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Dedicated to the memory of Crispin Nash-Williams.

Abstract

Let G = (V, E) be a graph or digraph and r : V → Z+. An r-detachment of
G is a graph H obtained by ‘splitting’ each vertex v ∈ V into r(v) vertices. The
vertices v1, ..., vr(v) obtained by splitting v are called the pieces of v in H. Every
edge uv ∈ E corresponds to an edge of H connecting some piece of u to some
piece of v. Crispin Nash-Williams [9] gave necessary and sufficient conditions
for a graph to have a k-edge-connected r-detachment. He also solved the version
where the degrees of all the pieces are specified. In this paper we solve the same
problems for directed graphs. We also give a simple and self-contained new
proof for the undirected result.

1 Introduction

All graphs and digraphs considered are finite and may contain loops and multiple
edges. Let G = (V,E) be a graph and r : V → Z+. An r-detachment of G is a
graph H obtained by ‘splitting’ each vertex v ∈ V into r(v) vertices. The vertices
v1, ..., vr(v) obtained by splitting v are called the pieces of v in H. Every edge uv ∈ E
corresponds to an edge of H connecting some piece of u to some piece of v. An r-
degree specification is a function f on V , such that, for each vertex v ∈ V , f(v) is a
partition of d(v) into r(v) positive integers. An f -detachment of G is an r-detachment
in which the degrees of the pieces of each v ∈ V are given by f(v).

Crispin Nash-Williams [9] obtained the following necessary and sufficient conditions
for a graph to have a k-edge-connected r-detachment or f -detachment. For X,Y
disjoint subsets of V (G), let d(X, Y ) be the number of edges of G from X to Y , and
let d(X) = d(X, V − X). A graph G = (V,E) is k-edge-connected if d(X) ≥ k for
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every proper subset X ⊂ V . Let e(X) be the number of edges between the vertices
of X, b(X) the number of components of G−X and r(X) =

∑
x∈X r(x). For v ∈ V ,

we use deg(v) to denote the degree of v. Thus e(v) is the number of loops incident to
v and deg(v) = d(v) + 2e(v).

Theorem 1.1 (Nash-Williams). Let G = (V,E) be a graph and r : V → Z+. Then
G has a connected r-detachment if and only if r(X) + b(X) ≤ e(X) + e(X, V −X) + 1
for every X ⊆ V .
Furthermore, if G has a connected r-detachment then G has a connected f -detachment
for every r-degree specification f .

Theorem 1.2 (Nash-Williams). Let G = (V,E) be a graph, r : V → Z+, and
k ≥ 2 be an integer. Then G has a k-edge-connected r-detachment if and only if
(a) G is k-edge-connected,
(b) d(v) ≥ kr(v) for each v ∈ V ,
and neither of the following statements is true:
(c) k is odd and G has a cut-vertex v such that d(v) = 2k, e(v) = 0 and r(v) = 2,
(d) k is odd, |V | = 2, |E| = 2k, and r(v) = 2 and e(v) = 0 for each vertex v ∈ V .
Furthermore, if G has a k-edge-connected r-detachment then G has a k-edge-connected
f -detachment for any r-degree specification f for which each term dv

i is at least k for
every v ∈ V and every 1 ≤ i ≤ r(v).

In this paper we give necessary and sufficient conditions for a digraph to have a
k-edge-connected r-detachment or f -detachment. Let D = (V,E) be a digraph. For
two disjoint subsets X, Y of V let ρ(X, Y ) denote the number of edges from Y to
X and let ρ(X) = ρ(X,V − X). Let δ(X, Y ) = ρ(Y,X) and δ(X) = ρ(V − X). A
digraph D = (V,E) is k-edge-connected if ρ(X) ≥ k for every proper subset X ⊂ V .
Let d(X, Y ) = ρ(X, Y )+δ(X, Y ). We use e(v) to denote the number of loops incident
to a vertex v ∈ V and we let ρ∗(v) = ρ(v) + e(v) and δ∗(v) = δ(v) + e(v) denote the
in-degree and the out-degree of a vertex v ∈ V , respectively.

The definition of an r-detachment H of a digraph D is similar to the undirected
case. An r-degree specification of D is a function f on V , such that for each vertex
v ∈ V , f(v) is a sequence of ordered pairs (ρv

i , δ
v
i ), 1 ≤ i ≤ r(v) of positive integers so

that
∑r(v)

i=1 ρ
v
i = ρ∗(v) and

∑r(v)
i=1 δ

v
i = δ∗(v). An f -detachment of D is an r-detachment

in which the in- and out-degrees of the pieces of each v ∈ V are given by the pairs of
f(v).

