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June 2002



EGRES Technical Report No. 2002-02 1

Covering symmetric supermodular functions by
uniform hypergraphs

Tamás Király?

Abstract

We consider the problem of finding a uniform hypergraph that satisfies cut
demands defined by a symmetric crossing supermodular set function. We give
min-max formulas for both the degree specified and the minimum cardinality
problem. These results include as a special case a formula on the minimum
number of r-hyperedges whose addition to an initial hypergraph will make it
k-edge-connected.

1 Introduction

The problem of making a graph k-edge-connected by the addition of a minimal number
of new edges, which was originally solved by T. Watanabe and A. Nakamura [8], has
many extensions that have been subject to considerable research. Some recent results
showed that similar questions for hypergraphs are also worthy of interest. In [3],
E. Cheng gave a formula on the minimum number of graph edges that can be added
to an initial (k− 1)-edge-connected hypergraph such that the resulting hypergraph is
k-edge-connected; J. Bang-Jensen and B. Jackson [1] extended this result to the case
when the initial hypergraph can be arbitrary. This min-max theorem was then further
generalized by A. Benczúr and A. Frank in [2], where they considered the minimum
number of graph edges that can cover a given symmetric, crossing supermodular set
function. This more abstract setting provided a better insight into the combinatorial
structure underlying the augmentation problem. Another generalization of Cheng’s
result due to T. Fleiner and T. Jordán [5] involved the addition of r-hyperedges to a
(k − 1)-edge-connected hypergraph to make it k-edge-connected.

The aim of the present paper is to provide a common generalization of the above
mentioned results in [5] and [2], based on the approach of Benczúr and Frank. We give
a min-max formula on the minimum number of r-hyperedges that can cover a given
symmetric, crossing supermodular set function. As in [2], the substantial part of the
proof is a solution of the degree-specified problem (i.e. when each node is contained
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Section 2. Degree-specified hypergraphs 2

in a prescribed number of new hyperedges, taking into account multiplicities), which
then easily leads to a min-max formula on the minimum number of new hyperedges
needed.

Let V be a finite ground set. For a function m : V → R and a set X ⊆ V , we
use the notation m(X) :=

∑
v∈X m(v). Throughout the paper we allow hyperedges

to contain nodes with multiplicity. This means that a hyperedge can be defined as
a function e : V → Z+, and it is called an r-hyperedge if e(V ) = r. An r-uniform
hypergraph is a hypergraph H = (V, E), where V is the ground set, and E is a collection
of r-hyperedges, possibly with repetition. For an (r − 1)-hyperedge e′ and a node
w ∈ V , e′ + w denotes the r-hyperedge e for which e(v) = e′(v) if v 6= w, and
e(w) = e′(w) + 1. A hyperedge e enters a set X if e(X) > 0 and e(V −X) > 0. We
define dH(X) := |{e ∈ E | e enters X}|, which has the following property:

dH(X) + dH(Y ) ≥ dH(X ∩ Y ) + dH(X ∪ Y ) for every X, Y ⊆ V . (1)

A set X separates a set Y if Y ∩X 6= ∅ and Y −X 6= ∅.
Let p : 2V → Z+ be a set function (we always assume that p(∅) = 0). The

hypergraph H is said to cover p if dH(X) ≥ p(X) for every X ⊆ V . The set function
p is positively crossing supermodular if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) (2)

holds whenever p(X), p(Y ) > 0, and X ∩ Y, V − (X ∪ Y ) 6= ∅. If p is also symmetric
(i.e. p(X)=p(V-X) for every X ⊆ V ), and (X,Y ) is a pair such that p(X), p(Y ) > 0,
and X − Y, Y −X 6= ∅, then

p(X) + p(Y ) ≤ p(X − Y ) + p(Y −X). (3)

An example for this type of function is the set function that arises in the hypergraph
edge-connectivity augmentation problem. Given an initial hypergraph H0 = (V, E0)
and an integer k, we can define p(X) := (k − dH0(X))+ (∅ 6= X ⊂ V ). It is easy to
see using (1) that p is positively crossing supermodular and of course symmetric. A
hypergraph H covers p if and only if H0 +H is k-edge-connected.

2 Degree-specified hypergraphs

Let V be a finite ground set, p : 2V → Z+ a symmetric, crossing supermodular set
function, r ≥ 2 an integer, and m : V → Z+ a degree specification such that r | m(V ).

