Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2001-12. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www. cs.elte.hu/egres. ISSN 1587-4451.

Non-Separable Detachments of Graphs

Bill Jackson and Tibor Jordán

May 25, 2001
Revised April 12, 2002

Non-Separable Detachments of Graphs

Bill Jackson* and Tibor Jordán**

Dedicated to the memory of Crispin Nash-Williams.

Abstract

Let $G=(V, E)$ be a graph and $r: V \rightarrow Z_{+}$. An r-detachment of G is a graph H obtained by 'splitting' each vertex $v \in V$ into $r(v)$ vertices, called the pieces of v in H. Every edge $u v \in E$ corresponds to an edge of H connecting some piece of u to some piece of v. An r-degree specification for G is a function f on V, such that, for each vertex $v \in V, f(v)$ is a partition of $d(v)$ into $r(v)$ positive integers. An f-detachment of G is an r-detachment H in which the degrees in H of the pieces of each $v \in V$ are given by $f(v)$. Crispin Nash-Williams [3] obtained necessary and sufficient conditions for a graph to have a k-edge-connected r detachment or f-detachment. We solve a problem posed by Nash-Williams in [2] by obtaining analogous results for non-separable detachments of graphs.

1 Introduction

All graphs considered are finite, undirected, and may contain loops and multiple edges. We shall use the term simple graph for graphs without loops or multiple edges. Let $G=(V, E)$ be a graph and $r: V \rightarrow Z_{+}$. An r-detachment of G is a graph H obtained by 'splitting' each vertex $v \in V$ into $r(v)$ vertices. The vertices $v_{1}, \ldots, v_{r(v)}$ obtained by splitting v are called the pieces of v in H. Every edge $u v \in E$ corresponds to an edge of H connecting some piece of u to some piece of v. An r-degree specification is a function f on V, such that, for each vertex $v \in V, f(v)$ is a partition of $d(v)$ into $r(v)$ positive integers. An f-detachment of G is an r-detachment in which the degrees of the pieces of each $v \in V$ are given by $f(v)$.

Crispin Nash-Williams [3] obtained the following necessary and sufficient conditions for a graph to have a k-edge-connected r-detachment or f-detachment. For X, Y disjoint subsets of $V(G)$, let $e(X, Y)$ be the number of edges of G from X to $Y, e(X)$ the number of edges between the vertices of $X, b(X)$ the number of components of $G-X$ and $r(X)=\sum_{x \in X} r(x)$. For $v \in V$, we use $d(v)$ to denote the degree of v. Thus $d(v)=e(v, V-v)+2 e(v)$.

[^0]Theorem 1.1 (Nash-Williams). Let $G=(V, E)$ be a graph and $r: V \rightarrow Z_{+}$. Then G has a connected r-detachment if and only if $e(X)+e(X, V-X) \geq r(X)+b(X)-1$ for every $X \subseteq V$.
Furthermore, if G has a connected r-detachment then G has a connected f-detachment for every r-degree specification f.

Theorem 1.2 (Nash-Williams). Let $G=(V, E)$ be a graph, $r: V \rightarrow Z_{+}$, and $k \geq 2$ be an integer. Then G has a k-edge-connected r-detachment if and only if
(a) G is k-edge-connected,
(b) $d(v) \geq k r(v)$ for each $v \in V$,
and neither of the following statements is true:
(c) k is odd and G has a cut-vertex v such that $d(v)=2 k$ and $r(v)=2$,
(d) k is odd, $|V|=2,|E|=2 k, G$ is loopless, and $r(v)=2$ for each vertex $v \in V$.

Furthermore, if G has a k-edge-connected r-detachment then G has a k-edge-connected f-detachment for any r-degree specification f for which each term d_{i}^{v} is at least k for every $v \in V$ and every $1 \leq i \leq r(v)$.

Let G be a graph. A vertex v is a cut-vertex of G if $|E(G)| \geq 2$ and either v is incident with a loop or $G-v$ has more components than G. A graph is non-separable if it is connected and has no cut-vertices. Nash-Williams proposed the following problem in [2, p.145]:
"It might also be worth looking at the question whether one can give necessary and sufficient conditions on a graph G and function $r: V(G) \rightarrow Z_{+}$for the existence of a non-separable r-detachment of G, i.e. an r-detachment of G which has no cut-vertices - but of course it is not self-evident that a reasonable set of necessary and sufficient conditions for this must even exist."

In this paper we answer this question by showing necessary and sufficient conditions for the existence of a non-separable r-detachment of a graph. We also solve the degree specified version. We shall need the following slight strengthening of Theorem 1.1.

Theorem 1.3. Let $G=(V, E)$ be a graph, $r: V \rightarrow Z_{+}$and $V_{2}=\{v \in V: r(v) \geq$ $2\}$. Then G has a connected r-detachment if and only if $e(X)+e(X, V-X) \geq$ $r(X)+b(X)-1$ for every $X \subseteq V_{2}$.

Proof. Necessity follows from Theorem 1.1. To see sufficiency suppose that G does not have an r-detachment. By Theorem 1, $e(X)+e(X, V-X) \leq r(X)+b(X)-2$ for some $X \subseteq V$. If $x \in X-V_{2}$, then $r(x)=1$, and putting $X^{\prime}=X-x$ we have $e\left(X^{\prime}\right)+e\left(X^{\prime}, V-X^{\prime}\right) \leq r\left(X^{\prime}\right)+b\left(X^{\prime}\right)-2$. Hence we can construct $X^{\prime \prime} \subseteq V_{2}$ with $e\left(X^{\prime \prime}\right)+e\left(X^{\prime \prime}, V-X^{\prime \prime}\right) \leq r\left(X^{\prime \prime}\right)+b\left(X^{\prime \prime}\right)-2$.

2 Main Results

Let G be a graph and $N(G)=\{v \in V: d(v) \geq 4\}$. Given $r: V \rightarrow Z_{+}$, let $N_{1}(G, r)=\{v \in N(G): r(v)=1\}$, and $N_{2}(G, r)=\{v \in N(G): r(v) \geq 2\}$.

Theorem 2.1. Let $G=(V, E)$ be a graph with at least two edges and $r: V \rightarrow Z_{+}$. Then G has a non-separable r-detachment if and only if
(a) G is 2-edge connected,
(b) $d(v) \geq 2 r(v)$ for all $v \in V$,
(c) $e(v)=0$ for all $v \in N_{1}(G, r)$, and
(d) $e(X, V-X-y)+e(X) \geq r(X)+b(X+y)-1$ for all $y \in N_{1}(G, r)$ and $X \subseteq N_{2}(G, r)$.

The degree specified version is as follows.
Theorem 2.2. Let $G=(V, E)$ be a graph with at least two edges, $r: V \rightarrow Z_{+}$, and let f be an r-degree specification, where $f(v)=\left(f_{1}^{v}, f_{2}^{v}, \ldots, f_{r(v)}^{v}\right)$ and $f_{1}^{v} \geq f_{2}^{v} \geq \ldots \geq$ $f_{r(v)}^{v}$, for each $v \in V$. Then G has a non-separable f-detachment if and only if
(a) G is 2-edge connected,
(b) $f_{i}^{v} \geq 2$ for all $v \in V$ and all $1 \leq i \leq r(v)$,
(c) $e(X+v, V-X-v)+e(X+v)-f_{1}^{v} \geq r(X+v)+b(X+v)-2$ for all $v \in N(G)$ and $X \subseteq N_{2}(G, r)-v$.

Note that condition (c) of Theorem 2.2 implies that $e(v)=0$ for all $v \in N_{1}(G)$ by taking $X=\emptyset$. We shall need the following lemmas. Since loops create complications in notation, and since we only need the lemmas for loopless graphs, we add the hypothesis to the lemmas that the graphs are loopless. Note however that they may be applied to graphs with loops by subdividing their loops.

Lemma 2.3. Let G be a 2-edge-connected loopless graph and $v \in N(G)$. Define $r: V \rightarrow Z_{+}$by $r(v)=2$ and $r(u)=1$ for all $u \in V-v$. Then there exists a 2-edge-connected r-detachment H of G such that, at least one of the pieces of v in H, has degree two. Furthermore, if v is a cut-vertex of G, then there exists a 2-edgeconnected r-detachment H^{\prime} of G such that, for the pieces v_{1}, v_{2} of v in H^{\prime}, we have $d_{H^{\prime}}\left(v_{2}\right)=b(v)$, and neither v_{1} nor v_{2} is a cut-vertex of H^{\prime}.

Proof. The first part of the lemma is easy and well known (it follows for example from Theorem (1.2). To prove the second part, let $C_{1}, C_{2}, \ldots, C_{b}$ be the components of $G-v$, where $b=b(v)$. Let H^{\prime} be an r-detachment of G such that H^{\prime} has exactly one edge from v_{2} to each component C_{i}. Since G is 2-edge-connected, there is also at least one edge from v_{1} to each C_{i}. To see that H^{\prime} is 2-edge-connected, it suffices to show that H^{\prime} has a cycle containing v_{1}, v_{2}. (Since the 2-edge-connectivity of G implies that every cut-edge of H^{\prime} must separate v_{1} and v_{2}.) We can construct such a cycle by choosing edges $v_{1} x_{i}, v_{2} y_{i}$ in H^{\prime} with $x_{i}, y_{i} \in C_{i}$ and an $x_{i} y_{i}$-path in C_{i} for each $i \in\{1,2\}$. The fact that neither v_{1} nor v_{2} is a cut-vertex of H^{\prime} follows easily from the construction of H^{\prime}.

Let G be a graph. A block B of G is a non-separable subgraph of G which is maximal with respect to subgraph inclusion. We say that G is a block if G is a block of itself (or equivalently, if G is non-separable). A vertex $v \in V(B)$ is an internal vertex of B (in $G)$ if v is not a cut-vertex of G. An end-block of G is a block which contains at most one cut-vertex of G. Note that if G is separable then G has at least two end-blocks. We say that G is a uv-block-path if G is connected with exactly two end-blocks, B_{1}
and B_{2} say, and u, v are internal vertices of B_{1} and B_{2}, respectively, in G. For edges $u x, v z$ in a graph G, we define the graph $G(u x, v z)$ obtained by switching $u x$ and $v z$ by putting $G(u x, v z)=G-\{u x, v z\} \cup\{u z, v x\}$. Note that switching preserves the degree sequence of G. We shall use the following lemmas to determine when switching can be used to reduce the number of blocks in a detachment of G.

