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On a lemma of Scarf

Ron Aharoni? and Tamás Fleiner??

Abstract

The aim of this note is to point out some combinatorial applications of a
lemma of Scarf, proved first in the context of game theory. The usefulness
of the lemma in combinatorics has already been demonstrated in [1], where it
was used to prove the existence of fractional kernels in digraphs not containing
cyclic triangles. We indicate some links of the lemma to other combinatorial
results, both in terms of its statement (being a relative of the Gale-Shapley
theorem) and its proof (in which respect it is a kin of Sperner’s lemma). We
use the lemma to prove a fractional version of the Gale-Shapley theorem for
hypergraphs, which in turn directly implies an extension of this theorem to
general (not necessarily bipartite) graphs due to Tan [12]. We also prove the
following result, related to a theorem of Sands, Sauer and Woodrow [10]: given
a family of partial orders on the same ground set, there exists a system of
weights on the vertices, which is (fractionally) independent in all orders, and
each vertex is dominated by them in one of the orders.

Keywords: stable matching, partial order, matroid, simplicial complex

1 Introduction

A famous theorem of Gale and Shapley [5] states that given a bipartite graph and,
for each vertex v, a linear order ≤v on the set of edges incident with v, there exists
a stable matching. Here, a matching M is called stable if for every edge e 6∈M there
exists an edge in M meeting e and beating it in the linear order of the vertex at
which they are incident. (The origin of the name “stable” is that in such a matching
no non-matching edge poses a reason for breaking marriages: for every non-matching
edge, at least one of its endpoints prefers its present spouse to the potential spouse
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provided by the edge.) Alternatively, a stable matching is a kernel in the line graph
of the bipartite graph, where the edge connecting two vertices (edges of the original
graph) is directed from the larger to the smaller, in the order of the vertex of the
original graph at which they meet.

It is well known that the theorem fails for general graphs, as shown by the following
simple example: let G be an undirected triangle on the vertices u, v, w, and define:
(u, v) >u (w, u), (v, w) >v (u, v), (w, u) >w (v, w). But the theorem is true for
general graphs if one allows fractional matchings, as follows easily from a result of
Tan [12] (see Theorem 2.2 below). For example, in the example of the triangle one
could take the fractional matching assigning each edge the weight 1

2
: each edge is then

dominated at some vertex by edges whose sum of weights is 1 (for example, the edge
(u, v) is dominated in this way at v).

The notions of stable matchings and fractional stable matchings can be extended
to hypergraphs. A hypergraphic preference system is a pair (H,O), where H = (V,E)
is a hypergraph, and O = {≤v: v ∈ V } is a family of linear orders, ≤v being an order
on the set D(v) of edges containing the vertex v. If H is a graph we call the system
a graphic preference system.

A set M of edges is called a stable matching with respect to the preference system
if it is a matching (that is, its edges are disjoint) and for every edge e there exists a
vertex v ∈ e and an edge m ∈M containing v such that e ≤v m.

Recall that a function w assigning non-negative weights to edges in H is called a
fractional matching if

∑
v∈hw(h) ≤ 1 for every vertex v. A fractional matching w is

called stable if every edge e contains a vertex v such that
∑

v∈h,e≤vhw(h) = 1.
As noted, by a result of Tan every graphic preference system has a fractional stable

matching. Does this hold also for general hypergraphs? The answer is yes, and it
follows quite easily from a result of Scarf [11]. This result is the starting point of
the present paper. It was originally used in the proof of a better known theorem in
game theory, and hence gained the name ”lemma”. Its importance in combinatorics
has already been demonstrated in [1], where it was used to prove the existence of a
fractional kernel in any digraph not containing a cyclic triangle.

Scarf’s lemma is intriguing in that it seems unrelated to any other body of knowl-
edge in combinatorics. In accord, its proof appears to be of a new type. The aim
of this paper is to bring it closer to the center of the combinatorial scene. First, by
classifying it as belonging to the Gale-Shapley family of results. Second, by pointing
out its similarity (in particular, similarity in proofs) to results related to Brouwer’s
fixed point theorem.