Our main result is as follows.

Theorem 1.3. Let D = (V,E) be a digraph and let r : V → Z+. Then D has a
k-edge-connected r-detachment if and only if
(a) D is k-edge-connected, and
(b) ρ∗(v) ≥ kr(v) and δ∗(v) ≥ kr(v) for all v ∈ V .
Furthermore, if D has a k-edge-connected r-detachment then D has a k-edge-connected
f -detachment for any r-degree specification f for which each term ρv

i and δv
i is at least

k for all 1 ≤ i ≤ r(v), v ∈ V .
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Section 2. Detachments in digraphs 3

In Section 2 we prove Theorem 1.3 by using ‘edge-splittings’ and ‘edge-flippings’.
This approach leads to a simple and self-contained new proof of Theorem 1.2 that we
present in Section 3.

In the rest of this section we mention some related results and define the edge-
splitting operation. Nash-Williams’ above mentioned results and Theorem 1.3 give
a complete characterization of graphs and digraphs with highly edge-connected de-
tachments. The similar question for vertex-connectivity seems to be much more com-
plicated. A recent result of Jackson and Jordán [3] solved the 2-vertex-connected
case.

Detachments are closely related to ‘edge-splittings’. By splitting off a pair us, sv
of edges from a vertex s in a graph or digraph we mean the operation of deleting the
edges us, sv and adding (a new copy of) the edge uv. The resulting graph or digraph
will be denoted by Gu,v, where s will always be clear from the context. Well-known
results by Lovász [5] and Mader [6], [7] give sufficient conditions for the existence of a
pair of edges us, sv that can be split off preserving the edge-connectivity in V −s. We
shall not use these results but we shall use the splitting off operation in our proofs.

In some sense splitting off a pair us, sv from a vertex s in a graph is equivalent to
detaching s into two pieces of degree 2 and deg(s) − 2, respectively. Extending the
splitting off theorem of Lovász, Fleiner [2] gave necessary and sufficient conditions for
the existence of a detachment of s into r(s) pieces of given degrees which preserves
the edge-connectivity in V − s. Jordán and Szigeti [4] obtained an even more general
result on detachments of s that preserve local edge-connectivities in V −s. This result
implies Fleiner’s theorem and Mader’s splitting off theorem.

2 Detachments in digraphs

We shall use the following well known equalities.

Proposition 2.1. Let H = (V,E) be a digraph. For arbitrary subsets X,Y ⊆ V ,

ρ(X) + ρ(Y ) = ρ(X ∩ Y ) + ρ(X ∪ Y ) + d(X − Y, Y −X), and (1)

δ(X) + δ(Y ) = δ(X ∩ Y ) + δ(X ∪ Y ) + d(X − Y, Y −X).

Let D = (V,E) be a k-edge-connected digraph and s ∈ V . For a pair us, sv of
edges let us denote by Du,v the digraph obtained from D by splitting off us, sv. The
new copy of uv obtained by the splitting will be called the split edge. A pair us, sv
of edges is called admissible in D if Du,v is k-edge-connected. A subset X ⊆ V − s is
in-critical if ρ(X) = k and out-critical if δ(X) = k. A set X which is either in-critical
or out-critical (or both) is called critical. It is easy to see that the pair us, sv is not
admissible if and only if some critical set contains both u and v.

Note that splitting off a loop ss with another edge sv results in deleting the loop
and keeping the edge sv. In this case the edge sv will also be called a split edge.

Lemma 2.2. Let D = (V,E) be a k-edge-connected digraph and let s ∈ V be a vertex
with ρ∗(s) ≥ k+ 1 and δ∗(s) ≥ k+ 1. Then there is an admissible pair us, sv at s for
any given edge sv.
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Section 2. Detachments in digraphs 4

Proof. If there is a loop on s then the statement is trivial. Thus we can assume that
there are no loops incident with s and hence ρ(s) = ρ∗(s). Suppose that for any edge us
the pair us, sv is not admissible. Let R(s) = {x ∈ V − s : xs ∈ E}. Then there exists
a family of critical sets F = {X1, X2, ..., Xt} such that R(s) ⊆ ∪t