Lemma 2.4. Let G be a loopless graph and $u x, v z \in E(G)$ such that $u x, v z$ belong to vertex disjoint cycles in G. Suppose that G is either a block or a uv-block-path. Then $G(u x, v z)$ is a block.

Proof. Choose disjoint cycles C_{1}, C_{2} containing $u x, v z$, respectively. Then $\left(C_{1}-u x\right) \cup$ $\left(C_{2}-v z\right) \cup\{u z, v x\}$ induces a cycle in $G(u x, v z)$ containing u, x, v, w. Since every end-block of $G-\{u x, v z\}$ contains either u, x, v or z as an internal vertex, it follows that $G(u x, v z)$ is a block.

We shall use the following rather technical lemmas to show that, if a graph G has an f-detachment with a unique cut-vertex $y \in N_{1}(G)$, then either G has a non-separable f-detachment, or we can find a set $X \subseteq N_{2}(G)$ such that $r(X)+b(X+y)$ is large.

Let G be a graph, $y \in V(G), r: V \rightarrow Z_{+}$with $r(y)=1$, and f be an r-degree specification for G. Let H be an f-detachment of $G, W \subseteq V(H)$. and $u, v \in$ $V(H)-W$. We say that u and v are W-separated in H if u and v belong to different components of $H-W$. Define sequences of sets $R_{1}, R_{2}, \ldots \subseteq V(G), S_{1}, S_{2}, \ldots \subseteq$ $V(H)$, and $W_{0} \subseteq W_{1} \subseteq \ldots \subseteq V(H)$, recursively, as follows. Let $W_{0}=\{y\}$, and, for $i \geq 1$, let

$$
\begin{gathered}
R_{i}=\left\{v \in V(G): \text { at least two pieces of } v \text { are } W_{i-1} \text {-separated in } H\right\}, \\
S_{i}=\left\{v_{j} \in V(H): v_{j} \text { is a piece of some } v \in R_{i}\right\}
\end{gathered}
$$

and $W_{i}=S_{i} \cup W_{i-1}$.
It follows from these definitions that $S_{i} \cap S_{j}=\emptyset=R_{i} \cap R_{j}$ for $i \neq j$ and $W_{i}=$ $\{y\} \cup S_{1} \cup S_{2} \cup \ldots \cup S_{i}$. Also note that $S_{i}=\emptyset$ for all $i \geq 1$ if y is not a cut-vertex of H.

Lemma 2.5. Let H be a connected f-detachment of G. Let Z be a component of $H-W_{i-1}$ for some $i \geq 1$ and $u v, w x \in E(Z)$. Suppose $Z(u v, w x)$ is connected. Then $H^{\prime}=H(u v, w x)$ is a connected f-detachment of G and $S_{m}\left(H^{\prime}\right)=S_{m}(H)$ for all $1 \leq m \leq i$.

Proof. Since H and H^{\prime} have the same degree sequence, H^{\prime} is an f-detachment of G. Furthermore H^{\prime} is connected since H and $Z(u v, w x)$ is connected. We shall show that $S_{m}\left(H^{\prime}\right)=S_{m}(H)$ for all $1 \leq m \leq i$ by induction on i. If $i=1$ then $W_{0}\left(H^{\prime}\right)=\{y\}=W_{0}(H)$. Since $Z(u v, w x)$ is connected, we have $R_{1}(H)=R_{1}\left(H^{\prime}\right)$ and hence $S_{1}(H)=S_{1}\left(H^{\prime}\right)$.

Suppose $i \geq 2$. By induction, $S_{m}\left(H^{\prime}\right)=S_{m}(H)$ for all $1 \leq m \leq i-1$. Thus $W_{i-1}\left(H^{\prime}\right)=W_{i-1}(H)$. Since $Z(u v, w x)$ is connected, we have $R_{i}(H)=R_{i}\left(H^{\prime}\right)$ and hence $S_{i}(H)=S_{i}\left(H^{\prime}\right)$.

Let H be a graph and y be a vertex of H and B be an end-block of H. We say that H is a block-star centered on y if every block of H contains y. We say that H is an extended block-star centered on y with distinguished end-block B if every end-block of H, with the possible exception of B, contains y. Note that every block-star is an extended block-star and every block is a block-star. An edge e of H is a cut-edge of H if $H-e$ has more components than H.

Lemma 2.6. Let G be a loopless graph, $y \in V(G), r: V \rightarrow Z_{+}$with $r(y)=1$, and f be an r-degree specification for G such that each term in $f(v)$ is at least two for all $v \in V(G)$. Suppose that G has an f-detachment which is a block-star centered on y, and that H has been chosen amongst all such f-detachments so that $b_{H}(y)$ is as small as possible. Then each edge of $H-y$ incident to a vertex in S_{i} is a cut-edge of $H-y$ for all $i \geq 1$.

Proof. We proceed by contradiction. Suppose the lemma is false. Since the lemma is vacuously true if y is not a cut-vertex of H we have $b_{H}(y) \geq 2$. Choose an f detachment K of G such that:
(i) $b_{K}(y)=b_{H}(y)$,
(ii) K is an extended block-star centered on y with distinguished end-block B.
(iii) for some edge $v_{j} x \in E(B-y)$ and $i \geq 1$ we have $v_{j} \in S_{i}$ and $v_{j} x$ is not a cut edge of $K-y$,
(iv) each edge of $K-y$ which is incident to a vertex of S_{m} is a cut-edge of $K-y$ for all $1 \leq m \leq i-1$,
(v) subject to (i)-(iv), i is as small as possible.

Note that K exists since if H is a counterexample to the lemma and we choose an edge which is not a cut-edge of $H-y$ and is incident to a vertex of S_{i} such that i is as small as possible, then H will satisfy (i)-(iv). Our proof technique forces us to work with extended block-stars rather than block-stars because the switching operations we use preserve the property of being an extended block-star, but may not preserve the property of being a block-star.

Since $v_{j} x$ is not a cut-edge of $K-y, v_{j} x$ is contained in a cycle C of $K-y$. Let $B_{1}, B_{2}, \ldots, B_{t}$ be blocks of K such that $y \in V\left(B_{1}\right), V\left(B_{i}\right) \cap V\left(B_{s}\right) \neq \emptyset$ if and only if $|i-s| \leq 1, B_{t}=B$, and $y \notin V\left(B_{2}\right)$ if $t \geq 2$. Then $v_{j} x \in E\left(B_{t}\right)$ and $C \subseteq B_{t}$. Since $v_{j} \in S_{i}, v_{j}$ is a piece of some vertex $v \in R_{i}$. Thus we may choose another piece v_{k} of v such that v_{j} and v_{k} are W_{i-1}-separated in K.

Claim 2.7. $i \geq 2$.
Proof. Suppose $i=1$. Then v_{j} and v_{k} are y-separated in K. Hence v_{j} and v_{k} belong to different end-blocks B_{t} and B_{0} of K. Choose an edge $v_{k} z \in E\left(B_{0}\right)$. Since K has minimum degree at least two, $v_{k} z$ is contained in a cycle C^{\prime} in B_{0}. Since $y \notin V(C), C$ and C^{\prime} are vertex disjoint. Applying Lemma 2.4 to the block-path
$F=B_{0} \cup B_{1} \cup \ldots \cup B_{t}$, we deduce that $F\left(v_{j} x, v_{k} z\right)$ is a block. Thus $H^{\prime}=K\left(v_{j} x, v_{k} z\right)$ is an f-detachment of G which is a block-star centered on y, and $b_{H^{\prime}}(y)=b_{H}(y)-1$. This contradicts the hypothesis that $b_{H}(y)$ is as small as possible.

Since $v_{j}, v_{k} \notin S_{i-1}$ they are not W_{i-2}-separated in K. Thus they both belong to the same component Z of $K-W_{i-2}$. In particular v_{j}, v_{k} are not y-separated in K so $v_{k} \in V\left(B_{s}\right)$ for some $s, 1 \leq s \leq t$. By (iv), $V(C) \cap W_{i-2}=\emptyset$, and hence $C \subseteq Z$. Let P^{\prime} be a path from v_{k} to C in Z. We may extend P^{\prime} around C if necessary to obtain a $v_{k} v_{j}$-path P in Z which avoids the edge $v_{j} x$. Let $v_{k} z$ be the edge of P incident with v_{k}. Since v_{j}, v_{k} are W_{i-1} separated but not W_{i-2}-separated, we can choose $u \in V(P) \cap S_{i-1}$.

Let $K^{\prime}=K\left(v_{j} x, v_{k} z\right)$. We shall show that K^{\prime} contradicts the above choice of K.
Claim 2.8. (a) K^{\prime} is a connected f-detachment of G and $S_{j}\left(K^{\prime}\right)=S_{j}(K)$ for all $1 \leq m \leq i-1$.
(b) u and $v_{j} z$ are contained in a common cycle of $K^{\prime}-y$.

Proof. (a) follows from Lemma 2.5 since $P\left[z, v_{j}\right] \cup\left(C-v_{j} x\right) \cup\left\{z v_{k}\right\}$ is a connected subgraph of $Z\left(v_{j} x, v_{k} z\right)$.
(b) follows since $P\left[z, v_{j}\right] \cup\left\{v_{j} z\right\}$ is a cycle in $K^{\prime}-y$ containing u and $v_{j} z$.

Let $F_{1}=B_{1} \cup B_{2} \cup \ldots \cup B_{t}$. Since $u \in S_{i-1}$, (iv) implies that each edge of $K-y$ incident with u is a cut-edge of $K-y$. Thus there is exactly one edge from u to each component of $F_{1}-\{y, u\}$. Let X be the component of $F_{1}-\{y, u\}$ which contains v_{j}. Since u has a unique neighbour in X and u lies on the $v_{j} v_{k}$-path P in $F_{1}-y$, $v_{k} \notin V(X)$. Furthermore $C \subseteq B_{t} \subseteq X$. Let F_{2} be the graph obtained from F_{1} by adding a new edge $y u$ and put $F_{3}=F_{2}-X$.
Claim 2.9. F_{3} is a block.
Proof. Since $F_{1}-y$ is connected, $F_{3}-y$ is connected. Thus if F_{3} were not a block then we could choose an end-block B^{*} of F_{3} such that $y \notin V\left(B^{*}\right)$. Then B^{*} would be an end-block of K which did not contain y and was distinct from $B=B_{t}$, since $B_{t} \subseteq X$. This would contradict (ii).