We call a partition {V1, . . . , Vl} p-full if l > r and

p(∪i∈IVi) > 0 for every ∅ 6= I ⊂ {1, . . . , l}. (4)

We always assume that the partition members are indexed so that m(V1) ≤ m(V2) ≤
. . . ≤ m(Vl). Suppose that an r-uniform hypergraph covers p. If we contract the sets
V1, . . . , Vl, then the contracted hypergraph (which is still r-uniform since multiplicities
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are taken into account) must be connected, therefore it needs to have at least l−1
r−1

hyperedges. A p-full partition is called a deficient partition if

l − 1

r − 1
>
m(V )

r
.

The main theorem of this section is the following:

Theorem 2.1. Let p : 2V → Z+ be a symmetric, positively crossing supermodular set
function, r ≥ 2 an integer, and m : V → Z+ a degree specification such that r | m(V ).
There is an r-uniform hypergraph H covering p such that dH(v) = m(v) for every
v ∈ V if and only if the following are true:

m(X) ≥ p(X) ∀X ⊆ V, (5)

m(V )

r
≥ p(X) ∀X ⊆ V, (6)

There are no deficient partitions. (7)

Proof. The necessity of the conditions is easily verifiable. We prove sufficiency using
induction on |V |+m(V ). An r-uniform hypergraph is called feasible if it matches the
degree specification and covers p. First we show that if there is a set X ⊆ V such
that m(X) = p(X) = 1 and |X| > 1, then there exists a feasible hypergraph. The
contraction of X leads to a modified problem: V ′ := V − X + vX , m′(v) := m(v) if
v ∈ V ′ − vX , m′(vX) := 1, p′(Y ) := p(Y ) if vX /∈ Y , and p′(Y ) := p((Y − vX) ∪ X)
if vX ∈ Y . Conditions (5)–(7) are satisfied by m′ and p′, and p′ is symmetric and
positively crossing supermodular, so by induction there is an r-uniform hypergraph
H ′ = (V ′, E ′) with degree vector m′, that covers p′. This hypergraph naturally defines
an r-uniform hypergraph H = (V, E) with degree vector m; we claim that H covers p.
Suppose that dH(Y ) < p(Y ) for some Y ⊆ V . Y separates X, otherwise there would
be a corresponding deficient set in the contracted problem. If m(X ∩ Y ) > 0, then
we may assume that X and Y are crossing (because of the symmetry of p), but then
X ∪ Y is deficient by (1) and (2), while if m(X ∩ Y ) = 0, then Y − X is deficient
according to (1) and (3).

From now on it is assumed that if m(X) = p(X) = 1 for some X ⊆ V , then |X| = 1;
these singletons are called special singletons. The set of special singletons is denoted
by S; we consider S as a subset of V .

We define an operation called splitting, which is an analogue of the splitting op-
eration for graphs. For an r-hyperedge e for which e(v) ≤ m(v) for every v ∈ V ,
let

me(v) := m(v)− e(v), (8)

pe(X) :=

{
max(0, p(X)− 1) if e enters X,
p(X) otherwise.

(9)

We say that (me, pe) is obtained from (m, p) by splitting off the hyperedge e. A
splitting operation is feasible if (5), (6), and (7) are true for me and pe. It is easy to
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see that pe is symmetric and positively crossing supermodular; so after the execution
of a feasible splitting, by induction there exists an r-uniform hypergraph H ′ with
degree vector me that covers pe . By adding the hyperedge e to H ′ we obtain a
feasible hypergraph H.

The rest of the proof consists of showing that a feasible splitting always exists. We
define the following families of sets:

B1 := {X ⊆ V | m(X)− p(X) ≤ r − 2; p(Y ) < p(X) ∀Y ⊂ X},
B2 := {X ⊆ V | m(X)− p(X) = r − 1; p(Y ) ≤ p(X) ∀Y ⊂ X},

B3 := {X ⊆ V | p(X) =
m(V )

r
; p(Y ) <

m(V )

r
∀Y ⊂ X}.