1Xi holds and v ∈ Xi

for 1 ≤ i ≤ t. Choose F so that t is as small as possible. Suppose t ≥ 2 and consider
the pair X1, X2. If ρ(X1) = ρ(X2) = k then by (1) and since D is k-edge-connected
we have k+k = ρ(X1)+ρ(X2) ≥ ρ(X1∩X2)+ρ(X1∪X2) ≥ k+k, which implies that
ρ(X1∪X2) = k holds. Thus we could replace X1 and X2 by X1∪X2 in F , contradicting
the minimiality of t. A similar argument applies if δ(X1) = δ(X2) = k. So we may
assume, without loss of generality, that ρ(X1) = δ(X2) = k. Then ρ(V −X2) = k, and
by applying (1) to X1 and V −X2 we obtain that d((V −X2)−X1, X1−(V −X2)) = 0.
Since s ∈ (V −X2)−X1 and v ∈ X1−(V −X2) and sv ∈ E, this gives a contradiction.
Thus t = 1 follows. This implies R(s) ⊆ X1 and hence, since ρ(s) = ρ∗(s) ≥ k+1 and
s /∈ X1, we have δ(X1) ≥ k + 1. Since X1 is critical, this gives ρ(X1) = k. Therefore,
since δ(s) = δ∗(s) ≥ k + 1, we must have V − (X1 + s) 6= ∅. Now, since R(s) ⊆ X1

and v ∈ X1, we obtain ρ(X1 + s) = ρ(X1) − δ(s,X1) ≤ k − 1, contradicting the fact
that D is k-edge-connected. This proves the lemma.

The next lemma shows that if the in-degree of x is large then we can ‘flip’ the head
of an edge from x to another vertex y preserving k-edge-connectivity.

Lemma 2.3. Let D = (V,E) be a k-edge-connected digraph and let s, y ∈ V with
ρ∗(s) ≥ k+1. Then there exists an edge zs such that D−zs+zy is k-edge-connected.

Proof. It is easy to see that D−zs+zy is not k-edge-connected for some edge zs if and
only if there is an out-critical set X ⊆ V −s with z, y ∈ X. Thus we may assume that
e(s) = 0 and hence ρ(s) = ρ∗(s). Suppose that for every edge zs the digraphD−zs+zy
is not k-edge-connected. Then there is a family F = {X1, X2, ..., Xt} of out-critical
sets with R(s) ⊆ ∪t

1Xi. Choose F such that t is as small as possible. First suppose
t ≥ 2. Then, since y ∈ X1 ∩X2 and s /∈ X1 ∪X2, (1) implies that δ(X1 ∪X2) = k.
Then we could replace X1 and X2 in F by X1 ∪X2, contradicting the minimality of
t. Thus t = 1. Then we have R(s) ⊆ X1 and hence δ(X1) ≥ ρ(s) = ρ∗(s) ≥ k + 1,
contradicting the fact that δ(X1) = k. This proves the lemma.

Given two positive integers ρ, δ, a (ρ, δ)-detachment at some vertex s ∈ V is obtained
by splitting s into two pieces s′, s′′ of in- and out-degrees (ρ∗(s) − ρ, δ∗(s) − δ) and
(ρ, δ), respectively. A (ρ, δ)-detachment is admissible in a k-edge-connected digraph
if the resulting digraph is k-edge-connected.

Lemma 2.4. Let D = (V,E) be a k-edge-connected digraph and s ∈ V . Let ρ, δ be
integers satisfying k ≤ ρ ≤ ρ∗(s)−k and k ≤ δ ≤ δ∗(s)−k. Then D has an admissible
(ρ, δ)-detachment at s.

Proof. By symmetry we may suppose ρ ≤ δ. We use induction on δ−ρ. If δ = ρ then,
since δ∗(s)− δ ≥ k and ρ∗(s)− ρ ≥ k, we can use Lemma 2.2 to deduce that D has a
sequence of ρ admissible splittings. By subdividing each of the split edges by a new
vertex and then contracting the subdividing vertices into a new vertex s′′ we obtain
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Section 3. Detachments in undirected graphs 5

a k-edge-connected digraph D′. Equivalently, D′ arises from D by an (admissible)
(ρ, δ)-detachment. Hence D has the required detachment in this case. Now suppose
that δ ≥ ρ+1 and that D has an admissible (ρ, δ−1)-detachment D′′. Let s′ and s′′ be
the vertices obtained by detaching s into two vertices of degrees (ρ∗(s)−ρ, δ∗(s)−δ+1)
and (ρ, δ − 1) respectively. Since δ∗(s) − δ + 1 ≥ k + 1, we may apply Lemma 2.3
to find an edge zs′ such that D′′ − s′z + s′′z is k-edge-connected. This gives us an
admissible (ρ, δ)-detachment of D.