Since F_{3} is a block, we can choose a cycle C^{\prime} in F_{3} which contains $v_{k} z$. Then C^{\prime} is vertex disjoint from C since $C \subseteq X$. Furthermore, F_{2} is either a block or a block-path with distinct end-blocks F_{3} and B_{t}. Since $v_{k} z \in E\left(F_{3}\right) \cap E\left(C^{\prime}\right)$ and $v_{j} x \in$ $E\left(B_{t}\right) \cap E(C)$, Lemma 2.4 implies that $F_{2}\left(v_{j} x, v_{k} z\right)$ is a block. Thus $F_{1}\left(v_{j} x, v_{k} z\right)=$ $F_{2}\left(v_{j} x, v_{k} z\right)-y u$ is either a block or a $y u$-block-path. Combining this with Claim 2.8, we deduce:

Claim 2.10. $K^{\prime}=K\left(v_{j} x, v_{k} z\right)$ is an extended block-star, centered on y, with distinguished end-block B^{\prime}, where B^{\prime} is the block of $F_{1}\left(v_{j} x, v_{k} z\right)$ which contains u. Furthermore $b_{K^{\prime}}(y)=b_{K}(y), u$ is an internal vertex of $K^{\prime}, u \in S_{i-1}\left(K^{\prime}\right)$ and u is contained in a cycle of $K^{\prime}-y$ which is contained in B^{\prime}.

Choose $u^{\prime} x^{\prime} \in E\left(B^{\prime}-y\right)$ such that $u^{\prime} x^{\prime}$ is not a cut-edge of $K^{\prime}-y, u^{\prime} \in S_{p}\left(K^{\prime}\right)$ for some $p \geq 1$ and p is as small as possible. Then $p \leq i-1$ since $u \in S_{i-1}\left(K^{\prime}\right) \cap V\left(B^{\prime}\right)$. To show that K^{\prime} contradicts our choice of K to minimise i, it only remains to show that (iv) holds for K^{\prime} :
Claim 2.11. Each edge of $K^{\prime}-y$ which is incident to a vertex of $S_{m}\left(K^{\prime}\right)$ is a cut-edge of $K^{\prime}-y$ for all $1 \leq m \leq p-1$.

Proof. Suppose the claim is false and let C^{*} be a cycle of $K^{\prime}-y$ which contains a vertex of $S_{m}\left(K^{\prime}\right)$ for some $m, 1 \leq m \leq p-1$. The minimality of P implies that C^{*} contains no edge of B^{\prime}. Since u is an internal vertex of K^{\prime} contained in B^{\prime}, and u and $v_{j} z$ are contained in a cycle of $K^{\prime}-y$ by Claim 2.8(b), we may deduce that $v_{j} z \in E\left(B^{\prime}\right)$ and hence $v_{j} z \notin E\left(C^{*}\right)$. Since v_{k} and x belong to different components of $K-\{y, u\}$, every path from v_{k} to x in $K-y$ contains u. Thus every cycle of $K^{\prime}-y$ which contains $v_{k} x$ also contains u and hence is contained in B^{\prime}. Thus $v_{k} x \notin E\left(C^{*}\right)$. Since $v_{k} x, v_{j} z \notin E\left(C^{*}\right)$ we have $C^{*} \subseteq K-y$. Since $S_{m}\left(K^{\prime}\right)=S_{m}(K)$ by Claim 2.8(a), the existence of C^{*} now contradicts condition (iv) in the choice of K.

This completes the proof of the Lemma.
To simplify notation, we shall first prove Theorem 2.1 for the special case when G is loopless and $N(G)$ is an independent set of vertices in G. The general case follows easily from this special case by the simple procedure of subdividing every edge of G and extending r by putting $r(v)=1$ for each subdivision vertex v. Thus we shall prove:

Theorem 2.12. Let $G=(V, E)$ be a loopless graph with at least two edges and r : $V \rightarrow Z_{+}$. Suppose that $N(G)$ is an independent set of vertices in G. Then G has a non-separable r-detachment if and only if
(a) G is 2-edge connected,
(b) $d(v) \geq 2 r(v)$ for all $v \in V$, and
(c) $e(X, V-X) \geq r(X)+b(X+y)-1$ for all $y \in N_{1}(G, r)$ and $X \subseteq N_{2}(G, r)$.

Proof. We first prove necessity. Suppose H is a non-separable r-detachment of G. Then H is 2-edge-connected and since 'detaching' vertices cannot increase edgeconnectivity, (a) holds. Since H has minimum degree at least two we also have (b). Condition (c) follows from the easy part of Theorem 1.1, since $H-y$ is a connected $\left.r\right|_{V-y^{-}}$-detachment of $G-y$.

We next prove sufficiency. We proceed by contradiction. Suppose that the theorem is false and choose a counterexample (G, r) such that

$$
\gamma(G, r):=\left|N_{1}(G, r)\right|+\sum_{v \in N(G)}(d(v)-3)
$$

is as small as possible, and, subject to this condition, $|V(G)|$ is as small as possible. If $N(G)=\emptyset$ then G has maximum degree at most three and, by (b), $r(v)=1$ for all $v \in V(G)$. Using (a) we deduce that G is a non-separable r-detachment of itself. Hence we may suppose that $N(G) \neq \emptyset$ and hence $\gamma(G, r) \geq 1$.

Claim 2.13. Suppose that $U \subset V$ such that $e(U, V-U)=2$. Then either $|U|=1$ or $|V-U|=1$.

Proof. Suppose $|U| \geq 2$ and $|V-U| \geq 2$. Let $U_{1}=U$ and $U_{2}=V-U$. For $i \in\{1,2\}$, let G_{i} be the graph obtained from G by contracting U_{i} to a single vertex u_{i} of degree two. Define $r_{i}: V\left(G_{i}\right) \rightarrow Z_{+}$by putting $r_{i}\left(u_{i}\right)=1$ and $r_{i}(v)=r(v)$ for $v \in V\left(G_{i}\right)-u_{i}$. Then $\gamma\left(G_{i}, r_{i}\right) \leq \gamma(G, r)$ and $\left|V\left(G_{i}\right)\right|<|V(G)|$. Since contraction preserves edge-connectivity, G_{i} satisfies (a). Clearly $\left(G_{i}, r_{i}\right)$ also satisfies (b). Suppose $\left(G_{i}, r_{i}\right)$ does not satisfy (c). Then $e_{G_{i}}\left(X, V\left(G_{i}\right)-X\right) \leq r_{i}(X)+b_{G_{i}}(X+y)-2$ for some $y \in N_{1}\left(G_{i}, r_{i}\right)$ and $X \subseteq N_{2}\left(G_{i}, r_{i}\right)$. Since $u_{i} \notin N\left(G_{i}\right), u_{i}$ belongs to some component of $G_{i}-(X+y)$, and $X+y \subseteq V(G)$. Thus X, y contradict the fact that (c) holds for G. Hence (c) holds for $\left(G_{i}, r_{i}\right)$ and, by induction, G_{i} has a non-separable $r_{i}{ }^{-}$ detachment for $i=1,2$. Since $e(U, V-U)=2$, this implies that G has a non-separable r-detachment.

Claim 2.14. $N_{1}(G, r) \neq \emptyset$.
Proof. Suppose $N_{1}(G, r)=\emptyset$. Choose $v \in N_{2}(G, r)$ such that $r(v)$ is as large as possible and $d(v)$ is as small as possible. Define $r_{v}: V(G) \rightarrow Z_{+}$by $r_{v}(v)=2$ and $r_{v}(u)=1$ for all $u \in V-v$. By Lemma 2.3, we can construct a 2-edge-connected r_{v}-detachment H of G such that, for the pieces v_{1}, v_{2} of v in H, we have $d_{H}\left(v_{2}\right)=2$. Define $r^{\prime}: V(H) \rightarrow Z_{+}$by $r^{\prime}\left(v_{1}\right)=r(v)-1, r^{\prime}\left(v_{2}\right)=1$, and $r^{\prime}(u)=r(u)$ for all $u \in V(H)-\left\{v_{1}, v_{2}\right\}$. Then $\gamma\left(H, r^{\prime}\right)<\gamma(G, r)$. By construction $\left(H, r^{\prime}\right)$ satisfies (a) and (b). If (H, r^{\prime}) also satisfies (c), then, by induction H has a non-separable r^{\prime}-detachment H^{\prime}. Clearly, H^{\prime} is the required r-detachment of G. Hence

$$
\begin{equation*}
e_{H}(X, V(H)-X) \leq r^{\prime}(X)+b_{H}(X+y)-2 \tag{1}
\end{equation*}
$$

for some $y \in N_{1}\left(H, r^{\prime}\right)$ and $X \subseteq N_{2}\left(H, r^{\prime}\right)$. Since $N_{1}(G, r)=\emptyset$ and $d_{H}\left(v_{2}\right)=2$, we must have $y=v_{1}$, and $r^{\prime}\left(v_{1}\right)=1$. Thus $r(v)=2$. The choice of v now implies

$$
\begin{equation*}
r(u)=2 \text { for all } u \in N(G) . \tag{2}
\end{equation*}
$$

In particular $r^{\prime}(X)=r(X)=2|X|$. The choice of v also implies that $d_{H}(u)=d_{G}(u) \geq$ $d_{G}(v)=d_{H}\left(v_{1}\right)+2$ for all $u \in N(G)-v$. Thus $e_{H}(X, V(H)-X) \geq|X|\left(d_{H}\left(v_{1}\right)+2\right)$. Since H is 2-edge-connected, each component of $H-\left(X+v_{1}\right)$ has at least two edges to $X+v_{1}$. Thus $2 b_{H}\left(X+v_{1}\right) \leq e_{H}(X, V(H)-X)+d_{H}\left(v_{1}\right)$. Substituting these inequalities into (1), we deduce that $d_{H}\left(v_{1}\right)(|X|-1) \leq 2(|X|-2)$. Hence $X=\emptyset$. Now (11) implies that $b_{H}\left(v_{1}\right) \geq 2$. Thus v_{1} is a cut-vertex of H and hence v is a cut-vertex of G.