In [4], it was noted that the Gale-Shapley theorem is a special case of a result
of Sands, Sauer and Woodrow [10] on monochromatic paths in edge two-coloured
digraphs. This result can also be formulated in terms of dominating antichains in
two partial orders (see Theorem 3.1 below). We shall use Scarf’s lemma to prove a
fractional generlisation of this “biorder” theorem to an arbitrary number of partial
orders.

In [4], a matroidal version of the Gale-Shapley theorem was proved, for two matroids
on the same ground set. Using Scarf’s lemma, we prove a fractional version of this
result to arbitrarily many matroids on the same ground set.
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Section 2. Some applications 3

We finish the introduction with stating Scarf’s lemma. (Apart from the original
paper, a proof can also be found in [1]. The basic ideas of the proof are mentioned in
the last section of the present paper).

Theorem 1.1 (Scarf [11]). Let n < m be positive integers, b a vector in R
n
+. Also

let B = (bi,j), C = (ci,j) be matrices of dimensions n×m, satisfying the following three
properties: the first n columns of B form an n× n identity matrix (i.e. bi,j = δi,j for
i, j ∈ [n]), the set {x ∈ R

n
+ : Bx = b} is bounded, and ci,i < ci,k < ci,j for any i ∈ [n],

i 6= j ∈ [n] and k ∈ [m] \ [n].
Then there is a nonnegative vector x of R

m
+ such that Bx = b and the columns of

C that correspond to supp(x) form a dominating set, that is, for any column i ∈ [m]
there is a row k ∈ [n] of C such that ck,i ≤ ck,j for any j ∈ supp(x).

As we shall see in the last section, under the assumption that the columns of B
are in general position and the entries in each row of C are different the proof of the
lemma yields a stronger fact, namely that there exists an odd number of vectors x as
in the lemma.

2 Some applications

In this section we study some extensions of the stable marriage theorem.

Theorem 2.1 (Gale-Shapley [5]). If (G,O) is a graphic preference model and graph
G = (V,E) is bipartite then there exists a stable matching.

As we mentioned in the introduction, in nonbipartite graphic preference models
Theorem 2.1 is not true. The first algorithm to decide the existence of a stable
matching in this case is due to Irving [6]. Later on, based on Irving’s proof, Tan gave
a compact characterization of those models that contain a stable matching [12]. In
what follows, we formulate Tan’s theorem.

In a graphic preference model (G,O), a subset C = {c1, c2, . . . , ck} of E is a prefer-
ence cycle if c1 <v1 c2 <v2 c3 <v3 . . . <vk−1

ck <vk
c1 for different vertices v1, v2, . . . , vk

of V . A preference cycle C is odd if |C| is odd, otherwise C is even. A stable partition
of model (G,O) is a subset S of E with the following properties.

1. Any component of S is either a cycle or an edge, and

2. each cycle component of S is a preference cycle, and

3. for any edge e of E \S there is a vertex v covered by S and incident with e such
that e <v s for any edge s of S incident with v.

It is easy to see that a stable partition with no cycle component is a stable matching.
Let us define a stable half-matching as a stable fractional matching x so that 2x is

an integral vector. Clearly, for a graphic preference model, the support of a stable
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Section 2. Some applications 4

half-matching is a stable partition. Also, if S is a stable partition then xS is a stable
half matching, where

xS(e) =

 0 if e 6∈ S
1 if e is an edge-component of S
1
2

if e belongs to a cycle-component of S

Theorem 2.2 (Tan, [12]). Any graphic preference model has a stable partition.

Note that a weaker version of Theorem 2.2 can be proved the following way: Define
model M′ = (G′,O′) by G′ = (V ′, E′), V ′ := {vm, vw : v ∈ V }, E ′ := {umvw, uwvm :
uv ∈ E} and umvw <um umv

′
w iff vmuw <uw v

′
muw iff uv <u uv

′. That is, we introduce a
bipartite preference model by duplicating the original one. According to Theorem 2.1,
there is a stable matching M in M′. Define S := {uv : umvw ∈M or vmuw ∈M}. It
is straightforward to check that S satisfies the first two requirements in the definition
of a stable partition, but instead of 3., we have the weaker property

3’. For any edge e of E \ S there are two edges s1 and s2 of S such that s1 ≤v e
and s2 ≤u e for some u, v ∈ V . If s1 is an edge-component of S then s1 = s2 is
allowed, otherwise s1 6= s2.