Proof of Theorem 1.3. The necessity of conditions (a) and (b) is obvious. To prove
sufficiency (and the second part of the theorem) we shall show that if D is k-edge-
connected and f is an r-degree-specification where each term is at least k then D has
a k-edge-connected f -detachment. The proof is by induction on

∑
v∈V (r(v) − 1). If

r(v) = 1 for all v ∈ V then there is nothing to prove. So choose a vertex v ∈ V
with r(v) ≥ 2. By Lemma 2.4, D has an admissible (ρv

1, δ
v
1)-detachment D′ at v

detaching v into two vertices v′ and v′′ with degrees (ρ∗(v) − ρv
1, δ
∗(v) − δv

1) and
(ρv

1, δ
v
1), respectively. Now the theorem follows by applying induction to D′ (where

r′(v′) = r(v) − 1, r′(v′′) = 1, f ′(v′′) = ((ρv
1, δ

v
1)), f ′(v′) = ((ρv

2, δ
v
2), ..., (ρv

r(v), δ
v
r(v)), and

for every other vertex u we have r′(u) = r(u) and f ′(u) = f(u)).

3 Detachments in undirected graphs

In this section we give a relatively short self-contained proof for Theorem 1.2 by using
the approach we developed in the directed case. This new proof, which is based
on edge-splitting and edge-flipping operations, seems to be simpler than the original
proof [9] or the proof given in [2]. We note that some parts of our proofs are similar
to proofs from [1], [2], [5, 6.53], or [9], where the authors apply similar techniques.

We shall use the following well-known equalities for the degree function of a graph.

Proposition 3.1. Let H = (V,E) be a graph. For arbitrary subsets X, Y ⊆ V :

d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X − Y, Y −X), (2)

d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d(X ∩ Y, V − (X ∪ Y )). (3)

Given a k-edge-connected graph G = (V,E) and s ∈ V , a non-empty subset X ⊂
V −s is called dangerous if d(X) ≤ k+1 and d(s,X) ≥ 2. A set X ⊆ V −s is critical if
d(X) = k. We say that X,Y ⊂ V are crossing if none of the sets X−Y, Y −X,X ∩Y
and V − (X∪Y ) is empty. For some w ∈ V let N(w) = {z ∈ V −w : wz ∈ E}. Recall
the definition of splitting off (and the remark on splitting off loops). A pair us, sv of
edges is admissible if Gu,v is k-edge-connected. It is easy to see that the pair us and
sv is non-admissible if and only if there exists a dangerous set X ⊆ V − s such that
u, v ∈ X.

Lemma 3.2. Let G = (V,E) be a k-edge-connected graph (k ≥ 2) and let s ∈ V be a
vertex with deg(s) ≥ k + 2. Then for any given edge us either there is an admissible
pair us, sv or deg(s) = k+2, k is odd, and every edge sv with v 6= u is in an admissible
pair.
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Section 3. Detachments in undirected graphs 6

Proof. If there is a loop on s then the lemma is trivial. Thus we may assume that
there are no loops incident with s and hence deg(s) = d(s). Suppose that d(s) ≥ k+2
and the edge us is in no admissible pair. Then there is a family F = {X1, X2, ..., Xt}
of (inclusionwise) maximal dangerous sets such that N(s) ⊆ ∪t

1Xi and u ∈ Xi for all
1 ≤ i ≤ t. Choose F so that t is as small as possible. If t = 1 then d(X1) ≥ d(s) =
deg(s) ≥ k + 2, a contradiction. If t ≥ 3 then consider the triple X = X1, Y = X2,
Z = X3. The minimality of t implies that X,Y, Z are pairwise crossing. Without
loss of generality we may assume that |X ∩ Y | ≥ |X ∩ Z|, |Y ∩ Z|. Let M = X ∩ Y .
Since X is maximal dangerous and G is k-edge-connected, (2) gives k + 1 + k + 1 ≥
d(X)+d(Y ) ≥ d(M)+d(X∪Y ) ≥ k+k+2. Hence d(M) = k holds. By applying (2)
to M and Z, and using the fact that Z is maximal dangerous, we obtain that M ⊂ Z.
Therefore, since |X∩Y | ≥ |X∩Z|, |Y ∩Z|, we must have M = X∩Y = X∩Z = Y ∩Z.
Applying (3) to each pair of sets from X, Y, Z gives that there is at most one edge
from M to each of the sets V − (X ∪ Y ), V − (X ∪ Z), V − (Y ∪ Z). Since us ∈ E
and u ∈M , this implies d(M) = 1, contradicting the fact that G is k-edge-connected
for some k ≥ 2.