The inequalities (5) and (6) hold for me and pe if and only if

e(X) ≤ m(X)− p(X) + 1 for every X ∈ B1, (10)

e(X) ≤ r − 1 for every X ∈ B2, (11)

e(X) ≥ 1 for every X ∈ B3. (12)

In order to formulate necessary and sufficient conditions for me and pe to satisfy
(7), we call a p-full partition {V1, . . . , Vl} critical if

l − 1

r − 1
>
m(V )

r
− 1.

For a critical partition F , let s(F) denote the number of special singleton members
of F . A critical partition F is called proper if s(F) ≥ 3. Critical partitions have the
following properties:

Claim 2.2. If F = {V1, . . . , Vl} is a critical partition, then 2l − 2 ≥ m(V ), thus
s(F) ≥ m(Vl). In particular, s(F) ≥ 2 for every critical partition, and the partition
is proper if m(Vl) ≥ 3.

Proof. The partition is critical and m(V )
r

is an integer, so

m(V ) ≤ r

(
l − 2

r − 1
+ 1

)
= 2r +

r

r − 1
(l − r − 1) ≤ 2r + 2(l − r − 1) = 2l − 2.

Claim 2.3. A partition {V1, . . . , Vl} is critical if and only if l > r, l−1
r−1

> m(V )
r
− 1,

p(V1) = 1, and p(V1 ∪ Vi) ≥ 1 (i = 2, . . . , l). If the partition is critical and U is the
union of some partition members such that V1 ⊆ U and V2 ∩ U = ∅, then p(U) = 1.

Proof. Let {V1, . . . , Vl} be a partition with the above properties. If U is the union of
at most l − 2 partition members such that V1 ⊆ U and Vj ∩ U = ∅, then (2) implies
that p(V1 ∪ Vj) + p(U) ≤ p(V1) + p(U ∪ Vj), from which p(U) ≤ p(U ∪ Vj). As a
consequence, p(U) > 0 if U is the union of at most l − 1 members including V1. By
the symmetry of p, the same is true if U ∩ V1 = ∅. If V1 ⊆ U and V2 ∩ U = ∅, then
the above argument gives 1 = p(V1) ≤ p(U) ≤ p(V − V2) = 1.
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Claim 2.4. Let e be an r-hyperedge which satisfies (10)–(12). Then me and pe satisfy
(7) if and only if

e(V −X) > 0 for any member X of any proper critical partition. (13)

Proof. Clearly, only critical partitions can become deficient partitions after the split-
ting. If e(V − X) > 0 for every member X of a given critical partition, then Claim
2.3 guarantees that pe(U) = 0 for some union U of members, so the partition is not
pe-full. If the critical partition is not proper, then a partition member X for which
e(V −X) = 0 has a subset that violates (10) or (11).

It suffices to show the existence of an r-hyperedge e ≤ m that satisfies (10), (11),
(12), and (13). First we consider only (10) and (12):

Q := {e : V → Z+ | e ≤ m; e(V ) = r;

e(X) ≤ m(X)− p(X) + 1 ∀X ∈ B1; e(X) ≥ 1 ∀X ∈ B3}.

Claim 2.5. The family B1 ∪B3 is laminar. The sets in B3 are pairwise disjoint, and
if X ∈ B1 and Y ∈ B3 are not disjoint, then X ⊆ Y .

Proof. If X,Y ∈ B1 ∪ B3, and X − Y, Y −X,X ∩ Y 6= ∅, then p(X) ≤ p(X − Y ) or
p(Y ) ≤ p(Y − X) by (3), which contradicts the definition of B1 and B3. If X ∈ B1

and Y ∈ B3, then p(Y ) ≥ p(X), so Y 6⊂ X according to the definition of B1.

It follows from Claim 2.5 that Q consists of the integral vectors of a g-polymatroid
(which moreover is determined by a weak pair defined on a laminar family).

Claim 2.6. Q is non-empty.

Proof. The non-emptiness of Q is equivalent to the following (see e.g. [6], though in
this case it is easy to show directly as well):

1. |B3| ≤ r,

2. m(V−∪t
i=1Xi)+

∑t
i=1(m(Xi)−p(Xi)+1) ≥ r for every sub-partition {X1, . . . , Xt}.

The first condition holds since m(X) ≥ m(V )
r

for every X ∈ B3. The second
condition is clearly true if t ≥ r. If t < r, then m(V −∪Xi)+

∑
(m(Xi)−p(Xi)+1) ≥

m(V −∪Xi) +
∑

(m(Xi)− m(V )
r

+ 1) = (r − t)m(V )
r

+ t ≥ r, the last inequality being
valid because m(V ) ≥ r.