By Lemma 2.3, we can construct a 2-edge-connected r_{v}-detachment H^{\prime} of G such that, for the pieces $v_{1}^{\prime}, v_{2}^{\prime}$ of v in H^{\prime}, we have $d_{H^{\prime}}\left(v_{2}\right)=b_{G}(v)$, and neither v_{1}^{\prime} nor v_{2}^{\prime} is a cut-vertex of H^{\prime}. Defining r^{\prime} as above (i.e. $r^{\prime}\left(v_{1}^{\prime}\right)=r(v)-1=1, r^{\prime}\left(v_{2}^{\prime}\right)=1$, and $r^{\prime}(u)=r(u)$ for all $\left.u \in V\left(H^{\prime}\right)-\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}\right)$ we have $\gamma\left(H^{\prime}, r^{\prime}\right)<\gamma(G, r)$, and $\left(H^{\prime}, r^{\prime}\right)$ satisfies (a) and (b). Thus we may again deduce that (H^{\prime}, r^{\prime}) fails to satisfy (c). Hence $e_{H^{\prime}}\left(X, V\left(H^{\prime}\right)-X\right) \leq r^{\prime}(X)+b_{H^{\prime}}(X+y)-2$ for some $y \in N_{1}\left(H^{\prime}, r^{\prime}\right)$ and
$X \subseteq N_{2}\left(H^{\prime}, r^{\prime}\right)$. Since $N_{1}(G, r)=\emptyset$ we must have $y=v_{i}^{\prime}$ for some $i \in\{1,2\}$. Using (2), we may now deduce as above that $X=\emptyset$ and hence v_{i}^{\prime} is a cut-vertex of H^{\prime}. This contradicts the choice of H^{\prime}.

Choose $y \in N_{1}(G, r)$ such that $d(y)$ is as large as possible. Define $r_{y}: V(G) \rightarrow Z_{+}$ by $r_{y}(y)=2$ and $r_{y}(u)=r(u)$ for all $u \in V-y$. Clearly $\gamma\left(G, r_{y}\right)<\gamma(G, r)$, and (G, r_{y}) satisfies (a) and (b).
Claim 2.15. (G, r_{y}) satisfies (c).
Proof. Suppose we have $e_{G}(X, V-X) \leq r_{y}(X)+b_{G}\left(X+y^{\prime}\right)-2$ for some $y^{\prime} \in N_{1}\left(G, r_{y}\right)$ and $X \subseteq N_{2}\left(G, r_{y}\right)$. Since (c) holds for (G, r) we must have $y \in X$ and

$$
\begin{equation*}
e_{G}(X, V-X)=r(X)+b_{G}\left(X+y^{\prime}\right)-1 . \tag{3}
\end{equation*}
$$

Let $C_{1}, C_{2}, \ldots, C_{b}$ be the components of $G-\left(X+y^{\prime}\right)$. Since (c) holds for (G, r), we may apply Theorem 1.3 to deduce that $G-y^{\prime}$ has a connected r^{\prime}-detachment H, where $r^{\prime}=\left.r\right|_{V-y^{\prime}}$. Let X^{*} be the set of all pieces of vertices of X in H. Since (b) holds for G, Theorem 1.1 implies that H may be constructed to have the additional property that $d_{H}\left(x_{i}\right) \geq 2$ for all $x_{i} \in X^{*}$. Let H^{\prime} be the detachment of $G-y^{\prime}$ obtained from H by 're-attaching' all the pieces of v, for each $v \in V-X-y^{\prime}$. Thus H ' is a connected $r^{\prime \prime}$-detachment of $G-y^{\prime}$, where $r^{\prime \prime}(v)=r(v)$ for $v \in X$ and $r^{\prime \prime}(v)=1$ for $v \in V-X-y^{\prime}$. Using the fact that equality holds in (3), we have exactly $r(X)+b-1$ edges in H^{\prime} joining the vertices in X^{*} and the components $C_{1}, C_{2}, \ldots, C_{b}$. Since H^{\prime} is connected and $\left|X^{*}\right|=r(X)$, the graph T obtained from H^{\prime} by contracting each component C_{i} to a single vertex c_{i}, is a tree. Since $d_{T}\left(x_{i}\right) \geq 2$ for all $x_{i} \in X^{*}$, no vertex of X^{*} is an end-vertex of T. Since $r^{\prime \prime}(y)=1$, we can label the unique piece of y in H as y. We then have $y \in X^{*}$ and $d_{T}(y)=d_{G}(y)$. Thus T has at least $d_{G}(y)$ end-vertices, all of which belong to $\left\{c_{1}, c_{2}, \ldots, c_{b}\right\}$. Furthermore, if T has exactly $d_{G}(y)$ end-vertices, then all vertices of T other than y have degree one or two. Let $S=\left\{C_{i}: d_{T}\left(c_{i}\right)=1,1 \leq i \leq b\right\}$. Then $e_{H^{\prime}}\left(C_{i}, V\left(H^{\prime}\right)-C_{i}\right)=1$ for all $C_{i} \in S$. Since G is 2-edge-connected and $r^{\prime \prime}(v)=1$ for all $v \in C_{i}$, there is at least one edge in G from C_{i} to y^{\prime} for each $C_{i} \in S$. Since $|S| \geq d_{G}(y)$, it follows that $d_{G}\left(y^{\prime}\right) \geq d_{G}(y)$. It now follows from the initial choice of y that we must have $d_{G}\left(y^{\prime}\right)=|S|=d_{G}(y)$, that there is exactly one edge in G from y^{\prime} to each $C_{i} \in S$ and to no other vertices of G, and that all vertices of T other than y have degree one or two. Again, since $r^{\prime \prime}(v)=1$ for all $v \in C_{i}$, we have $e_{G}\left(C_{i}, V(G)-C_{i}\right)=2$ for all $1 \leq i \leq b$. Using Claim 2.13, we deduce that $\left|V\left(C_{i}\right)\right|=1$ for all $1 \leq i \leq b$. Thus $V\left(C_{i}\right)=\left\{c_{i}\right\}, H^{\prime}=H$ and since G is loopless, $d_{G}\left(c_{i}\right)=2$. By (b), $r\left(c_{i}\right)=1=r^{\prime \prime}\left(c_{i}\right)$ for all $1 \leq i \leq b$ and $H=T$. Let G^{\prime} be the graph obtained from H by adding y^{\prime} and the edge $y^{\prime} c_{i}$ for each $C_{i} \in S$. (Thus G^{\prime} is obtained by adding an edge from y^{\prime} to each end-vertex of T.) Then G^{\prime} is the required non-separable r-detachment of G.

Since (c) holds for (G, r_{y}), we may apply induction to deduce that G has a nonseparable r_{y}-detachment. It follows that G has an r-detachment H such that H is a block-star centered on y. We may suppose that H has been chosen such that the number of blocks of H is as small as possible. Let f be the r-degree specification for
G given by H. Since G has no non-separable f-detachment, $b_{H}(y) \geq 2$. For $i \geq 0$, let S_{i} and W_{i} be the subsets of $V(H)$ defined as for Lemma 2.6. Since the sets S_{i} are pairwise disjoint and H is finite, we may choose i such that $S_{i+1}=\emptyset$. Let $X^{\prime}=W_{i}-y$ and $X=\left\{x \in V(G)\right.$: some piece of x in H belongs to $\left.X^{\prime}\right\}$. By Lemma 2.6, every edge $x_{1} v \in E(H-y)$ with $x_{1} \in X^{\prime}$ is a cut-edge in $H-y$. Thus the graph F we get from $H-y$ by contracting each component of $H-X^{\prime}-y$ to a single vertex is a forest with $b_{H}(y)$ components and $b_{H}\left(X^{\prime}+y\right)+\left|X^{\prime}\right|$ vertices. Using the facts that $X+y \subseteq N(G)$, and $N(G)$ is an independent set of vertices in G, we deduce that $|E(F)|=e_{H}\left(X^{\prime}, V(H)-X^{\prime}\right)$. Thus

$$
\begin{equation*}
e_{H}\left(X^{\prime}, V(H)-X^{\prime}\right)=b_{H}\left(X^{\prime}+y\right)+\left|X^{\prime}\right|-b_{H}(y) \tag{4}
\end{equation*}
$$

We have $e_{H}\left(X^{\prime}, V(H)-X^{\prime}\right)=e_{G}(X, V(G)-X),\left|X^{\prime}\right|=r(X)$ and $b_{H}(y) \geq 2$. Furthermore, for each $v \in V(G)-X-y$, all pieces of v in H belong to the same component of $H-X^{\prime}-y$, since $S_{i+1}=\emptyset$. Thus $b_{G}(X+y)=b_{H}\left(X^{\prime}+y\right)$. Substituting into (4) we obtain $e_{G}(X, V(G)-X) \leq r(X)+b_{G}(X+y)-2$. This contradicts hypothesis (c) of the theorem and completes our proof.

Proof of Theorem 2.1. Let G^{\prime} be obtained from G by subdividing every edge of G. Then G^{\prime} is loopless, $N\left(G^{\prime}\right)=N(G)$ and $N\left(G^{\prime}\right)$ is independent in G^{\prime}. Extend r to r^{\prime} by putting $r^{\prime}(v)=r(v)$ for all $v \in V(G)$ and $r^{\prime}(v)=1$ for all $v \in V\left(G^{\prime}\right)-V(G)$. Then $N_{1}\left(G^{\prime}, r^{\prime}\right)=N_{1}(G, r)$ and $N_{2}\left(G^{\prime}, r^{\prime}\right)=N_{2}(G, r)$. We shall show that conditions (a), (b), (c) and (d) of Theorem 2.1 hold for (G, r) if and only if conditions (a), (b), and (c) of Theorem 2.12 hold for $\left(G^{\prime}, r^{\prime}\right)$. Clearly Theorem 2.1 (a) and (b) hold for (G, r) if and only if Theorem 2.12 (a) and (b) hold for $\left(G^{\prime}, r^{\prime}\right)$. Furthermore for $y \in N_{1}(G, r)=N_{1}\left(G^{\prime}, r^{\prime}\right)$ and $X \subseteq N_{2}(G, r)=N_{2}\left(G^{\prime}, r^{\prime}\right)$, we have $r(X)=r^{\prime}(X)$, and $e_{G}(X, V-X-y)+e_{G}(X)-b_{G}(X+y)-e_{G}(y)=e_{G^{\prime}}(X, V-X)-b_{G^{\prime}}(X+y)$. If Theorem 2.1 (c) and (d) hold for (G, r), then $e_{G}(y)=0$ and the above equalities imply that Theorem 2.12 (c) holds for $\left(G^{\prime}, r^{\prime}\right)$. Suppose, on the other hand, that Theorem 2.12 (c) holds for $\left(G^{\prime}, r^{\prime}\right)$. Taking $X=\emptyset$ we have $b_{G^{\prime}}(y) \leq 1$ for all $y \in N_{1}\left(G^{\prime} r^{\prime}\right)$ and hence $e_{G}(y)=0$ for all $y \in N_{1}(G, r)$. Thus Theorem 2.1 (c) holds for (G, r). The above equalities now imply that Theorem 2.1 (d) also holds for (G, r).

