >u uv, v
′ ∈ Di(u)} ∪ {u′v : u′v >v uv, u

′ ∈ Dj(v)} .

Note that Theorem 2.2 is a strengthening of Theorem 1.4 and a genuine generaliza-
tion of Theorem 1.2. Although Theorem 2.2 is not a generalization of Theorem 1.3,
it describes a more general polytope by only O(mB2) constraints. (Here, m is the
number of edges of G, and B is the maximum value of b).

Proof of Theorem 2.2. Choose partitions of D(z) for each vertex z of G as in Corollary
2.1. By this choice, the characteristic vector of any stable b-matching M will satisfy
the right hand side of (1): a characteristic vector is nonnegative; M contains at most
one edge of Di(z); and any edge e either belongs to M or it has an end vertex z so
that for 1 ≤ k ≤ b(z) each Dk(z) will contain an edge m of M with e <z m. Hence
the polyhedron described on the right hand side of (1) contains P b(G,O).

To justify the opposite containment, we shall decompose a vector x satisfying the
right hand side of (1) into a convex combination of characteristic vectors of stable
b-matchings. To do this, we need the following lemma.

Lemma 2.3. Let x be a vector satisfying the right hand side of (1) and uv ∈ Di(u)∩
Dj(v). Then edge uv is the most preferred edge in Di(u) ∩ supp(x) if and only if uv
is the least preferred edge of Dj(v) ∩ supp(x).

Proof. From x(φi.j(uv)) ≥ 1 and x(Dj(v)) ≤ 1 it follows that if uv is the most
preferred edge of Di(u)∩supp(x) then uv is the least preferred edge of Dj(v)∩supp(x).
This means that supp(x) intersects at least as many Dj(v)’s for v ∈ V as many Di(u)’s
for u ∈ U . But the same argument holds if we exchange the role of U and V , thus
supp(x) intersects exactly as many Dj(v)’s as many Di(u)’s. So the set of most
preferred edges of Di(u) ∩ supp(x) for u ∈ U and 1 ≤ i ≤ b(u) is the same as the set
of least preferred edges of Dj(v) ∩ supp(x) for v ∈ V and 1 ≤ j ≤ b(v) .

Let x be a vector satisfying the right hand side of (1) and let M consist of the most
preferred edges of sets Di(u) ∩ supp(x) for u ∈ U and 1 ≤ i ≤ b(u). Denote amount
min{x(m) : m ∈ M} by δ. As x − δχM has a strictly smaller support than x has,
to finish the proof by induction on |supp(x)|, it is enough to show that M is a stable
b-matching and that x′ := 1

1−δ (x − δχM) satisfies the constraints in the right hand
side of (1).
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First we prove that M is a stable b-matching. By Lemma 2.3, M contains at most
one edge from each Dk(z) for z ∈ U ∩ V and 1 ≤ k ≤ b(z), hence M is indeed a
b-matching.

For domination, fix edge uv. If property 2. does not hold for uv then there must
be an integer i so that 1 ≤ i ≤ b(u) and there is no edge m of M ∩ Di(u) with
m ≥u uv. If x(uv) > 0 then choose j so that uv ∈ Dj(v). From x(φi,j(uv)) ≥ 1 and
x(Dj(v)) ≤ 1, it follows that uv is the least preferred edge by v from Dj(v)∩ supp(x).
Then by Lemma 2.3, uv is selected into M , a contradiction. Otherwise x(uv) = 0.
For any 1 ≤ j ≤ b(v), we have x(φi,j(uv)) ≥ 1 and x(Dj(v)) ≤ 1. This implies that
x({e ∈ Dj(v) : e >v uv}) = 1 so set Dj(v) ∩ supp(x) is not empty. Let mj be the
least preferred edge by v of Dj(v)∩ supp(x). As mj >v uv for all j, property 2. holds
again for uv.

It remains to check that x′ satisfies the constraints of (1). By our choice, x ≥ 0
trivially holds. As we have chosen one edge from each nonempty Dk(z)∩ supp(x) for
all vertices z of G, condition x′(Di(z)) ≤ 1 holds for all vertices z. For the third type
constraint, pick an edge uv of G and indices i, j with 1 ≤ i ≤ b(u) and 1 ≤ j ≤ b(v).
If u′v <v uv for the <v-worst edge u′v of supp(x) ∩Dj(v) then

x′(φi,j(uv)) ≥ 1

1− δ
(x(φi,j(uv))− δ) ≥ 1− δ

1− δ
= 1

holds. Otherwise let u′v ∈ Dk(u
′). By Lemma 2.3, u′v is the <u′-best edge of

supp(x) ∩Dk(u
′), so

x′(φi,j(uv)) ≥ 1

1− δ
(x(Dj(v) ∩ {e ∈ E : e ≥v uv})− δ) =

=
1

1− δ
(x(φi,k(m))− δ) ≥ 1− δ

1− δ
= 1 .
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