However, the above weak version of Theorem 2.2 does not help us to decide the
existence of a stable matching in a model. In particular, the following fact is not true
with the weaker notion of stable partition.

Observation 2.3. If S is a stable partition for graphic preference modelM = (G,O)
and there are no odd preference cycles in S then there exists a stable matching ofM.

An immediate consequence of Observation 2.3 and Theorem 2.2 is that if a model
M is free of odd preference cycles then there is a stable matching of M.

Proof. Throw away each second edge of each cycle in S. By the definition of a stable
partition, what is left from S after these deletions is exactly a stable matching of
M.

So if stable partition S does not contain an odd cycle then we immediately see a stable
matching. On the other hand, an odd cycle in S means that no stable matching exists
in M. More specifically, there is the following theorem.

Theorem 2.4 (Tan [12]). Let M = (G,O) be a graphic preference model and S be
a stable partition of M. If there is an odd cycle C in S then C is present in each
stable partition of M.

To prove Theorem 2.2, we justify the promised fractional version of the Gale-Shapley
theorem for hypergraphs.

Theorem 2.5. Any hypergraphic preference system has a fractional stable matching.
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Section 2. Some applications 5

Proof. Let (H,O) be a hypergraphic preference system, where H = (V,E) and O =
{≤v: v ∈ V }. Let B be the incidence matrix of H, with the identity matrix adjoined
to it at its left. Let C ′ be a V × E matrix satisfying the following two conditions:

(1) c′v,e < c′v,f whenever v ∈ e ∩ f and e <v f
(2) c′v,f < c′v,e whenever v ∈ f \ e.
Let C be obtained from C ′ by adjoining to it on its left a matrix so that C satisfies

the conditions of Theorem 1.1. Let x be a vector as in Theorem 1.1 for B and C,
where b is taken as the all 1′s vector 1. Define x′ = x|E, namely the restriction of x
to E. Clearly, x′ is a fractional matching. To see that it is dominating, let e be an
edge of H. By the conditions on x, there exists a vertex v such that cv,e ≤ cv,j for all
j ∈ supp(x). Since cv,v < cv,e it follows that v 6∈ supp(x). Since Bx = 1 it follows
that supp(x) contains an edge f containing v (otherwise (Bx)v = 0). Since cv,f ≥ cv,e

it follows by condition (2) above that v ∈ e. The condition (Bx)v = 1 now implies
that e is dominated by x at v.

In fact, the vector x′ can be assumed to be a vertex of the fractional matching
polytope of H. To see this, write x′ =

∑
αiyi, where αi > 0 for all i,

∑
αi = 1

and the yi’s are vertices of the fractional matching polytope. Then each yi must be
a fractional stable matching. It is well known (see e.g. [8]) that the vertices of the
fractional matching polytope of a graph are half integral, that is, they have only 0, 1

2
, 1

coordinates. This yields Theorem 2.2. Next we give a direct proof of this fact.

Proof of Theorem 2.2. Let M = (G,E) be a graphic preference model, x be a frac-
tional stable matching for M that exists by Theorem 2.5 and define S := supp(x).
We shall prove that S is a stable partition. By the stability of x, we can orient each
edge e of E so that the corresponding arc ~e points to a vertex v such that∑

e≤vf

x(f) = 1 . (1)

Let D = (V,A) be the resulted digraph. From (1), it follows that if e, f ∈ S then

~e and ~f have different endvertices. Also, if ~e, ~f is a directed path for some e, f ∈ S
then x(f) < 1 as x is a fractional matching. Then (1) yields that there is an edge

g ∈ S such that ~e, ~f,~g is a directed path. These two properties of S imply that the
components of S correspond to disjoint edges and directed cycles in D. Condition
3. in the definition of a stable partition holds for S because if edge e of E\S is oriented
as ~e = uv then e <v s for any s ∈ S because of (1). So S = supp(x) is indeed a stable
partition of M.