Obviously, if an r-hyperedge e defines a feasible splitting, then it is in Q. The
converse is generally not true; however, it turns out to be true when B3 6= ∅:
Lemma 2.7. If B3 6= ∅, then any r-hyperedge e ∈ Q defines a feasible splitting.
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Proof. Let X ∈ B3 and e ∈ Q. First suppose that there is a set Y ∈ B2 such that
e(Y ) = r. Then X∩Y 6= ∅, and one of X−Y and Y −X is empty, otherwise (3) would
imply that either p(X −Y ) ≥ p(X) or p(Y −X) > p(Y ), contrary to the definition of
B3 and B2. If Y ⊆ X, then there is a set X ′ ∈ B3 such that X ′ ⊆ V −X ⊆ V − Y ; if
X ⊆ Y , then Y ∈ B2 implies that p(V −Y ) = p(Y ) ≥ p(X) = m(V )

r
, so B3 would again

contain a set X ′ ⊆ V − Y . This is impossible since e ∈ Q, which requires e(X ′) ≥ 1.

Now suppose that a proper critical partition F = {V1, . . . , Vl} becomes deficient
after the splitting. Since B3 contains at least two disjoint sets, it contains a set X
that is disjoint from at least two special singleton members of F , say V1 and V2.
First we show that a member of F can not separate X. If Vi separates X, then
p(V1∪Vi−X) ≥ p(V1∪Vi)+p(X)−p(X−Vi) > p(V1∪Vi) = 1. Let U := V −Vi−V2;
then p(U ∪X) ≥ p(U) + p(X)− p(X ∩U) > p(U) = 1. Thus p(Vi ∪U) ≥ p(V1 ∪ Vi −
X) + p(U ∪X)− p(V1) > 1, which contradicts Claim 2.3.

We can conclude that there is a partition member Vi such that X ⊆ Vi. This implies
me(Vi) ≥ me(X) ≥ pe(X) = me(V )

r
, so me(V ) ≥ l − 1 + me(V )

r
. But then l−1

r−1
≤ me(V )

r
,

so F could not become deficient after the splitting.

By Claim 2.6 and Lemma 2.7 we may assume that B3 = ∅. To handle condition
(13), we will use some information on the structure of proper critical partitions. This
information is based on an auxiliary graph G defined on the special singletons: G =
(S, F ), where uv ∈ F if and only if p({u, v}) = 1.

Claim 2.8. If X ∈ B1 and |X| ≥ 2, then dG(X) = 0.

Proof. Suppose that uv is an edge of G such that u ∈ X, v /∈ X. Then by (3),
p(X − u) ≥ p(X) + p({u, v})− p(v) = p(X), which contradicts X ∈ B1.

Claim 2.9. Every proper critical partition F = {V1, . . . , Vl} can be refined by sepa-
rating some special singletons in such a way that the resulting critical partition FS

(the S-refinement of F) has the following properties:

• If dG(X) > 0 for a member X ∈ FS, then X is a special singleton,

• The set of special singleton members of FS defines a component of G that is a
clique (which we call the S-clique of F).

Proof. We prove that if there is an edge uv of G such that u ∈ Vi, v /∈ Vi for some
non-singleton partition member Vi, then a critical partition is obtained if we replace
Vi by {u} and Vi − u. F is proper, so we can assume that v 6= V1, V2. According to
Claim 2.3, we have to show that p(V1 ∪ Vi − u) > 0 and p(V1 + u) > 0.

By Claim 2.3, p(V1∪Vi) = 1, so p(V1∪Vi−u) ≥ p(V1∪Vi)+p({u, v})−p({v}) = 1.
Similarly, p(V2∪Vi−u) ≥ 1; thus p(V1 +u) ≥ p(V1∪Vi)+p(V2∪Vi−u)−p(V2) ≥ 1. As
a consequence, the replacement of Vi by {u} and Vi − u results in a critical partition.

By repeating this step as many times as possible, we obtain a critical partition FS

with the required properties.
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Among the components ofG that are cliques, letK∗ ⊆ S be one of maximal size. We
choose an r-hyperedge e∗ ∈ Q such that e∗(K∗) is maximal, and then choose an (r−1)-
hyperedge e′ ≤ e∗ such that e′(K∗) is maximal. Let W := {v ∈ V : m(v) > e′(v)}.
We will show that there exists a node w ∈ W such that the r-hyperedge e = e′ + w
defines a feasible splitting.

