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Non-Separable Detachments of Graphs

Bill Jackson? and Tibor Jordán??

Dedicated to the memory of Crispin Nash-Williams.

Abstract

Let G = (V,E) be a graph and r : V → Z+. An r-detachment of G is a graph
H obtained by ‘splitting’ each vertex v ∈ V into r(v) vertices, called the pieces of
v in H. Every edge uv ∈ E corresponds to an edge of H connecting some piece
of u to some piece of v. An r-degree specification for G is a function f on V , such
that, for each vertex v ∈ V , f(v) is a partition of d(v) into r(v) positive integers.
An f -detachment of G is an r-detachment H in which the degrees in H of the
pieces of each v ∈ V are given by f(v). Crispin Nash-Williams [3] obtained
necessary and sufficient conditions for a graph to have a k-edge-connected r-
detachment or f -detachment. We solve a problem posed by Nash-Williams in
[2] by obtaining analogous results for non-separable detachments of graphs.

1 Introduction

All graphs considered are finite, undirected, and may contain loops and multiple edges.
We shall use the term simple graph for graphs without loops or multiple edges. Let
G = (V,E) be a graph and r : V → Z+. An r-detachment of G is a graph H obtained
by ‘splitting’ each vertex v ∈ V into r(v) vertices. The vertices v1, ..., vr(v) obtained
by splitting v are called the pieces of v in H. Every edge uv ∈ E corresponds to an
edge of H connecting some piece of u to some piece of v. An r-degree specification is
a function f on V , such that, for each vertex v ∈ V , f(v) is a partition of d(v) into
r(v) positive integers. An f -detachment of G is an r-detachment in which the degrees
of the pieces of each v ∈ V are given by f(v).

Crispin Nash-Williams [3] obtained the following necessary and sufficient conditions
for a graph to have a k-edge-connected r-detachment or f -detachment. For X,Y
disjoint subsets of V (G), let e(X,Y ) be the number of edges of G from X to Y , e(X)
the number of edges between the vertices of X, b(X) the number of components of
G − X and r(X) =

∑
x∈X r(x). For v ∈ V , we use d(v) to denote the degree of v.

Thus d(v) = e(v, V − v) + 2e(v).
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Theorem 1.1 (Nash-Williams). Let G = (V,E) be a graph and r : V → Z+. Then
G has a connected r-detachment if and only if e(X) + e(X, V −X) ≥ r(X) + b(X)−1
for every X ⊆ V .
Furthermore, if G has a connected r-detachment then G has a connected f -detachment
for every r-degree specification f .

Theorem 1.2 (Nash-Williams). Let G = (V,E) be a graph, r : V → Z+, and
k ≥ 2 be an integer. Then G has a k-edge-connected r-detachment if and only if
(a) G is k-edge-connected,
(b) d(v) ≥ kr(v) for each v ∈ V ,
and neither of the following statements is true:
(c) k is odd and G has a cut-vertex v such that d(v) = 2k and r(v) = 2,
(d) k is odd, |V | = 2, |E| = 2k, G is loopless, and r(v) = 2 for each vertex v ∈ V .

Furthermore, if G has a k-edge-connected r-detachment then G has a k-edge-connected
f -detachment for any r-degree specification f for which each term dv

i is at least k for
every v ∈ V and every 1 ≤ i ≤ r(v).

Let G be a graph. A vertex v is a cut-vertex of G if |E(G)| ≥ 2 and either v is
incident with a loop or G−v has more components than G. A graph is non-separable if
it is connected and has no cut-vertices. Nash-Williams proposed the following problem
in [2, p.145]:

“It might also be worth looking at the question whether one can give necessary and
sufficient conditions on a graph G and function r : V (G)→ Z+ for the existence of a
non-separable r-detachment of G, i.e. an r-detachment of G which has no cut-vertices
- but of course it is not self-evident that a reasonable set of necessary and sufficient
conditions for this must even exist.”