For the sake of completeness we finish this section by proving Theorem 2.4.

Proof of Theorem 2.4. Introduce preference model M′ = (G′,O′) by G′ = (V,E ′),
E ′ := {eu, ev : e = uv ∈ E, eu and ev are parallel to e}, O′ := {<′v: v ∈ V }, where

eu <′v f
w iff (e <v f or (e = f, u = v, w 6= v))
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Section 2. Some applications 6

(We duplicate all edges, and extend the order to the duplicates in a natural way, so
that we only have to take extra care for the relation of the two copies of the same
edge.)

Observe that if C = {e1, e2, . . . , ek} is a preference cycle of model M such that
ei+1 <vi

ei (i is modulo k) then C ′ := {ev1
1 , e

v2
2 , . . . , e

vk
k } is a corresponding preference

cycle of modelM′. So for any stable partition S of modelM there is a corresponding
subset S ′ of E ′ defined by

S ′ :=
⋃
{C ′ : C is a cycle component of S} ∪

∪ {eu, ev : e = uv is an edge component of S} .

Observe that S ′ is a stable partition of M′ and each component of S ′ is a preference
cycle of M′.

Let S and T be stable partitions of modelM so that C is an odd cycle component
of S. For the corresponding stable partitions S ′ and T ′ of M′ we get

|S ′|+ |T ′|≤ |{(s, t1, t2, v) : s ∈ S ′, t1, t2 ∈ T ′, v ∈ V, t1 6= t2, s ≤′v t1, s ≤′v t2}|+ (2)

+|{(t, s1, s2, v) : t ∈ T ′, s1, s2 ∈ S ′, v ∈ V, s1 6= s2, t ≤′v s1, t ≤′v s2}| ≤ (3)

≤ 2|V (S ′) ∩ V (T ′)| ≤ |V (S ′)|+ |V (T ′)| = |S ′|+ |T ′| (4)

The inequality in (2) is true because of property 3. of stable partitions S ′ and T ′ (note
that both S ′ and T ′ are 2-regular subgraphs of (V,E ′)). The inequality between (3)
and (4) holds because the contribution of each vertex that is covered by S ′ and T ′

is at most two. So there must be equality throughout (2) to (4). This means that
V (S) = V (S ′) = V (T ′) = V (T ) (i.e. any two stable partitions cover the same set of
vertices) and that every vertex v of V (S ′) contributes exactly two at (2,3).

From this latter property, it follows that there is no vertex v of V (S ′) that is incident
with exactly three edges of S ′ ∪ T ′. This is because the contribution of v can only be
two, if these three edges are e, f and g so that e <′v f , e <′v g and e ∈ S ′ ∩ T ′. But if
we follow the two preference cycle components of S ′ and T ′ starting at common edge
e then we shall find a vertex u 6= v of V (S ′) so that u is incident with exactly three
edges of S ′ ∪ T ′, and the common edge of S ′ and T ′ is the <′u-maximal of the three.
The contribution to (2,3) of vertex u is only one, hence the degrees in S ′ ∪ T ′ can
only be 0, 2 and 4. It also follows that if S ′ and T ′ share an edge e then the cycle
component containing e is the the same for S ′ and T ′.

So assume that the odd cycle component C ′ of S ′ is not a component of T ′. This
means that each vertex v of C ′ is incident with exactly four edges of S ′ ∪ T ′. As the
contribution of v in (2,3) is exactly two, we have only two possibilities for vertex v.
Either the two <′v-smaller edges of these four edges belong to S ′ and the two <′v-bigger
edges belong to T ′ (in which case we say that v is an S ′-vertex) or vice versa, when v
is a T ′-vertex. From property 3. of S ′ it follows that for no edge e = uv of C ′ it can
happen that both u and v are S ′-vertices. As C ′ is an odd cycle, it means that there
must be an edge e = uv so that both u and v are T ′-vertices. But then the inequality
in (2) is strict at e.