Lemma 2.10. If the splitting off of a hyperedge e = e′ + w results in a deficient
partition, then (10) or (11) is violated for a set X ∈ B1 ∪ B2.

Proof. We can assume that K∗ 6= ∅, otherwise there are no critical partitions. Since
e∗ can be chosen by the greedy algorithm, and Claim 2.8 implies that K∗ is either
disjoint from or subset of any non-singleton set in B1, e

′(K∗) is the minimum of the
following three values:

|K∗|, (14)

r − 1, (15)

min
K∗⊆X∈B1

(m(X)− p(X) + 1). (16)

Let Vi be the member of the would-be deficient partition F for which e(V − Vi) = 0;
then |K∗∩Vi| ≥ e′(K∗) > 0. We can assume that m(Vi) > 2, since otherwise a subset
of Vi would violate (10) or (11). If K∗ ⊆ Vi and m(Vi −K∗) > 0, then s(F) < m(Vi),
given that the special singleton members form a clique in G whose size is at most
|K∗|. This contradicts the criticality of F according to Claim 2.2. If K∗ ⊆ Vi and
m(Vi − K∗) = 0, then we consider the set X := {v ∈ Vi : e(v) > 0}. The crossing
supermodularity of p easily implies that p(Y ) > 0 for every Y ⊆ K∗, hence p(X) > 0.
But then a subset of X violates (10) or (11).

Now suppose that K∗ 6⊆ Vi, and let FS denote the S-refinement of F . By Claim
2.9, K∗ is the set of special singletons that are members of FS. If e′(K∗) = r − 1,

then |FS |−1
r−1

≥ |F|+(r−1)−1
r−1

≥ |F|−1
r−1

+ 1 > m(V )
r

, which means that FS would violate (7).
If e′(K∗) is determined by (16), then there is a set X ∈ B1 such that K∗ ⊆ X,

Vi 6⊆ X, and |K∗ ∩ Vi| ≥ m(X)− p(X) + 1. Let U denote the union of the members
of F − {Vi} that are not special singletons. Then s(F) = |K∗ − U | − |K∗ ∩ Vi| ≤
|K∗−U |−m(X)+p(X)−1 < p(X)−m(X∩U). By Claim 2.2, this would imply that
m(Vi) < p(X)−m(X∩U). However, if U ⊆ X, then m(Vi) ≥ p(Vi−X) = p(X), while
if U 6⊆ X, then m(Vi) ≥ p(Vi−X) = p(U ∪X) ≥ p(X)+p(V1∪U)−p(X∩(V1∪U)) ≥
p(X) + 1−m(X ∩ (V1 ∪ U)) = p(X)−m(X ∩ U).

Lemma 2.10 implies that condition (13) can be ignored when choosing an appropri-
ate node w ∈ W . We have already seen that e = e′ + w ∈ Q is a necessary condition
for the feasibility of the splitting. In addition to that, e(X) ≤ r−1 must hold for sets
in B2. A set X ∈ B2 is called critical if e′(X) = r − 1, and there is no Y ∈ B1 such
that X ⊆ Y and m(Y )− p(Y ) = r − 2. An r-hyperedge e = e′ + w defines a feasible
splitting if and only if e ∈ Q and there is no critical set containing w. Since e∗ ∈ Q,
we can assume that there is at least one critical set in B2.

Claim 2.11. Let X ∈ B2 be a critical set. If Y ∈ B1, then one of X ∩ Y , X − Y ,
and Y −X is empty. If w ∈ W −X, then e′ + w ∈ Q.
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Proof. If X ∈ B2, Y ∈ B1, and X ∩Y,X −Y, Y −X are non-empty, then p(X −Y ) ≤
p(X) and p(Y − X) < p(Y ) by the definition of B1 and B2, which contradicts (3).
If w ∈ W − X, then e′ + w ∈ Q unless there is a set Y ∈ B1 such that w ∈ Y and
e′(Y ) = m(Y ) − p(Y ) + 1. But then X ∩ Y 6= ∅, so X ⊆ Y , which contradicts the
criticality of X.