Hence we may assume that t = 2 and consider the pair X = X1 and Y = X2. By
the minimality of t we have X − Y 6= ∅ 6= Y −X. Thus, since u ∈ X ∩ Y , applying
(3) to X and Y implies that d(X) = d(Y ) = k + 1, d(X − Y ) = d(Y −X) = k and
d(X∩Y, V −(X∪Y )) = 1. Since X is maximal dangerous, (2) implies that d(X∩Y ) =
k. Since d(X) = d(X−Y )+d(X∩Y )−2d(X−Y,X∩Y ) = 2k−2d(X−Y,X∩Y ), it
follows that d(X) = k+1 is even and k is odd. Moreover, since N(s) ⊆ X∪Y , we have
2k+2 = d(X)+d(Y ) ≥ d(s)−1+d(X∩Y )+1 ≥ d(s)+k. If d(s) ≥ k+3 then this gives
a contradiction and shows that su is in a splittable pair. Thus d(s) = k+ 2. We have
(N(s)−u) ⊆ (X−Y )∪(Y −X). Choose v ∈ N(s)∩(X−Y ) and w ∈ N(s)∩(Y −X).
These vertices exist by the minimality of t. We claim that sv, sw is an admissible
pair. Suppose not, and let Z be a maximal dangerous set with v, w ∈ Z. By (2)
and by the maximality of Z, and using the fact that d(X − Y ) = d(Y −X) = k, we
obtain that (X − Y ) ∪ (Y −X) ⊆ Z. Hence d(s, Z) ≥ d(s)− 1 and d(V − Z − s) =
d(Z+ s) = d(Z)−d(s, Z) +d(s, V −Z) ≤ k+ 1−d(s) + 1 + 1 = k+ 3− (k+ 2) = 1, a
contradiction, since G is k-edge-connected. This proves that sv, sw is admissible and
hence every edge sv is in an admissible pair.

We say that a graph G = (V,E) is k-edge-connected in V − y, for some vertex
y ∈ V , if every proper subset X ⊂ V with X 6= {y} 6= V −X satisfies d(X) ≥ k.

Lemma 3.3. Let G = (V,E) be k-edge-connected (k ≥ 2) in V − y and let d(y) ≥
k−1, for some vertex y ∈ V . Then for any x ∈ V −y with deg(x) ≥ k+1 either there
is an edge zx such that G − zx + zy is k-edge-connected or k is odd, d(y) = k − 1,
deg(x) = d(x) = k + 1 and G− {x, y} is disconnected.

Proof. It is easy to see that G−zx+zy is not k-edge-connected for some edge zx with
z 6= y if and only if there is a set X ⊆ V − x with z, y ∈ X and d(X) = k. Thus we
may assume that e(x) = 0 and hence d(x) = deg(x). If d(x, y) ≥ k+1 then G−yx+yy
is k-edge-connected. Thus we may assume that d(x, y) ≤ k and hence N(x)− y 6= ∅.
Suppose that G− zx+ zy is not k-edge-connected for any edge zx with z 6= y. Then
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there is a family F = {X1, ..., Xt} of sets with d(Xi) = k, y ∈ Xi for all 1 ≤ i ≤ t and
such that N(x) ⊆ ∪t