In this paper we answer this question by showing necessary and sufficient conditions
for the existence of a non-separable r-detachment of a graph. We also solve the degree
specified version. We shall need the following slight strengthening of Theorem 1.1.

Theorem 1.3. Let G = (V,E) be a graph, r : V → Z+ and V2 = {v ∈ V : r(v) ≥
2}. Then G has a connected r-detachment if and only if e(X) + e(X,V − X) ≥
r(X) + b(X)− 1 for every X ⊆ V2.

Proof. Necessity follows from Theorem 1.1. To see sufficiency suppose that G does
not have an r-detachment. By Theorem 1, e(X) + e(X,V −X) ≤ r(X) + b(X) − 2
for some X ⊆ V . If x ∈ X − V2, then r(x) = 1, and putting X ′ = X − x we have
e(X ′) + e(X ′, V − X ′) ≤ r(X ′) + b(X ′) − 2. Hence we can construct X ′′ ⊆ V2 with
e(X ′′) + e(X ′′, V −X ′′) ≤ r(X ′′) + b(X ′′)− 2.

2 Main Results

Let G be a graph and N(G) = {v ∈ V : d(v) ≥ 4}. Given r : V → Z+, let
N1(G, r) = {v ∈ N(G) : r(v) = 1}, and N2(G, r) = {v ∈ N(G) : r(v) ≥ 2}.
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Theorem 2.1. Let G = (V,E) be a graph with at least two edges and r : V → Z+.
Then G has a non-separable r-detachment if and only if
(a) G is 2-edge connected,
(b) d(v) ≥ 2r(v) for all v ∈ V ,
(c) e(v) = 0 for all v ∈ N1(G, r), and
(d) e(X, V−X−y)+e(X) ≥ r(X)+b(X+y)−1 for all y ∈ N1(G, r) and X ⊆ N2(G, r).

The degree specified version is as follows.

Theorem 2.2. Let G = (V,E) be a graph with at least two edges, r : V → Z+, and
let f be an r-degree specification, where f(v) = (f v

1 , f
v
2 , . . . , f

v
r(v)) and f v

1 ≥ f v
2 ≥ . . . ≥

f v
r(v), for each v ∈ V . Then G has a non-separable f -detachment if and only if

(a) G is 2-edge connected,
(b) f v

i ≥ 2 for all v ∈ V and all 1 ≤ i ≤ r(v),
(c) e(X + v, V −X − v) + e(X + v)− f v

1 ≥ r(X + v) + b(X + v)− 2 for all v ∈ N(G)
and X ⊆ N2(G, r)− v.

Note that condition (c) of Theorem 2.2 implies that e(v) = 0 for all v ∈ N1(G) by
taking X = ∅. We shall need the following lemmas. Since loops create complications
in notation, and since we only need the lemmas for loopless graphs, we add the
hypothesis to the lemmas that the graphs are loopless. Note however that they may
be applied to graphs with loops by subdividing their loops.

Lemma 2.3. Let G be a 2-edge-connected loopless graph and v ∈ N(G). Define
r : V → Z+ by r(v) = 2 and r(u) = 1 for all u ∈ V − v. Then there exists a
2-edge-connected r-detachment H of G such that, at least one of the pieces of v in
H, has degree two. Furthermore, if v is a cut-vertex of G, then there exists a 2-edge-
connected r-detachment H ′ of G such that, for the pieces v1, v2 of v in H ′, we have
dH′(v2) = b(v), and neither v1 nor v2 is a cut-vertex of H ′.