The contradiction shows that C ′ ⊆ T ′, hence C is a component of T .
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Section 3. Dominating antichains and matroid-kernels 7

3 Dominating antichains and matroid-kernels

In [10], there was proved a generalisation of the Gale-Shapley theorem by Sands et
al. Its original formulation was in terms of paths in digraphs whose edges are two-
coloured. But at its core is a fact about pairs of partial orders.

Let V be a finite ground set and≤1 and≤2 be two partial orders on V . A dominating
common antichain of ≤1 and ≤2 is a subset A of V such that A is an antichain in
both partial orders and for any element v of V there is an element a in A with v ≤1 a
or v ≤2 a.

Theorem 3.1 (see [4, 3]). For any two partial orders ≤1 and ≤2 on the same finite
ground set V , there exists a dominating antichain of ≤1 and ≤2.

The Gale-Shapley theorem is obtained by applying this theorem to the two orders
on the edge set of the bipartite graph, each being obtained by taking the (disjoint)
union of the linear orders induced by the vertices in one side of the graph.

The theorem is false for more than two partial orders. But a fractional version is
true. For given partial orders ≤1,≤2, . . . ,≤k on a ground set V , a nonnegative vector
x of R

V
+ is called a fractional dominating antichain if x is a fractional antichain (i.e.∑

c∈C x(c) ≤ 1 for any chain C of any of the partial orders ≤i) and x is a fractional
upper bound for any element of V , that is for each element v of V there is a chain
v = v0 ≤i v1 ≤i v2 ≤i . . . ≤i vl of some partial order ≤i with

∑l
j=0 x(vj) = 1.

Note that if a fractional dominating antichain x happens to be integral then it is the
characteristic vector of a dominating antichain.

Theorem 3.2. Any finite set ≤1,≤2, . . . ,≤k of partial orders on the same ground
set V has a fractional dominating antichain.

Proof. For each i ≤ k let Di be the set of maximal chains in the partial order ≤i. Let
J =

⋃
i≤k{i} × Di (that is, J is the union, with repetition, of the families Di).

Let B′ be the V × J incidence matrix of the chains of J (that is, for v ∈ V and
a maximal chain D in ≤i, the (v, (i,D)) entry of B′ is 1 if v ∈ D, otherwise it is 0).
Let B := [In, B

′] be obtained by adding an n× n identity matrix In in front of B′.
Next we define a V × J matrix C ′. For v ∈ V and j = (i,D) ∈ J define C ′v,j as

|D| + 1 if v /∈ D, and as the height of v in D in the order ≤i if v ∈ D. Append now
on the left of C ′ a matrix so that the resulting matrix C satisfies the conditions of
Theorem 1.1.

Applying Theorem 1.1 to the above matrices B,C and the all 1’s vector b = 1n,
we get a nonnegative vector x ∈ R

J∪V . Let x′ be the restriction of x to R
V . As

B · x = b = 1, we have B′ · x′ ≤ 1, meaning that x′ is a fractional antichain. The
domination property of x implies that for any element v of V there is a chain D of some
partial order ≤i such that for any element u from D ∩ supp(x) we have v ≤i u. Since
c(i,D),(i,D) is smallest in row (i,D) of C, it follows that the column (i,D) of C does
not belong to supp(x). The equality (Bx)(i,D) = 1 thus means that

∑
d∈D x(d) = 1,

showing that
∑

d∈D,d≥iv
x(d) = 1. This proves the fractional upper bound property of

x.
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Our last application is a generalisation of a matroid version of the Gale-Shapley
theorem.

An ordered matroid is a tripleM = (E, C,≤) such that (E, C) is a matroid and ≤ is
a linear order on E. For two ordered matroidsM1 = (E, C1,≤1) andM2 = (E, C2,≤2)
on the same ground set, a subset K of E is anM1M2-kernel, if K is independent in
both matroids (E, C1) and (E, C2), and for any element e in E \K there is a subset
Ce of K and an index i = 1, 2 so that

{e} ∪ Ce ∈ Ci and e ≤i c for any c ∈ Ce.