Suppose indirectly that every w ∈ W is in a critical set. Consider a family Z =
{Z1, . . . , Zt} of maximal critical sets, such that every w ∈ W is in at least one of
them, and the family has minimal number of members. The following sequence of
claims establishes that the existence of such a family leads to a contradiction. Let
Z := ∩t

i=1Zi.

Claim 2.12. If i 6= j, then m(Zi∩Zj) = m(Z) = r−1, and m(Zi−Zj) = p(Zi−Zj).

Proof. We know that m(Zi ∩ Zj) ≥ m(Z) ≥ e′(Z) ≥ r − 1. On the other hand,
(3) gives that 0 ≤ p(Zi − Zj) + p(Zj − Zi) − p(Zi) − p(Zj) ≤ m(Zi − Zj) + m(Zj −
Zi)− p(Zi)− p(Zj) = 2(r − 1)− 2m(Zi ∩ Zj). This is possible only if equality holds
throughout.

Clearly |Z| ≥ 2 and m(V )
r
≥ 2, since m(V − Zi) > 0 for every i. Suppose that

|Z| = 2. Then p(Z1) = m(Z1 − Z2) = m(V − Z2) ≥ p(Z2) and vice versa, so

p(Z1) = p(Z2) = m(Z1 − Z2) = m(Z2 − Z1) = m(V )−(r−1)
2

. This value can be integer

only if r ≥ 3, but then m(V )
r
≤ m(V )−(r−1)

2
= p(Z1), contradicting B3 = ∅. Therefore

we may assume that |Z| ≥ 3.

Claim 2.13. ∪t
i=1Zi = V , Zj − Z is a special singleton for every j, and p(Zi ∪ Zj −

Z) > 0 for every i, j.

Proof. For a set of indices I ⊆ {1, . . . , t}, let UI := ∪i∈IZi. Since p(Zi) = m(Zi−Z) for
every i, the repeated application of (2) gives that p(UI) ≥ m(UI − Z)− (|I| − 1) > 0
if UI 6= V . For I = {1, . . . , t}, this implies that ∪t

i=1Zi = V , since p(∪t
i=1Zi) ≤

m(V−∪t
i=1Zi) = 0. Now let I := {1, . . . , t}−{i0}, where i0 is chosen so thatm(Zi0−Z)

is minimal. Then m(Zi0−Z) ≥ p(UI) ≥ m(UI−Z)−(t−2). Since |Z| ≥ 3, this is only
possible if m(Zi − Z) = 1 for every i. For a fixed j, p(Zj − Zi) = m(Zj − Zi) = 1 for
every i, so by repeatedly applying (2) we get p(Zj−Z) = p(∪i6=j(Zj−Zi)) ≥ 1, hence
Zj −Z is a special singleton. Finally, if i 6= j, then by setting I := {1, . . . , t}− {i, j},
we obtain p(Zi ∪ Zj − Z) = p(UI) > 0.

Claim 2.14. F := {Z,Z1 − Z, . . . , Zt − Z} is a proper critical partition.

Proof. The partition has size l = m(V ) − (r − 1) + 1 ≥ r + 2 since m(V ) ≥ 2r, so

s(F) ≥ r + 1, and l−1
r−1

= m(V )−(r−1)
r−1

> m(V )
r
− 1. If X is the union of two partition

members, then Claim 2.13 implies that p(X) > 0; therefore F is a proper critical
partition by Claim 2.3.
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Section 3. Hypergraphs with minimum number of hyperedges 9

The special singleton members of F form a component of G that is a clique, and the
size of this clique is at least r + 1, therefore |K∗| ≥ r + 1. This means that K∗ 6⊆ Z,
so K∗ must be the S-clique of F . The value of e′(K∗) is not determined by (16): if
K∗ ⊆ X ∈ B1, then Zi ⊆ X for every i by Claim 2.11, which is not possible. It follows
that e′(K∗) = r − 1.

To prove that the existence of Z contradicts (7), we consider the S-refinement FS

of F . The properties of S-refinements stated in Claim 2.9 imply that every member
of FS is a special singleton. However, such a p-full partition would be a deficient
partition, given that m(V )

r
≥ 2.

We proved that there is a node w such that the r-hyperedge e = e′ + w can be
feasibly split off. This concludes the proof of Theorem 2.1.