We shall next prove Theorem 2.2. Given a graph $G=(V, E)$ and $X \subseteq V$, let $\Gamma(X)$ be the set of vertices of $V-X$ which are adjacent to vertices in X and put $\gamma(X)=|\Gamma(X)|$. We shall use the following operation to adjust the degree sequence in a detachment of a graph. For vertices x, y, z of G with $x z \in E(G)$, we define the graph $G(x z \rightarrow y z)$ obtained by flipping $x z$ to $y z$ by putting $G(x z \rightarrow y z)=G-x z+y z$. The following lemma characterises when we may flip edges in a non-separable graph and preserve non-separability.

Lemma 2.16. Let $G=(V, E)$ be a non-separable graph and let $x, y \in V$ be distinct vertices of G. Let $x z_{1}, x z_{2}, \ldots, x z_{t}$ be distinct edges of $G-y$ with $t \geq 3$. Then $G\left(x z_{i} \rightarrow y z_{i}\right)$ is separable for all $1 \leq i \leq t$ if and only if there exist distinct components $C_{1}, C_{2}, \ldots, C_{t}$ of $G-\{x, y\}$ with $z_{i} \in V\left(C_{i}\right)$ and $e\left(x, C_{i}\right)=1$ for all $1 \leq i \leq t$.

Proof. Sufficiency is easy to see. To prove necessity first note that $G\left(x z_{i} \rightarrow y z_{i}\right)$ has no loops for all $1 \leq i \leq t$ since G is non-separable and $z_{i} \neq y$. Suppose that $G(x z \rightarrow y z)$ has a cut-vertex for all $1 \leq i \leq t$. It is easy to see that flipping an edge $x z_{i}$ to $y z_{i}$ creates a cut-vertex if and only if there is a set $W \subset V-x$ in G with $e(W, x)=1, \gamma(W)=2$, and $z_{i} \in W, y \in W \cup \Gamma(W)$. We call W a certificate for z_{i}.

Let us choose a minimal family $\mathcal{F}=\left\{W_{1}, \ldots, W_{m}\right\}$ which contains a certificate for z_{i} for all $1 \leq i \leq t$. Since $e\left(W_{i}, x\right)=1$ for $1 \leq i \leq m$ and by the minimality of \mathcal{F} we have $t=m$ and $\Gamma(x) \cap W_{i} \cap W_{j}=\emptyset$ for all $1 \leq i<j \leq t$. Furthermore, since $e\left(W_{i}, x\right)=1$ and G is non-separable, each W_{i} induces a connected subgraph of G.

First we show that $W_{i} \cap W_{j}=\emptyset$ for $1 \leq i<j \leq t$. Suppose that $W_{i} \cap W_{j} \neq \emptyset$ holds for two distinct $W_{i}, W_{j} \in \mathcal{F}$. Since $e\left(W_{i}, x\right)=e\left(W_{j}, x\right)=1$ and $d(x) \geq 3$, it follows that $Z:=V-\left(W_{i} \cup W_{j}\right)-\{x\}$ is non-empty. The subgraphs $G\left[W_{i}\right]$ and $G\left[W_{j}\right]$ are connected, hence we have that both $\Gamma\left(W_{i}\right) \cap\left(W_{j}-W_{i}\right)$ and $\Gamma\left(W_{j}\right) \cap\left(W_{i}-W_{j}\right)$ are non-empty. Since $\gamma\left(W_{i}\right)=\gamma\left(W_{j}\right)=2$ and $x \in \Gamma\left(W_{i}\right) \cap \Gamma\left(W_{j}\right)$, this implies that $e\left(W_{i} \cup W_{j}, Z\right)=0$. Hence x is a cut-vertex in G, a contradiction.

Now suppose that $y \in W_{i}$ holds for some $1 \leq i \leq t$. Since $W_{i} \cap W_{j}=\emptyset$, we must have $y \in \Gamma\left(W_{j}\right)$ for all $W_{j} \in \mathcal{F}-W_{i}$. Since $x \in \Gamma\left(W_{i}\right)$ and $t \geq 3$, this implies $\gamma\left(W_{i}\right) \geq 3$, a contradiction. Thus $y \in \Gamma\left(W_{i}\right)$ for all $1 \leq i \leq t$. This, and the facts that $\gamma\left(W_{j}\right)=2$ and $x \in \Gamma\left(W_{j}\right)$ for all $1 \leq j \leq t$, imply that $C_{i}=G\left[W_{i}\right], 1 \leq i \leq t$, are the required components of $G-\{x, y\}$.

Corollary 2.17. Let $t \geq 3$ be an integer. Let $G=(V, E)$ be a non-separable graph, $x, y \in V$ and $x z_{i} \in E(G-y)$ for $1 \leq i \leq t$. If $t \geq d(y)-e(\{x, y\})+1$, then $G\left(x z_{i} \rightarrow y z_{i}\right)$ is non-separable for some $1 \leq i \leq t$.

Proof. Suppose that for all $1 \leq i \leq t$ the graph $G\left(x z_{i} \rightarrow y z_{i}\right)$ is separable. We may apply Lemma 2.16 and deduce that $b(\{x, y\}) \geq t$. Since $t \geq d(y)-e(\{x, y\})+1$, it follows that $e(C, y)=0$ for some component C of $G-\{x, y\}$. Thus x is a cut-vertex in G, a contradiction.

Corollary 2.18. Let $G=(V, E)$ be a non-separable graph and let $x, y, w \in V$ be distinct vertices of G such that $d(x) \geq 3$ and $x y, x w \notin E$. Then there exists a $z \in \Gamma(x)$ such that either $G(x z \rightarrow y z)$ or $G(x z \rightarrow w z)$ is non-separable.

Proof. Suppose that for all $z \in \Gamma(x)$ the graph $G(x z \rightarrow y z)$ is separable. By Lemma 2.16 we have $b(\{x, y\})=d(x)$. Let $C_{1}, C_{2}, \ldots, C_{d(x)}$ be the components of $G-\{x, y\}$, where $w \in V\left(C_{1}\right)$. Then each neighbour of x other than the unique neighbour in C_{1} belongs to the same component of $G-\{x, w\}$. Thus Lemma 2.16 implies that $G(x z \rightarrow w z)$ is non-separable for some $z \in \Gamma(x)$.

Lemma 2.19. Let $G=(V, E)$ be a non-separable graph and suppose that $b(\{x, y\})=$ $d(x) \geq 3$ for some pair $x, y \in V$. Let w be a vertex in some component C of $G-\{x, y\}$ with $e(w, y)=e(w, x)=0$ and let $z \in \Gamma(x)-C$. Then either $G(x z \rightarrow w z)\left(w z^{\prime} \rightarrow y z^{\prime}\right)$ is non-separable for some $z^{\prime} \in \Gamma(w)$ or every edge incident to w in G is a cut-edge in C.

Proof. Let the components of $G-\{x, y\}$ be $C_{1}, C_{2}, \ldots, C_{d(x)}$ and, without loss of generality, suppose that $z \in V\left(C_{1}\right)$. Then $C_{1} \neq C$. We first observe that $H:=G(x z \rightarrow w z)$ is non-separable. This follows from the fact that, since $d(x) \geq 3$, there is a cycle containing x and z in H. Thus we need to show that either there is flip from w to y in H which creates no cut-vertices or C has the required property. Suppose that $H\left(w z^{\prime} \rightarrow y z^{\prime}\right)$ has a cut-vertex for every $z^{\prime} \in \Gamma(w) \cap V(C)$. Using the facts that $d_{H}(w) \geq 3, e_{H}(w, y)=0$, and y is a cut-vertex in $H(w z \rightarrow y z)$, we may apply Lemma 2.16 to deduce that $b_{H}(\{w, y\})=d_{H}(w)=d_{G}(w)+1$. This implies that every edge incident to w in H is a cut-edge in $H-y$. Since $z \notin V(C)$ and H is obtained from G by flipping $x z$ to $w z$, and $y \notin V(C)$, we may deduce that every edge incident to w in G is a cut-edge in C. This proves the lemma.

We next apply the above results to obtain some preliminary results on f-detachments.

Lemma 2.20. Let $G=(V, E)$ be a loopless graph and $r: V(G) \rightarrow Z_{+}$. Suppose that G has a non-separable r-detachment H. Let f be the r-degree specification for G given by $f_{1}^{v}=d(v)$ if $r(v)=1$; and $f(v)=\left(f_{1}^{v}, f_{2}^{v}, \ldots, f_{r(v)}^{v}\right)$ where $f_{1}^{v}=\lceil(d(v)-2 r(v)+$ $4) / 2\rceil$, $f_{2}^{v}=\lfloor(d(v)-2 r(v)+4) / 2\rfloor$, and $f_{i}^{v}=2$ for all $v \in N_{2}(G, r)$ and $3 \leq i \leq r(v)$. Then G has a non-separable f-detachment.

Proof. For each $v \in V$, let $v_{1}, v_{2}, \ldots, v_{r(v)}$ be the pieces of v in H, where $d_{H}\left(v_{1}\right) \geq$ $d_{H}\left(v_{2}\right) \geq \ldots \geq d_{H}\left(v_{r(v)}\right)$. Note that the pieces of v are independent in H since G is loopless.