Theorem 3.3 (see [4, 3]). For any pair M1, M2 of ordered matroids there exists
an M1M2-kernel.

LetM1,M2, . . . ,Mk be ordered matroids on the same ground set E, whereMi =
(E, Ci,≤i). A vector x ∈ R

E
+ is called a fractional kernel for matroidsM1,M2, . . . ,Mk

if it satisfies the following two properties:
(1) x is fractionally independent, namely

∑
e∈E′ x(e) ≤ ri(E

′) for any subset E ′ of
E, where ri is the rank function of the matroid Mi.

(2) every element e of E is fractionally optimally spanned in one of the matroids,
namely there exists a subset E ′ of E and a matroid Mi, such that e ≤i e

′ for any
e′ ∈ E ′, and

∑
e∈E′ x(e) = ri(E

′ ∪ {e}).
Note that a fractional matroid-kernel for two matroids that happens to be integral

is a matroid kernel.

Theorem 3.4. Every family Mi = (E, Ci,≤i) (i = 1, 2, . . . , k) of ordered matroids
has a fractional kernel.

Proof. Let B′ be a matrix whose rows are indexed by pairs (i, F ) , where 1 ≤ i ≤ k
and F ⊆ E, and whose columns are indexed by E, the ((i, F ), e) entry being 1 if
e ∈ F , 0 otherwise. Let B := [I, B′].

Define matrix C ′ on the same row and column sets as those of B′, by letting its
((i, F ), e) entry be the height of e in ≤i if e ∈ F and |F | + 1 otherwise. Append an
appropriate matrix on the left of C ′, so as to get a matrix C as in Theorem 1.1. Let
b be the vector on E defined by b(i,F ) := ri(F ).

Apply Theorem 1.1 to B, C and b. Let x be the vector whose existence is guaranteed
in the theorem and x′ be the restriction of x to E. We claim that x′ is a fractional
kernel for our matroids. As Bx = b and both B and x are nonnegative, we have
B′x′ ≤ b. In other words, x′ is fractionally independent. The domination property of
supp(x) yields that for any element e of E there is a subset F and a matroidMi such
that we have

e ≤i f for any element f of F ′ := F ∩ supp(x). (5)

Since c(i,F ),(i,F ) is smallest in row (i, F ) of C, column (i, F ) does not belong to supp(x).
Thus (Bx)(i,F ) = ri(F ) implies

ri(F
′) ≥

∑
f∈F ′

x′(f) =
∑
f∈F

x(f) = ri(F ) ≥ ri(F
′).
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Section 3. Dominating antichains and matroid-kernels 9

In particular, F ′ 6= ∅, hence (5) and the definition of ≤i shows that e ∈ F , and this
proves the optimal spanning property of x′.

We finish this section by pointing out a difference between Theorem 3.2 and Theo-
rem 3.4. Namely, we show that Theorem 3.4 (the fractional version of Theorem 3.3),
together with the well-known fact about the integrality of the matroid intersection
polytope implies Theorem 3.3. The proof is analogous to the method of Aharoni and
Holzman in [1]. There, they proved the existence of an integral kernel for any normal
orientation of any perfect graph from the existence of a so called strong fractional ker-
nel and from the linear description of the independent set polytope of perfect graphs.
On the other hand, there is no similar polyhedral argument to deduce Theorem 3.1
from Theorem 3.2.

The polyhedral result that we need here is the following theorem of Edmonds.

Theorem 3.5 (Edmonds [2]). If M1 = (E, C1) and M2 = (E, C2) are matroids on
the same ground set then

conv{χI : I is independent both in M1 and in M2} =

{x ∈ R
E : 0 ≤ x,

∑
f∈F

x(f) ≤ ri(F ) for any i ∈ {1, 2} and F ⊆ E}.