1Xi. Choose F such that t is as small as possible. If t = 1 then we
have k = d(X1) ≥ d(x) = deg(x) ≥ k+1, a contradiction. Thus t ≥ 2. Consider a pair
X = Xi, Y = Xj for some 1 ≤ i < j ≤ t. Since G is k-edge-connected in V −y, we have
d(V − (X∪Y )) = d(X∪Y ) ≥ k. Furthermore, if d(X∪Y ) = k, then we could replace
X and Y by X∪Y in F . Thus d(X∪Y ) ≥ k+1. By (2) we have 2k = d(X)+d(Y ) ≥
d(X ∩ Y ) + d(X ∪ Y ) + 2d(X − Y, Y −X) ≥ d(X ∩ Y ) + k + 1 + 2d(X − Y, Y −X).
Since G is k-edge-connected in V − y, this gives X ∩ Y = {y}, d(y) = k − 1, and
d(X−Y, Y −X) = 0. Applying (3) to X and Y gives d(y, V − (X ∪Y )) = 0. Suppose
that t ≥ 3 and let X, Y, Z ∈ F . Since the above properties hold for each pair in
X,Y, Z, we have X ∩ Y = X ∩Z = Y ∩Z = {y}. This yields d(y) = 0, contradicting
d(y) = k − 1 ≥ 1. Thus t = 2. Since k ≤ d(X − y) = d(X)− d(y, Y − y) + d(y,X −
y) = k − d(y, Y − y) + d(y,X − y), we have d(y,X − y) ≥ d(y, Y − y). Similarly,
d(y, Y − y) ≥ d(y,X − y). Since d(y) = d(y,X − y) + d(y, Y − y), this implies that
k is odd and d(y,X − y) = d(y, Y − y) = (k − 1)/2. Hence 2k = d(X) + d(Y ) ≥
d(y) + d(x) + d(V − x− (X ∪ Y ), X ∪ Y ) ≥ 2k + d(V − x− (X ∪ Y ), X ∪ Y ). From
this it follows that d(x) = k+ 1, X ∪ Y = V − x, and G− {x, y} is disconnected.

Let G = (V,E) be a graph with a designated vertex s ∈ V and let d ≤ deg(s)
be a positive integer. A d-detachment of G at s is obtained by detaching s into two
pieces s′ and s′′ with degrees deg(s′) = deg(s) − d and deg(s′′) = d, respectively. A
d-detachment G′ of a k-edge-connected graph is called admissible if G′ is also k-edge-
connected.

Lemma 3.4. Let G = (V,E) be a k-edge-connected graph (k ≥ 2) and s ∈ V . Let
d1, d2 be integers with k ≤ d1 ≤ d2 and d1 + d2 = deg(s). Then either (i) G has an
admissible d1-detachment at s or (ii) k is odd, s is a cutvertex, d(s) = deg(s) = 2k,
and d1 = d2 = k.

Proof. Suppose that (ii) does not occur. We show that there is an admissible d1-
detachment at s by induction on d1. If d1 = k then by Lemma 3.2 there is a sequence
of d(k − 1)/2e admissible splittings at s. By subdividing each split edge by a new
vertex and then contracting the subdividing vertices into a new vertex y we obtain
a graph G′ = (V ′, E ′) which is either k-edge-connected or k is odd, G′ is k-edge-
connected in V ′ − y, and d(y) = k − 1. In the former case we are done. In the latter
case we have dG′(y) = k− 1 and degG′(s) = degG(s)− (k− 1) ≥ k+ 1. Since (ii) does
not hold, we can use Lemma 3.3 to construct a k-edge-connected k-detachment at s
by ‘flipping’ an edge zs to zy.

Now suppose d1 ≥ k + 1. By induction, G has an admissible (d1 − 1)-detachment
G′ at s. Since d2 + 1 ≥ d1 + 1 ≥ k + 2, we can use Lemma 3.3 to flip an edge in G′

and obtain an admissible d1-detachment of G.

Proof of Theorem 1.2. Necessity is trivial. To see sufficiency suppose thatG is k-edge-
connected, r satisfies (b), and neither (c) nor (d) hold. First we show the existence
of a k-edge-connected r-detachment by induction on

∑
v∈V r(v) − 1. If r(v) = 1 for

all v ∈ V then there is nothing to prove. So let us choose v ∈ V with r(v) ≥ 2.
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Since (c) does not hold, there is an admissible k-detachment G′ = (V ′, E′) at v by
Lemma 3.4, where the two pieces of v are x and y with deg′(x) = deg(v) − k and
d′(y) = deg′(y) = k. Here d′ and deg′ denote the corresponding functions in G′. Let
r′(x) = r(v) − 1, r′(y) = 1 and r′(u) = r(u) for every u ∈ V ′ − {x, y}. Clearly, (a)
and (b) hold in G′ with respect to r′. Moreover, (d) cannot hold, since r′(y) = 1. If
(c) does not hold either, then we are done by induction. Thus we may assume that k
is odd and G′ has a cutvertex s with d′(s) = deg′(s) = 2k and r′(s) = 2. Let us call
such a vertex s a bad cutvertex. Since (c) does not hold in G, for each bad cutvertex
s we have that either s separates x and y in G′, or s = x. We shall prove that by
‘switching’ two edges in G′ we can create another k-edge-connected k-detachment of
G at v where both (c) and (d) do not hold, and both (a) and (b) do hold. This will
complete the proof by induction.