Suppose $d_{H}\left(v_{i}\right) \geq 3$ for some $3 \leq i \leq r(v)$. Using Corollary 2.18, we can construct a new non-separable r-detachment by flipping an edge $v_{i} z$ to either $v_{1} z$ or $v_{2} z$ for some $z \in \Gamma_{H}\left(v_{i}\right)$. Applying this operation iteratively, and relabelling v_{1} and v_{2} if necessary, we may construct a non-separable r-detachment H^{\prime} of G on the same vertex set as H with $d_{H^{\prime}}\left(v_{1}\right) \geq d_{H^{\prime}}\left(v_{2}\right)$ and $d_{H^{\prime}}\left(v_{i}\right)=2$ for all $v \in N_{2}(G, r)$ and $i \leq 3 \leq r(v)$.

Suppose $d_{H^{\prime}}\left(v_{1}\right) \geq d_{H^{\prime}}\left(v_{2}\right)+2$. By Corollary 2.17, we can construct a new nonseparable r-detachment by flipping an edge $v_{1} z$ to $v_{2} z$ for some $z \in \Gamma_{H}\left(v_{1}\right)$. Applying this operation iteratively to H^{\prime} we may construct the required non-separable f-detachment G.

Let S be the set of all sequences of integers of length r in decreasing order of magnitude. Let \geq_{r} be the lexicographic ordering on S, (hence $f=\left(f_{1}, f_{2}, \ldots, f_{r}\right) \geq_{r}$ $g=\left(g_{1}, g_{2}, \ldots, g_{r}\right)$ if and only if either $f=g$, or, for some $1 \leq i \leq r, f_{1}=g_{1}, f_{2}=$ $\left.g_{2}, \ldots, f_{i-1}=g_{i-1}, f_{i}>g_{i}\right)$.

Lemma 2.21. Let $G=(V, E)$ be a loopless graph, $r: V(G) \rightarrow Z_{+}$, and f and g be two r-degree specifications for G. Suppose that G has a non-separable f-detachment, $f(v) \geq_{r(v)} g(v)$ and $g_{i}^{v} \geq 2$ for all $v \in V$ and $1 \leq i \leq r(v)$. Then G has a nonseparable g-detachment.

Proof. We assume that, for each $v \in V$ the sequences $f(v)$ and $g(v)$ occur in decreasing order of magnitude. Note that $\sum_{i=1}^{r}(v) f_{i}^{v}=d_{G}(v)=\sum_{i=1}^{r}(v) g_{i}^{v}$ for all $v \in V$. Given an integer z let $z^{*}=z$ if $z \geq 0$, and otherwise let $z^{*}=0$. We may suppose that f has been chosen to satisfy the hypotheses of the lemma and such that:
(i) $\theta_{1}(f)=\sum_{v \in V} \sum_{3 \leq i \leq r(v)}\left(f_{i}^{v}-g_{i}^{v}\right)^{*}$ is as small as possible;
(ii) subject to (i), $\theta_{2}(f)=\sum_{v \in V} \sum_{3 \leq i \leq r(v)}\left(g_{i}^{v}-f_{i}^{v}\right)^{*}$ is as small as possible;
(iii) subject to (i) and (ii), $\theta_{3}(f)=\sum_{v \in V}\left(f_{1}^{v}-g_{1}^{v}\right)$ is as small as possible.

Let H be a non-separable f-detachment of G. Let $v_{1}, v_{2}, \ldots, v_{r(v)}$ be the pieces of v in H, where $d_{H}\left(v_{i}\right)=f_{i}^{v}$ for all $v \in V$ and all $1 \leq i \leq r(v)$.
Suppose $\theta_{1}(f) \geq 1$. Then we may choose $v \in V$ such that $f_{i}^{v} \geq g_{i}^{v}+1$ for some $3 \leq i \leq r(v)$. Then $f_{i}^{v} \geq 3$ and by Corollary 2.18 there exists a $z \in \Gamma_{H}\left(v_{i}\right)$ such that either $H\left(v_{i} z \rightarrow v_{1} z\right)$ or $H\left(v_{i} z \rightarrow v_{2} z\right)$ is non-separable. In both cases, the resulting non-separable graph H^{\prime} is an f^{\prime}-detachment of G for some r-degree specification f^{\prime} with $f^{\prime}(u) \geq_{r(u)} g(u)$ for all $u \in V$ and $\theta_{1}\left(f^{\prime}\right)=\theta_{1}(f)-1$. This contradicts the choice of f. Thus $\theta_{1}(f)=0$ and $f_{i}^{v} \leq g_{i}^{v}$ for all $v \in V$ and all $3 \leq i \leq r(v)$.

Suppose $\theta_{2}(f) \geq 1$. Then we may choose $v \in V$ such that $g_{i}^{v} \geq f_{i}^{v}+1$ for some $3 \leq i \leq r(v)$. We first consider the case when $f_{1}^{v} \geq g_{1}^{v}+1$. Then $f_{1}^{v}>f_{i}^{v}$ and by Corollary 2.17 there exists a $z \in \Gamma_{H}\left(v_{1}\right)$ such that $H\left(v_{1} z \rightarrow v_{i} z\right)$ is non-separable. The resulting non-separable graph H^{\prime} is an f^{\prime}-detachment of G for some r-degree specification f^{\prime} with $f^{\prime}(u) \geq_{r(u)} g(u)$ for all $u \in V, \theta_{1}\left(f^{\prime}\right)=0$, and $\theta_{2}\left(f^{\prime}\right)=\theta_{2}(f)-1$. (Note that $f^{\prime}(v) \geq_{r(v)} g(v)$ since $\theta_{1}(f)=0$ and hence either $f_{1}^{v}-1>g_{1}^{v}$, or else $f_{1}^{v}-1=g_{1}^{v}$ and $f_{2}^{v} \geq g_{2}^{v}$ with equality only if $f^{\prime}(v)=g(v)$.) This contradicts the choice of f and hence $f_{1}^{v} \leq g_{1}^{v}$. Since $f(v) \geq_{r(v)} g(v), \theta_{1}(v)=0$ and $\theta_{2}(v) \geq 1$, we must have $f_{1}^{v}=g_{1}^{v}$ and $f_{2}^{v} \geq g_{2}^{v}+1$. We can now obtain a contradiction as above by using Corollary 2.17 to show that there exists a $z \in \Gamma_{H}\left(v_{2}\right)$ such that $H\left(v_{2} z \rightarrow v_{i} z\right)$ is non-separable. Thus we must have $\theta_{2}(f)=0=\theta_{1}(f)$ and hence $f_{i}^{v}=g_{i}^{v}$ for all $v \in V$ and all $3 \leq i \leq r(v)$.

Suppose $\theta_{3}(f) \geq 1$. Then we may choose $v \in V$ such that $f_{1}^{v} \geq g_{1}^{v}+1$. Then $f_{1}^{v}>g_{2}^{v}>f_{2}^{v}$ and by Corollary 2.17 there exists a $z \in \Gamma_{H}\left(v_{1}\right)$ such that $H\left(v_{1} z \rightarrow v_{2} z\right)$ is non-separable. The resulting graph H^{\prime} is a non-separable f^{\prime}-detachment of G for some r-degree specification f^{\prime} with $f^{\prime}(u) \geq_{r(u)} g(u)$ for all $u \in V, \theta_{1}\left(f^{\prime}\right)=0=\theta_{2}\left(f^{\prime}\right)$, and $\theta_{3}\left(f^{\prime}\right)=\theta_{3}(f)-1$. This contradicts the choice of f and hence $\theta_{3}(f)=0$. Thus $f=g$ and the lemma is trivially true.

We shall need one more lemma which is an extension of Lemma 2.3.
Lemma 2.22. Let G be a 2-edge-connected loopless graph, $v \in N(G)$, and $r: V \rightarrow$ Z_{+}be such that $r(v) \geq 2$ and $r(u)=1$ for all $u \in V-v$. Suppose that v is a cut-vertex of G and that $b(v) \geq r(v)$. Then there exists a 2-edge-connected r-detachment H of G such that, for the pieces $v_{1}, v_{2}, \ldots, v_{r(v)}$ of v in H, we have $d_{H}\left(v_{2}\right)=b_{G}(v)-2 r(v)+4$, $d_{H}\left(v_{i}\right)=2$ for $3 \leq i \leq r(v)$ and neither v_{1} nor v_{2} is a cut-vertex of H.

Proof. We use induction on $r(v)$. If $r(v)=2$ then the lemma follows from Lemma 2.3. Hence suppose $r(v) \geq 3$ and choose $x, y \in \Gamma(v)$ belonging to different components of $G-v$. Let G^{\prime} be the graph obtained from G by detaching v into two vertices v^{\prime} and $v^{\prime \prime}$, where $d_{G^{\prime}}\left(v^{\prime \prime}\right)=2$ and $\Gamma_{G^{\prime}}\left(v^{\prime \prime}\right)=\{x, y\}$. It can be seen that G^{\prime} is 2-edge
connected and $b_{G^{\prime}}\left(v^{\prime}\right)=b_{G}(v)-1$. The lemma now follows by applying induction to $\left(G^{\prime}, v^{\prime}, r^{\prime}\right)$ where $r^{\prime}\left(v^{\prime}\right)=r(v)-1$.

As for Theorem [2.1, we first prove Theorem 2.2 in the case when G is loopless and $N(G)$ is independent.

Theorem 2.23. Let $G=(V, E)$ be a loopless graph with at least two edges, r : $V(G) \rightarrow Z_{+}$, and let f be an r-degree specification, where $f(v)=\left(f_{1}^{v}, f_{2}^{v}, \ldots, f_{r(v)}^{v}\right)$ and $f_{1}^{v} \geq f_{2}^{v} \geq \ldots \geq f_{r(v)}^{v}$ for all $v \in V$. Suppose that $N(G)$ is independent. Then G has a non-separable f-detachment if and only if
(a) G is 2-edge connected,
(b) $f_{i}^{v} \geq 2$ for all $v \in V$ and all $1 \leq i \leq r(v)$,
(c) $e(X+v, V-X-v)-f_{1}^{v} \geq r(X+v)+b(X+v)-2$ for all $v \in N(G)$ and all $X \subseteq N_{2}(G, r)-v$.