3 Hypergraphs with minimum number of hyper-

edges

As in the case of many edge-connectivity augmentation results including [2], the char-
acterization of the degree-specified problem in Theorem 2.1 can be used in a straight-
forward way to prove a min-max theorem on the corresponding minimum cardinality
problem. Recall that a partition {V1, . . . , Vl} is called p-full if l > r and p(∪i∈IVi) > 0
for every ∅ 6= I ⊂ {1, . . . , l}.

Theorem 3.1. Let p : 2V → Z+ be a symmetric, positively crossing supermodular set
function, and r ≥ 2 an integer. There is an r-uniform hypergraph with γ hyperedges
that covers p if and only if the following hold:

rγ ≥
t∑

i=1

p(Xi) for every partition {X1, . . . , Xt}, (17)

γ ≥ p(X) for every X ⊆ V , (18)

γ ≥ l − 1

r − 1
if there is a p-full partition with l members. (19)

Proof. The conditions are clearly necessary for the existence of an r-uniform hyper-
graph that covers p. We prove sufficiency for a fixed γ. Let m′ : V → Z+ be a vector
that satisfies (5) such that m′(V ) is minimal, and let M ′ := {v ∈ V : m′(v) > 0}.
Then for every node v ∈M ′, there exists a set X for which v ∈ X and m′(X) = p(X);
sets with the latter property are called tight. There is a family of tight sets covering
every node v ∈M ′; let F be such a family with |F| minimal. If X ∈ F and Y ∈ F are
not disjoint, then X ∪Y = V , otherwise X ∪Y would be tight according to (2), which
would contradict the minimality of |F|, as X and Y could be replaced by X ∪Y . The
symmetry of p implies that X − Y = V − Y and Y −X = V −X are both tight and
m′(X ∩ Y ) = 0, so X − Y and Y −X cover every node of M ′. We can conclude that
there is always a partition {X1, . . . , Xt} for which

∑t
i=1 p(Xi) = m′(V ). It follows

from (17) that rγ ≥ m′(V ).
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We can obtain a degree specification m : V → Z+ from m′ by increasing m′ on
one arbitrary node by rγ −m′(V ). Then m satisfies (5), (6), (7), and r | m(V ), thus
by Theorem 2.1 there exists an r-uniform hypergraph H with degree-vector m that
covers p. The choice of m implies that H has γ hyperedges.

As it was mentioned in the introduction, the k-edge-connectivity augmentation of
an initial hypergraphH0 = (V, E0) corresponds to the case when p(X) = (k−dH0(X))+

(∅ 6= X ⊂ V ). This set function is symmetric and positively crossing supermodular,
so Theorem 3.1 is applicable; furthermore, condition (19) concerning p-full partitions
can be considerably simplified. For a hypergraph H = (V, E), let iH(X) := |{e ∈ E :
e(V −X) = 0}|, and let c(H) denote the number of components of H.

Corollary 3.2. Let H0 = (V0, E0) be a hypergraph, and r ≥ 2 an integer. There is
an r-uniform hypergraph H with γ hyperedges such that H0 + H is k-edge-connected
if and only if the following hold:

rγ ≥ tk −
t∑

i=1

dH0(Xi) for every sub-partition {X1, . . . , Xt}, (20)

γ ≥ k − dH0(X) for every X ⊆ V , (21)

(r − 1)γ ≥ c(H0 − E ′0)− 1 for every E ′0 ⊆ E0 for which |E ′0| = k − 1. (22)

Proof. Compared to Theorem 3.1, the only difference is that (19) is replaced by con-
dition (22). Its necessity follows from the fact that the components of H0 − E ′0 form
a p-full partition if c(H0 − E ′0) > r. We prove sufficiency by showing that if a p-full
partition F = {V1, . . . , Vl} violates (19) while conditions (20) and (21) are satisfied,
then an appropriate E ′0 violates (22). Let E ′0 be the set of hyperedges in E0 that enter
at least one member of F , and let H ′0 := (V, E ′0). The partition F violates (19), so
(r − 1)γ < l − 1 ≤ c(H0 − E ′0)− 1.