Alternative proof of Theorem 3.3. By Theorem 3.4, there is a fractional kernel x for
ordered matroidsM1 andM2. As x is fractionally independent, Theorem 3.5 implies
that x =

∑l
j=1 λjχ

Ij is a convex combination of the characteristic vectors of common
independent sets of M1 and M2. We claim that any of the Ij-s is an M1M2-kernel.

As x is a fractionally optimally spanning set, for any element e of E there is an
index i ∈ {1, 2} and a subset E ′ of E such that wi(e

′) ≤ wi(e) for any element e′ of
E and

l∑
j=1

λj|Ij ∩ E ′| =
∑
e∈E′

x(e) = ri(E
′ ∪ {e}) ≥

∑
e∈E′∪{e}

x(e) =
l∑

j=1

λj|Ij ∩ (E ′ ∪ {e})| .

This means that each common independent set Ij intersects E ′ in ri(E
′∪{e}) elements,

that is each Ij spans e.

In contrast to the above argument, there is no polyhedral proof for Theorem 3.1 from
Theorem 3.2 along similar lines. Namely, it can happen that for two partial orders
<1 and <2 on the same ground set, a fractional dominating antichain is not a convex
combination of dominating antichains. Figure 1 shows the Hasse diagrams of two
partial orders on four elements. As any two elements of the common ground set are
comparable in one of the partial orders, a dominating antichain contains exactly one
element. However, it is easy to check that the all-1

3
vector is a fractional dominating

antichain of total weight 4
3
.
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dc a b

Figure 1: Hasse diagrams of the counterexample partial orders.

4 A link with a theorem of Shapley

A simplicial complex is a non-empty family C of subsets of a finite ground set such
that A ⊂ B ∈ C implies A ∈ C. Members of C are called simplices or faces. Let us call
a simplicial complex manifold-like if, denoting its rank by n (that is, the maximum
cardinality of a simplex in it is n+ 1), every face of cardinality n in it is contained in
two faces of cardinality n+ 1. The dual D∗ of a complex D is the set of complements
of its simplices. Just like in the case of complexes, members of a dual complex are
also called faces.

Lemma 4.1. If C,D are two manifold-like complexes on the same ground set X, then
the number of maximum cardinality faces of C that are also minimum cardinality faces
of D∗ is even.

Proof. Let Cmax be the family of faces of C of maximum cardinality and D∗min be the
set of faces of D∗ of minimum cardinality. We may clearly assume that these two
cardinalities are equal, as otherwise the lemma claims the triviality that zero is an
even number. Fix an element x of X, and define an auxiliary digraph ~G on Cmax∪D∗min

by drawing an arc from C ∈ Cmax to D ∈ D∗min if D \ C = {x}.
Let D ∈ D∗min. If x 6∈ D or D \ {x} 6∈ C then no arc enters D in ~G. Otherwise,

as C is manifold-like, there are exactly two different members C1, C2 of Cmax of the
form Ci = D \ {x} ∪ {yi} for some different elements y1, y2 of X. If y1 6= x 6= y2 then

the in-degree of D in ~G is two and D is not a member of Cmax. Else D has in-degree
exactly one, and x ∈ D ∈ Cmax ∩ D∗min.

Similarly, let C ∈ Cmax. If x ∈ C or C ∪ {x} 6∈ D∗ then no arc of ~G leaves C.
Otherwise, D being manifold-like, there are exactly two members D1, D2 of D∗min of
the form Di = C ∪ {x} \ {yi} for some different elements y1, y2 of X. If y1 6= x 6= y2

then the out-degree of C is exactly two and C is not a member of D∗min. Else the

out-degree of C in ~G is exactly one and x 6∈ C ∈ Cmax ∩ D∗min.

Let G be the underlying undirected graph of ~G. The above argument shows that
a vertex v of G has degree zero or two if v ∈ Cmax∆D∗min and v has degree one if
v ∈ Cmax ∩ D∗min. As the number of odd degree vertices of a finite graph is even, the
lemma follows.