Proof. The first part of the lemma is easy and well known (it follows for example
from Theorem 1.2). To prove the second part, let C1, C2, . . . , Cb be the components
of G− v, where b = b(v). Let H ′ be an r-detachment of G such that H ′ has exactly
one edge from v2 to each component Ci. Since G is 2-edge-connected, there is also
at least one edge from v1 to each Ci. To see that H ′ is 2-edge-connected, it suffices
to show that H ′ has a cycle containing v1, v2. (Since the 2-edge-connectivity of G
implies that every cut-edge of H ′ must separate v1 and v2.) We can construct such
a cycle by choosing edges v1xi, v2yi in H ′ with xi, yi ∈ Ci and an xiyi-path in Ci for
each i ∈ {1, 2}. The fact that neither v1 nor v2 is a cut-vertex of H ′ follows easily
from the construction of H ′.

Let G be a graph. A block B of G is a non-separable subgraph of G which is maximal
with respect to subgraph inclusion. We say that G is a block if G is a block of itself (or
equivalently, if G is non-separable). A vertex v ∈ V (B) is an internal vertex of B (in
G) if v is not a cut-vertex of G. An end-block of G is a block which contains at most
one cut-vertex of G. Note that if G is separable then G has at least two end-blocks.
We say that G is a uv-block-path if G is connected with exactly two end-blocks, B1
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Section 2. Main Results 4

and B2 say, and u, v are internal vertices of B1 and B2, respectively, in G. For edges
ux, vz in a graph G, we define the graph G(ux, vz) obtained by switching ux and vz
by putting G(ux, vz) = G − {ux, vz} ∪ {uz, vx}. Note that switching preserves the
degree sequence of G. We shall use the following lemmas to determine when switching
can be used to reduce the number of blocks in a detachment of G.

Lemma 2.4. Let G be a loopless graph and ux, vz ∈ E(G) such that ux, vz belong to
vertex disjoint cycles in G. Suppose that G is either a block or a uv-block-path. Then
G(ux, vz) is a block.

Proof. Choose disjoint cycles C1, C2 containing ux, vz, respectively. Then (C1−ux)∪
(C2 − vz) ∪ {uz, vx} induces a cycle in G(ux, vz) containing u, x, v, w. Since every
end-block of G− {ux, vz} contains either u, x, v or z as an internal vertex, it follows
that G(ux, vz) is a block.

We shall use the following rather technical lemmas to show that, if a graph G has an
f -detachment with a unique cut-vertex y ∈ N1(G), then either G has a non-separable
f -detachment, or we can find a set X ⊆ N2(G) such that r(X) + b(X + y) is large.

Let G be a graph, y ∈ V (G), r : V → Z+ with r(y) = 1, and f be an r-degree
specification for G. Let H be an f -detachment of G, W ⊆ V (H). and u, v ∈
V (H)−W . We say that u and v are W -separated in H if u and v belong to different
components of H − W . Define sequences of sets R1, R2, . . . ⊆ V (G), S1, S2, . . . ⊆
V (H), and W0 ⊆ W1 ⊆ . . . ⊆ V (H), recursively, as follows. Let W0 = {y}, and, for
i ≥ 1, let

Ri = {v ∈ V (G) : at least two pieces of v are Wi−1-separated in H},

Si = {vj ∈ V (H) : vj is a piece of some v ∈ Ri},

and Wi = Si ∪Wi−1.
It follows from these definitions that Si ∩ Sj = ∅ = Ri ∩ Rj for i 6= j and Wi =

{y} ∪ S1 ∪ S2 ∪ . . . ∪ Si. Also note that Si = ∅ for all i ≥ 1 if y is not a cut-vertex of
H.

Lemma 2.5. Let H be a connected f -detachment of G. Let Z be a component of
H −Wi−1 for some i ≥ 1 and uv, wx ∈ E(Z). Suppose Z(uv, wx) is connected. Then
H ′ = H(uv, wx) is a connected f -detachment of G and Sm(H ′) = Sm(H) for all
1 ≤ m ≤ i.

Proof. Since H and H ′ have the same degree sequence, H ′ is an f -detachment of
G. Furthermore H ′ is connected since H and Z(uv, wx) is connected. We shall
show that Sm(H ′) = Sm(H) for all 1 ≤ m ≤ i by induction on i. If i = 1 then
W0(H

′) = {y} = W0(H). Since Z(uv, wx) is connected, we have R1(H) = R1(H
′)

and hence S1(H) = S1(H
′).