Proof. We first prove necessity. Suppose that G has a non-separable f-detachment H. It is easy to see that conditions (a) and (b) must hold for G. Choose $v \in N(G)$ and $X \subseteq N_{2}(G, r)-v$. Let $C_{1}, C_{2}, \ldots, C_{b}$ be the components of $G-(X+v)$, where $b=b(X+v)$, and let C_{i}^{\prime} be the subgraph of H induced by the pieces of all vertices of C_{i}. Let v_{1} be the piece of v in H of degree f_{1}^{v}. Let S be the set of all pieces of vertices of X in H and all pieces of v other than v_{1}. Then $|S|=r(X+v)-1$. Since G is loopless and $N(G)$ is independent, we have $e(X+v, V-X-v)-f_{1}^{v}$ edges in H joining the subgraphs $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{b}^{\prime}$ and vertices in S. Since H is non-separable $H-v_{1}$ is connected and hence we must have $e(X+v, V-X-v)-f_{1}^{v} \geq b+r(X+v)-2$. Thus (c) holds for G.

We next prove sufficiency. We proceed by contradiction. Suppose that (G, r, f) satisfies (a), (b) and (c) and that G does not have a non-separable f-detachment. We first use Theorem 2.12 to show that G has a non-separable r-detachment. Since (G, r) satisfies (a) and (b), it also satisfies Theorem 2.12 (a) and (b). Furthemore, for $y \in N_{1}(G, r)$ and $X \subseteq N_{2}(G, r)$ we have $f_{1}^{y}=d(y), r(X+y)=r(X)+1$, and, since G is loopless and $N(G)$ is independent, $e(X+y, V-X-y)=e(X, V-X)+d(y)$. Since (G, r) satisfies (c), it follows that (G, r) also satisfies Theorem 2.12 (c). Hence G has a non-separable r-detachment.

Applying Lemma 2.20, G has a non-separable h-detachment, H for some r-degree specification h satisfying $h_{1}^{v} \geq h_{2}^{v} \geq h_{3}^{v}=\ldots=h_{r(v)}^{v}=2$ for all $v \in V$. We may suppose that H has been chosen such that $\theta(h)=\sum_{v \in V} h_{1}^{v}$ is as large as possible. If $h_{1}^{v} \geq f_{1}^{v}$ for all $v \in V$ then $h(v) \geq_{r(v)} f(v)$ for all $v \in V$ and by Lemma 2.21, G has a non-separable f-detachment. Hence we may suppose that $h_{1}^{v} \leq f_{1}^{v}-1$ for some $v \in V$. Necessarily we must have $v \in N_{2}(G, r)$ and $h_{2}^{v} \geq f_{2}^{v}+1 \geq 3$.

Let $v_{1}, v_{2}, \ldots, v_{r(v)}$ be the pieces of v in H, where $d_{H}\left(v_{i}\right)=h_{i}^{v}$ for $1 \leq i \leq r(v)$. If $H^{\prime}=H\left(v_{2} z \rightarrow v_{1} z\right)$ is non-separable for some $z \in \Gamma_{H}\left(v_{2}\right)$, then H^{\prime} is a non-separable h^{\prime}-detachment of G with $\theta\left(h^{\prime}\right)>\theta(h)$. This contradicts the choice of H. Applying Lemma 2.16, we deduce that $b_{H}\left(\left\{v_{1}, v_{2}\right\}\right)=d_{H}\left(v_{2}\right)=h_{2}^{v}$.
Claim 2.24. $b_{H}\left(\left\{v_{1}, v_{2}, \ldots, v_{r(v)}\right\}\right)=h_{2}^{v}+r(v)-2$.

Proof. We have already shown that $b_{H}\left(\left\{v_{1}, v_{2}\right\}\right)=d_{H}\left(v_{2}\right)=h_{2}^{v}$ and hence the claim holds for $r(v)=2$. Suppose $r(v) \geq 3$ and choose $i, 3 \leq i \leq r(v)$. Let z be a neighbour of v_{2} in H such that z, v_{i} belong to different components of $H-\left\{v_{1}, v_{2}\right\}$. If $H^{\prime \prime}=H\left(v_{2} z \rightarrow v_{i} z\right)\left(v_{i} z^{\prime} \rightarrow v_{1} z^{\prime}\right)$ is non-separable for some $z^{\prime} \in \Gamma_{H}\left(v_{i}\right)$, then $H^{\prime \prime}$ is a non-separable $h^{\prime \prime}$-detachment of G with $\theta\left(h^{\prime \prime}\right)>\theta(h)$. This contradicts the choice of H. Applying Lemma 2.19, we deduce that each edge of H incident to v_{i} is a cut-edge of $H-\left\{v_{1}, v_{2}\right\}$ for all $3 \leq i \leq r(v)$. Since $h_{i}^{v}=2$ for $3 \leq i \leq r(v)$, it follows that $H-\left\{v_{1}, v_{2}, \ldots, v_{r(v)}\right\}$ has $h_{2}^{v}+r(v)-2$ components.

Let L be the graph obtained from H by contracting $\left\{v_{1}, v_{2} \ldots, v_{r(v)}\right\}$ back to the single vertex v. Then L is an ℓ-detachment of G for the r^{\prime}-degree specification for G defined by $r^{\prime}(v)=1, \ell(v)=d_{G}(v)$; and $r^{\prime}(u)=r(u)$ and $\ell(u)=h(u)$ for $u \in V-v$. Furthermore L is a block-star centered on v and $b_{L}(v)=h_{2}^{v}+r(v)-2$.

Claim 2.25. Let L^{\prime} be an ℓ-detachment of G such that L^{\prime} is a block-star centered on v. Then $b_{L^{\prime}}(v) \geq b_{L}(v)$.
Proof. Suppose $b_{L^{\prime}}(v) \leq b_{L}(v)-1$. By Lemma 2.22, we can detach v in L^{\prime} into $r(v)$ pieces $v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{r(v)}^{\prime}$ such that, in the resulting graph H^{*} we have $d_{H^{*}}\left(v_{2}^{\prime}\right)=$ $b_{L^{\prime}}(v)-2 r(v)+4, d_{H^{*}}\left(v_{i}^{\prime}\right)=2$ for $3 \leq i \leq r(v), d_{H^{*}}\left(v_{1}^{\prime}\right)>h_{1}^{v}$, and neither v_{1}^{\prime} nor v_{2}^{\prime} is a cut-vertex of H^{*}. Using Claim 2.24, we have

$$
d_{H^{*}}\left(v_{2}^{\prime}\right)=b_{L}(v)-2 r(v)+4=h_{2}^{v}-r(v)+2 \leq h_{2}^{v}
$$

Since H^{*} is 2-edge-connected and $d_{H^{*}}\left(v_{i}^{\prime}\right)=2$ for $3 \leq i \leq r(v), v_{i}^{\prime}$ is not a cut-vertex of H^{*} for $1 \leq i \leq r(v)$. Thus, if H^{*} had a cut-vertex x, then x would belong to some component of $L^{\prime}-v$, and x would be a cut-vertex of L^{\prime} distinct from v. Hence H^{*} is a non-separable h^{*}-detachment of G for some r-degree specification h^{*} for G satisfying $\theta\left(h^{*}\right)>\theta(h)$. This contradicts the choice of H.

It follows from Claim 2.25 that we may apply Lemma 2.6 to (G, L, ℓ). Let S_{i} and W_{i} be the subsets of $V(L)$ defined as in Lemma 2.6 (but with respect to v). Since the sets S_{i} are pairwise disjoint and L is finite, we may choose i such that $S_{i+1}=\emptyset$. Let $X^{\prime}=\left(W_{i}-v\right)$ and $X=\left\{x \in V(G)\right.$: some piece of x in L belongs to $\left.X^{\prime}\right\}$.

By Lemma 2.6, every edge $x_{1} u$ of $L-v$ with $x_{1} \in X^{\prime}$ is a cut-edge in $L-v$. Thus the graph we get from $L-v$ by contracting each component of $L-X^{\prime}-v$ to a single vertex is a forest F with $b_{L}(v)$ components and $\left|X^{\prime}\right|+b_{L}\left(X^{\prime}+v\right)$ vertices. Using the facts that $X+v \subseteq N(G)$, and $N(G)$ is an independent set of vertices in G, we deduce that F has $e_{L}\left(X^{\prime}, V(L)-X^{\prime}\right)$ edges. Thus

$$
\begin{equation*}
e_{L}\left(X^{\prime}, V(L)-X^{\prime}\right)=b_{L}\left(X^{\prime}+v\right)+\left|X^{\prime}\right|-b_{L}(v) . \tag{5}
\end{equation*}
$$

We have $e_{L}\left(X^{\prime}, V(L)-X^{\prime}\right)=e_{G}(X+v, V(G)-X-v)-d_{L}(v),\left|X^{\prime}\right|=r(X)$, $b_{L}(v)=h_{2}^{v}+\left(r(v)-2=d_{G}(v)-h_{1}^{v}-(r(v)-2)\right.$, and $d_{L}(v)=d_{G}(v)$. Furthermore, for each $u \in V(G)-X-v$, all pieces of u in L belong to the same component of $L-X^{\prime}-v$, since $S_{i+1}=\emptyset$. Thus $b_{G}(X+v)=b_{L}\left(X^{\prime}+v\right)$. Substituting into (5) we obtain $e_{G}(X+v, V(G)-X-v)=r(X+v)+b_{G}(X+v)+h_{1}^{v}-2$. Since $h_{1}^{v} \leq f_{1}^{v}-1$, this contradicts the fact that G satisfies (c).

Proof of Theorem 2.2. Let $\hat{G}=(\hat{V}, \hat{E})$ be obtained from G by subdividing every edge of G. Then \hat{G} is loopless, $N(\hat{G})=N(G)$ and $N(\hat{G})$ is independent. Extend r to \hat{r} and f to \hat{f} by putting $\hat{r}(v)=r(v)$ and $\hat{f}(v)=f(v)$ for all $v \in V(G) ; \hat{r}(v)=1$ and $\hat{f}(v)=2$ for all $v \in \hat{V}-V$. Then $N_{1}(\hat{G}, \hat{r})=N_{1}(G, r), N_{2}(\hat{G}, \hat{r})=N_{2}(G, r)$. We shall show that conditions (a), (b), and (c) of Theorem 2.2 hold for (G, r, f) if and only if conditions (a), (b), and (c) of Theorem 2.23 hold for $(\hat{G}, \hat{r}, \hat{f}$). Clearly Theorem 2.2 (a) and (b) hold for (G, r, f) if and only if Theorem 2.23 (a) and (b) hold for $(\hat{G}, \hat{r}, \hat{f})$. Furthermore for $v \in N(G)=N(\hat{G})$ and $X \subseteq N_{2}(G, r)=N_{2}(\hat{G}, \hat{r})$, we have $f_{1}^{v}=\hat{f}_{1}^{v}, r(X)=\hat{r}(X)$, and $e_{G}(X+v, V-X-v)+e_{G}(X+v)-b_{G}(X+v)=e_{\hat{G}}(X+v, \hat{V}-X-v)-b_{\hat{G}}(X+v)$. Thus Theorem 2.2 (c) holds for (G, r, f), if and only if Theorem 2.23 (c) holds for $(\hat{G}, \hat{r}, \hat{f})$.