What examples are there of manifold-like complexes? Of course, a triangulation of
a closed manifold is of this sort. (We call this complex a manifold-complex.) Another
well known example of a dual manifold-like complex is the cone complex: let X be a
set of vectors in R

n, and b a vector not lying in the positive cone spanned by any n−1
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elements of X. Consider the set C∗ := {A ⊆ X : b ∈ cone(A)}. It is a well known fact
from linear programming that if b ∈ cone(A), where A ⊂ X, |A| = n and z ∈ X \ A,
then there exists a unique element a ∈ A such that b ∈ cone(A ∪ {z} \ {a}). That is,
C∗ is indeed a dual manifold-like complex.

A third example of a manifold-like complex is the domination complex. Let C be
a matrix as in Theorem 1.1 with the additional property that in each row of C all
entries are different. Then it is not difficult to check that the family of dominating
column sets together with the extra member [n] is a manifold-like complex. (For the
details, see [1].)

Lemma 4.1 directly implies a generalisation of Sperner’s lemma.

Lemma 4.2. Let the vertices of a triangulation T of a closed n-dimensional manifold
be labelled with vectors from R

n+1. Let b ∈ R
n+1 be a vector that does not belong to the

cone spanned by fewer than n+1 labels. Then there are an even number of simplices S
of the triangulation with the property that b is in the cone spanned by the vertex-labels
of S.

Proof. Let C be the manifold complex of T . Define family D∗ by

D∗ := {A ⊆ V (T ) : b ∈ cone(L(A))},

where V (T ) is the set of vertices of triangulation T and for subset A of V (T ), L(A)
denotes the set of labels on the vertices of A. By the condition on the vertex-labels,
D∗ is a cone complex. Clearly, the common members of C and D∗ are minimum
cardinality faces of C and maximum cardinality faces of D∗. By Lemma 4.1, there is
an even number of common members of C and D∗, and these common members are
exactly those simplices of T whose labels contain b in their cone.

Sperner’s lemma is obtained from Lemma 4.2 by taking the n-sphere Sn as the closed
manifold, by choosing the vertex-labels from the standard unit vectors (0, 0, . . . , 1, . . . , 0)
and by fixing b = 1 (the all 1’s vector). This is not the standard way the lemma is
stated, but is well known to be equivalent to it, see e.g. [7]. The more general Lemma
4.2 is undoubtedly known, but we do not know a reference to it. Shapley [9] proved
it for the case that the labels are 0, 1 vectors, but his proof works also for general
vectors.

Next we apply Theorem 4.1 to prove Scarf’s lemma. The proof is essentially the
same as in [1].

Proof of Theorem 1.1. By slightly changing vector b and the entries of matrix C, we
can construct vector b′ and matrix C ′ with the following properties. No n−1 columns
of B span a cone that contains b′ and if n columns of B span a cone that contains
b′ then this cone also contains b. For C ′ we require that in each row of C ′ all entries
are different, and if cij < cik then for the corresponding C ′-entires the same holds:
c′ij < c′ik.

Define family D∗ on [m] by X ∈ D∗ if and only if coneB(X) (the cone of those
columns of B that are indexed by X) contain b′. Then D∗ is a cone complex, by the
choice of b′. Let C be the domination complex defined by C ′. By the choice of B, b′
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and C ′, any common member of C and D∗ is a maximum cardinality face of C and a
minimum cardinality face of D∗. So Lemma 4.1 implies that there is an even number
of such common faces. But a common face of C and D∗ is either [n] or it corresponds
to a dominating set of C ′ (which is also a dominating set of C) and to a column set
of B that contains b′ (hence b as well) in its cone. As [n] is indeed a common face of
C and D∗, we get that there exists a common face of the second type.

Shapley’s theorem can be proved via Brouwer’s fixed point theorem (which is also
easily implied by it). This, and the similarity between its proof and the proof of Scarf’s
lemma, suggests that perhaps there is a fixed point theorem related to the latter. A
supporting fact is that in [4] there was given a proof of Gale-Shapley’s theorem using
the Knaster-Tarski fixed point theorem for lattices.

Acknowledgement. We are indebted to Ron Holzman and to Bronislaw Wajnryb
for several helpful discussions.
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