Suppose i ≥ 2. By induction, Sm(H ′) = Sm(H) for all 1 ≤ m ≤ i − 1. Thus
Wi−1(H

′) = Wi−1(H). Since Z(uv, wx) is connected, we have Ri(H) = Ri(H
′) and

hence Si(H) = Si(H
′).
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Section 2. Main Results 5

Let H be a graph and y be a vertex of H and B be an end-block of H. We say
that H is a block-star centered on y if every block of H contains y. We say that H is
an extended block-star centered on y with distinguished end-block B if every end-block
of H, with the possible exception of B, contains y. Note that every block-star is an
extended block-star and every block is a block-star. An edge e of H is a cut-edge of
H if H − e has more components than H.

Lemma 2.6. Let G be a loopless graph, y ∈ V (G), r : V → Z+ with r(y) = 1, and
f be an r-degree specification for G such that each term in f(v) is at least two for all
v ∈ V (G). Suppose that G has an f -detachment which is a block-star centered on y,
and that H has been chosen amongst all such f -detachments so that bH(y) is as small
as possible. Then each edge of H − y incident to a vertex in Si is a cut-edge of H − y
for all i ≥ 1.

Proof. We proceed by contradiction. Suppose the lemma is false. Since the lemma
is vacuously true if y is not a cut-vertex of H we have bH(y) ≥ 2. Choose an f -
detachment K of G such that:

(i) bK(y) = bH(y),

(ii) K is an extended block-star centered on y with distinguished end-block B.

(iii) for some edge vjx ∈ E(B − y) and i ≥ 1 we have vj ∈ Si and vjx is not a cut
edge of K − y,

(iv) each edge of K − y which is incident to a vertex of Sm is a cut-edge of K − y
for all 1 ≤ m ≤ i− 1,

(v) subject to (i)-(iv), i is as small as possible.

Note that K exists since if H is a counterexample to the lemma and we choose an
edge which is not a cut-edge of H−y and is incident to a vertex of Si such that i is as
small as possible, then H will satisfy (i)-(iv). Our proof technique forces us to work
with extended block-stars rather than block-stars because the switching operations
we use preserve the property of being an extended block-star, but may not preserve
the property of being a block-star.

Since vjx is not a cut-edge of K − y, vjx is contained in a cycle C of K − y. Let
B1, B2, . . . , Bt be blocks of K such that y ∈ V (B1), V (Bi) ∩ V (Bs) 6= ∅ if and only if
|i − s| ≤ 1, Bt = B, and y 6∈ V (B2) if t ≥ 2. Then vjx ∈ E(Bt) and C ⊆ Bt. Since
vj ∈ Si, vj is a piece of some vertex v ∈ Ri. Thus we may choose another piece vk of
v such that vj and vk are Wi−1-separated in K.

Claim 2.7. i ≥ 2.

Proof. Suppose i = 1. Then vj and vk are y-separated in K. Hence vj and vk

belong to different end-blocks Bt and B0 of K. Choose an edge vkz ∈ E(B0). Since
K has minimum degree at least two, vkz is contained in a cycle C ′ in B0. Since
y 6∈ V (C), C and C ′ are vertex disjoint. Applying Lemma 2.4 to the block-path
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Section 2. Main Results 6

F = B0∪B1∪ . . .∪Bt, we deduce that F (vjx, vkz) is a block. Thus H ′ = K(vjx, vkz)
is an f -detachment of G which is a block-star centered on y, and bH′(y) = bH(y)− 1.
This contradicts the hypothesis that bH(y) is as small as possible.