We close this section by noting that our proofs of Theorems 2.1 and 2.2 are constructive and give rise to polynomial algorithms which either construct the specified detachment or construct a certificate that shows it does not exist.

3 Some Corollaries and Open Problems

Our first corollary extends Euler's Theorem.
Corollary 3.1. Let $G=(V, E)$ be a 2-edge-connected graph and $r: V \rightarrow Z_{+}$such that $d(v) \geq 2 r(v)$ for all $v \in V$ and $r(v) \geq 2$ for all $v \in N(G)$. Let f be an r-degree specification for G such that $f(v)=\left(f_{1}^{v}, f_{2}^{v}, \ldots, f_{r(v)}^{v}\right)$ and $2 \leq f_{i}^{v} \leq\lceil d(v) / 2\rceil-r(v)+2$ for all $v \in V$ and all $1 \leq i \leq r(v)$. Then G has a nonseparable f-detachment.

Proof. Theorem 2.1 implies that G has a non-separable r-detachment (conditions (b) and (c) of Theorem 2.1 hold vacuously for G since $N_{2}(G)=\emptyset$). The existence of a non-separable f detachment now follows from Lemma 2.20 and 2.21. It can also be derived from Theorem [2.2.

The more difficult direction of Euler's theorem follows from Corollary 3.1 by taking $r(v)=d(v) / 2$ in a graph in which all vertices have even degree. Our next corollary is a result of Hakimi [T] which characterises the degree sequences of non-separable graphs.

Corollary 3.2. Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n} \geq 2$ be integers with $n \geq 2$. Then there exists a non-separable graph with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ if and only if
(a) $d_{1}+d_{2}+\ldots+d_{n}$ is even, and
(b) $d_{1} \leq d_{2}+d_{3}+\ldots+d_{n}-2 n+4$.

Proof. We first prove necessity. Suppose there exists a non-separable graph H with this degree sequence and let $v_{i} \in V(H)$ have degree d_{i} for $1 \leq i \leq n$. Clearly (a) holds. Since H is non-separable, $H-v_{1}$ is connected. Thus $\left|E\left(H-v_{1}\right)\right| \geq n-2$. Hence $d_{1}=e\left(V-v_{1}, v_{1}\right) \leq d_{2}+d_{3}+\ldots+d_{n}-2 n+4$.

Sufficiency follows by applying Theorem 2.2 to the graph G consisting of a single vertex v incident to $\left(d_{1}+d_{2}+\ldots+d_{n}\right) / 2$ loops, by setting $r(v)=n$ and $f(v)=$ $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Our next result considers the case when we only want to detach one vertex in a graph. The special case when $d(v)$ is even and $r(v)=d(v) / 2$ gives a 'splitting off' result for non-separable graphs.

Corollary 3.3. Let $G=(V, E)$ be a graph, $u \in V$, and $r: V \rightarrow Z_{+}$such that $r(u)=m \geq 2$ and $r(v)=1$ for all $v \in V-u$. Let f be an r-degree specification for G where $f(u)=\left(f_{1}, f_{2}, \ldots, f_{m}\right), f_{1} \geq f_{2} \geq \ldots \geq f_{m} \geq 2$, and $f(v)=d(v)$ for $v \in V-u$. Then G has a non-separable f-detachment if and only if
(a) G is 2-edge-connected,
(b) $e(v)=0$ and $b(v)=1$ for all $v \in V-u$,
(c) $f_{2}+f_{3}+\ldots+f_{m} \geq b(u)+e(u)+m-2$, and
(d) $e(u, V-v-u)+e(u) \geq m+b(u, v)-1$ for all $v \in V-u$.

Proof. The necessity of conditions (a)-(d) is easy to see. To prove sufficiency, we suppose that G satisfies (a)-(d) and use Theorem 2.2 to deduce that G has a nonseparable f detachment. It is easy to see that conditions (a) and (b) of Theorem 2.2 hold for G. To see that condition (c) of Theorem 2.2 holds, let $v \in N(G)$ and $X \subseteq N_{2}(G)-v$. Since $N_{2}(G)=\{u\}$ we have $(v, X) \in\{(v, \emptyset),(u, \emptyset),(v,\{u\})\}$. Condition (c) of Theorem 2.2 holds for each of these three alternatives since conditions (b), (c), and (d) of the corollary hold for G. Note that when $(v, X)=(v,\{u\})$ we have
$e(X+v, V-X-v)+e(X+v)-f_{1}^{v}=e(\{u, v\}, V-\{u, v\})+e(\{u, v\})-d(v)$

$$
=e(u, V-v-u)+e(u),
$$

since $e(v)=0$ by condition (b) of the corollary.
We next consider non-separable simple detachments.
Corollary 3.4. Let $G=(V, E)$ be a graph and $r: V \rightarrow Z_{+}$. Then G has a nonseparable simple r-detachment if and only if
(a) G is 2-edge connected,
(b) $d(v) \geq 2 r(v)$ for all $v \in V$,
(c) $e(X, V-X-y)+e(X) \geq r(X)+b(X+y)-1$ for all $y \in N_{1}(G, r)$ and $X \subseteq N_{2}(G, r)$, and
(d) $e(u) \leq r(u)(r(u)-1) / 2$ and $e(u, v) \leq r(u) r(v)$ for all $u, v \in V$.

Proof. Necessity of (a),(b),(c) follows from Theorem 2.1 while necessity of (d) is obvious. To see sufficiency we use Theorem [2.1 to deduce that G has a non-seperable r-detachment H. We may assume that H has as few parallel edges as possible. Suppose that $e_{H}\left(u_{1}, v_{1}\right) \geq 2$ for two vertices u_{1} and v_{1} of H. Let u_{1} and v_{1} be pieces in H of the vertices u and v, respectively, of G, (allowing the possibility that $u=v$). Then (d) implies that there exist distinct pieces u_{i} of u and v_{j} of v in H such that $e_{H}\left(u_{i}, v_{j}\right)=0$. Then $H-u_{1} v_{1}+u_{i} v_{j}$ has one less parallel edge than H.

It is an open, and perhaps difficult, problem to characterise when a graph has a non-separable simple detachment for some given degree specification.

A graph $G=(V, E)$ is said to be k-connected if $|V| \geq k+1$ and $G-U$ is connected for all $U \subseteq V(G)$ with $|U| \leq k-1$. Thus, if $|V| \geq 3$, then G is non-separable if and
only if G is 2 -connected and loopless. Our next result characterises when a graph has a 2 -connected r-detachment.

Corollary 3.5. Let $G=(V, E)$ be a graph and $r: V \rightarrow Z_{+}$such that $r(V) \geq 3$. Then G has a 2-connected r-detachment if and only if
(a) G is 2-edge connected,
(b) $d(v) \geq 2 r(v)$ for all $v \in V$,
(c) $e(X, V-X-y)+e(X) \geq r(X)+b(X+y)-1$ for all $y \in N_{1}(G, r)$ and $X \subseteq N_{2}(G, r)$.

Proof. This follows easily by applying Theorem 2.1 to $\left(G^{\prime}, r\right)$ where G^{\prime} is the graph obtained from G by deleting all loops incident to vertices in $N_{1}(G, r)$.

By Theorem 1.3, condition (c) of Corollary 3.5 is equivalent to the statement " $G-y$
 that Corollary 3.5 extends to k-connectivity as follows.

Conjecture 3.6. Let $k \geq 2$ be an integer, $G=(V, E)$ be a graph, and $r: V \rightarrow Z_{+}$ such that $r(V) \geq k+1$. Then G has a k-connected r-detachment if and only if
(a) G is k-edge connected,
(b) $d(v) \geq k r(v)$ for all $v \in V$,

Using Theorem 1.1, it can be seen that the truth of this conjecture for j-connected detachments for all $2 \leq j \leq k$ would be equivalent to the truth of the following conjecture.

Conjecture 3.7. Let k be a positive integer, $G=(V, E)$ be a graph, and $r: V \rightarrow Z_{+}$ such that $r(V) \geq k+1$. Then G has a k-connected r-detachment if and only if
(a) $G-Y$ is $(k-r(Y))$-edge connected for all $Y \subseteq V$ with $r(Y) \leq k-2$,
(b) $d(v)-e(v, Y) \geq(k-r(Y)) r(v)$ for all $v \in V$ and all $Y \subseteq V-v$ with $r(Y) \leq k-2$,
(c) $e(X, V-X-Y)+e(X) \geq r(X)+b(X \cup Y)-1$ for all $Y \subseteq V$ with $r(Y) \leq k-1$ and all $X \subseteq V-Y$.

Conjecture 3.7 is true for $k=1,2$ by Theorem [1.1, and Corollary 3.5, respectively.

References

[1] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math. 10, 1962, 496-506.
[2] C. St. J. A. Nash-Williams, Detachments of graphs and generalised Euler trails, in "Surveys in Combinatorics 1985," London Math. Soc. Lecture Note Ser., 103, Cambridge Univ. Press, 1985, 137-151.
[3] C. St. J. A. Nash-Williams, Connected detachments of graphs and generalized Euler trails, J. London Math. Soc., Vol. 31, 1985, 17-29.

[^0]: *Department of Mathematical and Computing Sciences, Goldsmiths College, London SE14 6NW, England. e-mail:b.jackson@gold.ac.uk
 **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, $1117 \mathrm{Bu}-$ dapest, Hungary. e-mail: jordan@cs.elte.hu . Supported by the Hungarian Scientific Research Fund grant no. T029772, F034930, and FKFP grant no. 0143/2001.