We shall use slightly different arguments when (i) x is a bad cutvertex and when
(ii) x is not a bad cutvertex. In case (i) G′ − x has two components, X and Y . We
may assume y ∈ Y . Then all bad cutvertices other than x are in Y . Let us pick two
vertices w ∈ X ∩N ′(x) and z ∈ N ′(y) (x = z may hold). Observe that the subgraphs
G′[X+x] and G′[Y +x], induced by X+x and Y +x, are both k-edge-connected, and
hence there is a path P1 from w to x in G′[X+x]−wx and there is a path P2 from y to
x in G′[Y +x]−yz. We claim that ‘switching’ the edges xw and yz (that is, replacing
the edges xw, yz in G′ by the edges xz, wy) preserves k-edge-connectivity and results
in a graph H where both (a) and (b) hold and both (c) and (d) do not hold (with
respect to r′). Clearly (b) holds for H and r′, and (d) does not. Suppose that (a) does
not hold. Then it can be seen that there is a set Q ⊂ V ′ with d′(Q) ≤ k+ 1, w, y ∈ Q
and x, z /∈ Q. It is also easy to verify by the k-edge-connectivity of G′ that any set
T ⊂ V ′ with d′(T ) ≤ k + 1 induces a connected subgraph of G′. The subgraphs of G′

induced by Q and V −Q contain a wy-path and a xz-path, respectively. But this is
impossible, since x separates w and y. Hence H is indeed k-edge-connected. To see
that (c) does not hold in H we have to show that the bad cutvertices of G′ are no
longer cutvertices in H and that no vertex of G′ has become a bad cutvertex in H.
Since P1∪wy∪P2 forms a cycle in H containing x, y and w (and all the bad cutvertices
of G′), it follows that there is no bad cutvertex in H, except possibly x. To see that x
is not a (bad) cutvertex in H either, observe that there exist k−1 edge-disjoint paths
from w to x in G′[X + x]− wx and there exist k − 1 edge-disjoint paths from y to x
in G′[Y + x]− yz. Thus y can reach x in H via at least 2k− 2 ≥ k+ 1 different edges
incident to x (recall that k is odd). Since degH(x) = 2k, and H is k-edge-connected,
we deduce that x is not a cutvertex in H. This completes the proof in case (i).

Now consider case (ii). Let s be a bad cutvertex in G′ and let X,Y denote the
components of G′− s, where y ∈ Y . Since (d) does not hold in G, it can be seen that
we may choose w ∈ N ′(x) and z ∈ N ′(y) such that w 6= z. We shall assume that
w 6= s (the case when w = s and z 6= s is similar). Since G′[X + s] and G′[Y + s] are
k-edge-connected, there is a path P ∗ from y to z in G′[Y + x] − yz and there exist
k − 1 edge-disjoint paths P1, ..., Pk−1 from x to w in G′[X + x] − xw. Since w 6= s
and dG′[X+s](s) = k and k ≥ 3, one of these paths, say P1, avoids s. We claim that
switching the edges xw and yz results in a k-edge-connected graph H for which both
(a) and (b) hold and both (c) and (d) do not hold (with respect to r′). The argument
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used in case (i) shows that (a) and (b) hold for H and r′, and (d) does not. To see
that there are no bad cutvertices in H observe that P1 ∪ xz ∪P ∗ ∪ yw is a cycle in H
containing x, y, z, w. Thus no vertex separates x and y in H and so H cannot contain
a bad cutvertex distinct from x. Furthermore, x is not a bad cutvertex in H because
it is not a bad cutvertex in G′ and y, z are contained in a cycle of H. This completes
the proof of case (ii) and proves the first part of the theorem on r-detachments. The
second part on f -detachments follows easily from Lemma 3.3, since the degrees of the
pieces in a k-edge-connected r-detachment can be modified by flipping edges so that
it satisfies any given degree specification in which each term is at least k.
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