Since vj, vk 6∈ Si−1 they are not Wi−2-separated in K. Thus they both belong to
the same component Z of K −Wi−2. In particular vj, vk are not y-separated in K so
vk ∈ V (Bs) for some s, 1 ≤ s ≤ t. By (iv), V (C) ∩Wi−2 = ∅, and hence C ⊆ Z.
Let P ′ be a path from vk to C in Z. We may extend P ′ around C if necessary to
obtain a vkvj-path P in Z which avoids the edge vjx. Let vkz be the edge of P
incident with vk. Since vj, vk are Wi−1 separated but not Wi−2-separated, we can
choose u ∈ V (P ) ∩ Si−1.

Let K ′ = K(vjx, vkz). We shall show that K ′ contradicts the above choice of K.

Claim 2.8. (a) K ′ is a connected f -detachment of G and Sj(K
′) = Sj(K) for all

1 ≤ m ≤ i− 1.
(b) u and vjz are contained in a common cycle of K ′ − y.

Proof. (a) follows from Lemma 2.5 since P [z, vj] ∪ (C − vjx) ∪ {zvk} is a connected
subgraph of Z(vjx, vkz).
(b) follows since P [z, vj] ∪ {vjz} is a cycle in K ′ − y containing u and vjz.

Let F1 = B1 ∪ B2 ∪ . . . ∪ Bt. Since u ∈ Si−1, (iv) implies that each edge of K − y
incident with u is a cut-edge of K − y. Thus there is exactly one edge from u to each
component of F1 − {y, u}. Let X be the component of F1 − {y, u} which contains
vj. Since u has a unique neighbour in X and u lies on the vjvk-path P in F1 − y,
vk 6∈ V (X). Furthermore C ⊆ Bt ⊆ X. Let F2 be the graph obtained from F1 by
adding a new edge yu and put F3 = F2 −X.

Claim 2.9. F3 is a block.

Proof. Since F1 − y is connected, F3 − y is connected. Thus if F3 were not a block
then we could choose an end-block B∗ of F3 such that y 6∈ V (B∗). Then B∗ would
be an end-block of K which did not contain y and was distinct from B = Bt, since
Bt ⊆ X. This would contradict (ii).

Since F3 is a block, we can choose a cycle C ′ in F3 which contains vkz. Then
C ′ is vertex disjoint from C since C ⊆ X. Furthermore, F2 is either a block or a
block-path with distinct end-blocks F3 and Bt. Since vkz ∈ E(F3)∩E(C ′) and vjx ∈
E(Bt) ∩ E(C), Lemma 2.4 implies that F2(vjx, vkz) is a block. Thus F1(vjx, vkz) =
F2(vjx, vkz)−yu is either a block or a yu-block-path. Combining this with Claim 2.8,
we deduce:

Claim 2.10. K ′ = K(vjx, vkz) is an extended block-star, centered on y, with distin-
guished end-block B′, where B′ is the block of F1(vjx, vkz) which contains u. Further-
more bK′(y) = bK(y), u is an internal vertex of K ′, u ∈ Si−1(K

′) and u is contained
in a cycle of K ′ − y which is contained in B′.
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Section 2. Main Results 7

Choose u′x′ ∈ E(B′ − y) such that u′x′ is not a cut-edge of K ′ − y, u′ ∈ Sp(K ′) for
some p ≥ 1 and p is as small as possible. Then p ≤ i− 1 since u ∈ Si−1(K

′) ∩ V (B′).
To show that K ′ contradicts our choice of K to minimise i, it only remains to show
that (iv) holds for K ′:

Claim 2.11. Each edge of K ′−y which is incident to a vertex of Sm(K ′) is a cut-edge
of K ′ − y for all 1 ≤ m ≤ p− 1.