We claim that |E ′0| = k − 1. By (20), lk −
∑
dH′0

(Vi) = lk −
∑
dH0(Vi) ≤ rγ ≤

r
r−1

(l−2) ≤ 2l−4, from which
∑
dH′0

(Vi) ≥ (k−2)l+4. This implies that |E ′0| ≥ k−1,
and there are at least 4 members of F (say V1, V2, V3, V4), for which dH′0

(Vi) = k − 1.
We can assume that iH′0(V1 ∪ V2) ≤ iH′0(Vi ∪ Vj) for every i, j ∈ {1, 2, 3, 4}.

If iH′0(V1 ∪ V2) > 0, then dH′0
(V1 ∪ V2) ≥ dH′0

(V1) − iH′0(V1 ∪ V2) + iH′0(V2 ∪ V3) +
iH′0(V2 ∪V4) ≥ k, contradicting the p-fullness of F . So iH′0(V1 ∪V2) = 0, in which case
there are k−1 hyperedges in E ′0 that enter each of V1, V2 and V1∪V2. Suppose that E ′0
contains a hyperedge besides these k − 1, which enters a partition member Vi. Then
dH′0

(V1 ∪ Vi) ≥ k, contrary to the p-fullness of F ; hence |E ′0| = k − 1.

4 Remarks

It might be argued that Theorems 2.1 and 3.1 are not good characterizations, since it
is not possible to check in polynomial time whether a given partition is p-full, hence
it cannot be decided whether it is a deficient partition or not. If a partition has at
least one member Vi with p(Vi) = 1, then its deficiency can be checked using the
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characterization in Claim 2.3. But in general, deciding whether a partition is p-full or
not is NP-complete (see [2], where p-fullness was defined differently for this reason).

However, it is easy to see that if p(Vi) ≥ 2 for every member of a deficient partition,
then at least one of the partition members violates (5) (and the partition violates (17)
in case of Theorem 3.1). This means that Theorems 2.1 and 3.1 give good co-NP
characterizations.

If an oracle is available that can maximize the set function p + x − dH for any
modular function x and any hypergraph H, then the proof of Theorem 2.1 provides a
polynomial algorithm for finding consecutive feasible splittings, and the construction
of a degree specification that has the properties described in the proof of Theorem
3.1 is also polynomial. Hence, given the appropriate oracles, polynomial algorithms
can be constructed for the problems presented in this paper. In the case of k-edge-
connectivity augmentation, the required oracles can be realized using network flow
algorithms.

As it was mentioned in the introduction, the framework studied in this paper is a
generalization of the problem of k-edge-connectivity augmentation of hypergraphs by
r-hyperedges. It is a natural question to ask whether these results could be extended
to local edge-connectivity augmentation. In a closely related problem this extension
was possible: a result of Z. Szigeti [7] implies that if there is no restriction on the size
of the hyperedges, and the objective is to minimize the sum of the sizes of the new
hyperedges, then local edge-connectivity augmentation can be solved in polynomial
time.

Though this raised hopes that the minimum cardinality problem, i.e the minimiza-
tion of the number of new r-hyperedges added to the initial hypergraph, might also
be tractable for local edge-connectivity augmentation, it turned out that this problem
is NP-complete. Let λH(u, v) denote the local edge-connectivity between u and v in
a hypergraph H, i.e.

λH(u, v) := min
u∈X,v/∈X

dH(X).

NP-completeness was proved by B. Cosh, B. Jackson, and Z. Király for the following
special case:

Theorem 4.1 ([4]). Let H0 = (V, E0) be a connected hypergraph, F a partition of V ,
and γ ∈ Z+ an integer. The following problem is NP-complete: decide whether there
exists a graph G = (V,E) with γ edges such that λH0+G(u, v) ≥ 2 whenever u and v
are in the same member of F .
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[6] A. Frank, É. Tardos, Generalized polymatroids and submodular flows, Mathemat-
ical Programming, Ser. B, Vol. 42 (1988), 489–563.

[7] Z. Szigeti, Hypergraph connectivity augmentation, in: Connectivity Augmentation
of Networks: Structures and Algorithms, Mathematical Programming (ed. A.
Frank), Ser. B, Vol. 84, No. 3 (1999), 519–527.

[8] T. Watanabe, A. Nakamura, Edge-connectivity augmentation problems, Com-
puter and System Sciences 35 No. 1 (1987), 96–144.

EGRES Technical Report No. 2002-02


	Introduction
	Degree-specified hypergraphs
	Hypergraphs with minimum number of hyperedges
	Remarks