Proof. Suppose the claim is false and let C∗ be a cycle of K ′ − y which contains a
vertex of Sm(K ′) for some m, 1 ≤ m ≤ p − 1. The minimality of P implies that
C∗ contains no edge of B′. Since u is an internal vertex of K ′ contained in B′, and
u and vjz are contained in a cycle of K ′ − y by Claim 2.8(b), we may deduce that
vjz ∈ E(B′) and hence vjz 6∈ E(C∗). Since vk and x belong to different components
of K−{y, u}, every path from vk to x in K−y contains u. Thus every cycle of K ′−y
which contains vkx also contains u and hence is contained in B′. Thus vkx 6∈ E(C∗).
Since vkx, vjz 6∈ E(C∗) we have C∗ ⊆ K−y. Since Sm(K ′) = Sm(K) by Claim 2.8(a),
the existence of C∗ now contradicts condition (iv) in the choice of K.

This completes the proof of the Lemma.

To simplify notation, we shall first prove Theorem 2.1 for the special case when G
is loopless and N(G) is an independent set of vertices in G. The general case follows
easily from this special case by the simple procedure of subdividing every edge of G
and extending r by putting r(v) = 1 for each subdivision vertex v. Thus we shall
prove:

Theorem 2.12. Let G = (V,E) be a loopless graph with at least two edges and r :
V → Z+. Suppose that N(G) is an independent set of vertices in G. Then G has a
non-separable r-detachment if and only if
(a) G is 2-edge connected,
(b) d(v) ≥ 2r(v) for all v ∈ V , and
(c) e(X, V −X) ≥ r(X) + b(X + y)− 1 for all y ∈ N1(G, r) and X ⊆ N2(G, r).

Proof. We first prove necessity. Suppose H is a non-separable r-detachment of G.
Then H is 2-edge-connected and since ‘detaching’ vertices cannot increase edge-
connectivity, (a) holds. Since H has minimum degree at least two we also have (b).
Condition (c) follows from the easy part of Theorem 1.1, since H − y is a connected
r|V−y-detachment of G− y.

We next prove sufficiency. We proceed by contradiction. Suppose that the theorem
is false and choose a counterexample (G, r) such that

γ(G, r) := |N1(G, r)|+
∑

v∈N(G)

(d(v)− 3)

is as small as possible, and, subject to this condition, |V (G)| is as small as possible.
If N(G) = ∅ then G has maximum degree at most three and, by (b), r(v) = 1 for
all v ∈ V (G). Using (a) we deduce that G is a non-separable r-detachment of itself.
Hence we may suppose that N(G) 6= ∅ and hence γ(G, r) ≥ 1.
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Claim 2.13. Suppose that U ⊂ V such that e(U, V − U) = 2. Then either |U | = 1
or |V − U | = 1.

Proof. Suppose |U | ≥ 2 and |V − U | ≥ 2. Let U1 = U and U2 = V − U . For
i ∈ {1, 2}, let Gi be the graph obtained from G by contracting Ui to a single vertex
ui of degree two. Define ri : V (Gi) → Z+ by putting ri(ui) = 1 and ri(v) = r(v) for
v ∈ V (Gi) − ui. Then γ(Gi, ri) ≤ γ(G, r) and |V (Gi)| < |V (G)|. Since contraction
preserves edge-connectivity, Gi satisfies (a). Clearly (Gi, ri) also satisfies (b). Suppose
(Gi, ri) does not satisfy (c). Then eGi

(X,V (Gi) − X) ≤ ri(X) + bGi
(X + y) − 2 for

some y ∈ N1(Gi, ri) and X ⊆ N2(Gi, ri). Since ui 6∈ N(Gi), ui belongs to some
component of Gi− (X+y), and X+y ⊆ V (G). Thus X, y contradict the fact that (c)
holds for G. Hence (c) holds for (Gi, ri) and, by induction, Gi has a non-separable ri-
detachment for i = 1, 2. Since e(U, V −U) = 2, this implies that G has a non-separable
r-detachment.

Claim 2.14. N1(G, r) 6= ∅.

Proof. Suppose N1(G, r) = ∅. Choose v ∈ N2(G, r) such that r(v) is as large as
possible and d(v) is as small as possible. Define rv : V (G) → Z+ by rv(v) = 2 and
rv(u) = 1 for all u ∈ V − v. By Lemma 2.3, we can construct a 2-edge-connected
rv-detachment H of G such that, for the pieces v1, v2 of v in H, we have dH(v2) = 2.
Define r′ : V (H) → Z+ by r′(v1) = r(v) − 1, r′(v2) = 1, and r′(u) = r(u) for all
u ∈ V (H) − {v1, v2}. Then γ(H, r′) < γ(G, r). By construction (H, r′) satisfies
(a) and (b). If (H, r′) also satisfies (c), then, by induction H has a non-separable
r′-detachment H ′. Clearly, H ′ is the required r-detachment of G. Hence

eH(X, V (H)−X) ≤ r′(X) + bH(X + y)− 2 (1)

for some y ∈ N1(H, r
′) and X ⊆ N2(H, r

′). Since N1(G, r) = ∅ and dH(v2) = 2, we
must have y = v1, and r′(v1) = 1. Thus r(v) = 2. The choice of v now implies

r(u) = 2 for all u ∈ N(G). (2)

In particular r′(X) = r(X) = 2|X|. The choice of v also implies that dH(u) = dG(u) ≥
dG(v) = dH(v1) + 2 for all u ∈ N(G)− v. Thus eH(X, V (H)−X) ≥ |X|(dH(v1) + 2).
Since H is 2-edge-connected, each component of H − (X + v1) has at least two edges
to X + v1. Thus 2bH(X + v1) ≤ eH(X, V (H) − X) + dH(v1). Substituting these
inequalities into (1), we deduce that dH(v1)(|X| − 1) ≤ 2(|X| − 2). Hence X = ∅.
Now (1) implies that bH(v1) ≥ 2. Thus v1 is a cut-vertex of H and hence v is a
cut-vertex of G.

By Lemma 2.3, we can construct a 2-edge-connected rv-detachment H ′ of G such
that, for the pieces v′1, v

′
2 of v in H ′, we have dH′(v2) = bG(v), and neither v′1 nor v′2

is a cut-vertex of H ′. Defining r′ as above (i.e. r′(v′1) = r(v)− 1 = 1, r′(v′2) = 1, and
r′(u) = r(u) for all u ∈ V (H ′) − {v′1, v′2}) we have γ(H ′, r′) < γ(G, r), and (H ′, r′)
satisfies (a) and (b). Thus we may again deduce that (H ′, r′) fails to satisfy (c).
Hence eH′(X,V (H ′) − X) ≤ r′(X) + bH′(X + y) − 2 for some y ∈ N1(H

′, r′) and
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X ⊆ N2(H
′, r′). Since N1(G, r) = ∅ we must have y = v′i for some i ∈ {1, 2}. Using

(2), we may now deduce as above that X = ∅ and hence v′i is a cut-vertex of H ′. This
contradicts the choice of H ′.

Choose y ∈ N1(G, r) such that d(y) is as large as possible. Define ry : V (G)→ Z+

by ry(y) = 2 and ry(u) = r(u) for all u ∈ V − y. Clearly γ(G, ry) < γ(G, r), and
(G, ry) satisfies (a) and (b).

Claim 2.15. (G, ry) satisfies (c).

Proof. Suppose we have eG(X, V −X) ≤ ry(X)+bG(X+y′)−2 for some y′ ∈ N1(G, ry)
and X ⊆ N2(G, ry). Since (c) holds for (G, r) we must have y ∈ X and

eG(X,V −X) = r(X) + bG(X + y′)− 1. (3)

Let C1, C2, . . . , Cb be the components of G − (X + y′). Since (c) holds for (G, r),
we may apply Theorem 1.3 to deduce that G− y′ has a connected r′-detachment H,
where r′ = r|V−y′ . Let X∗ be the set of all pieces of vertices of X in H. Since (b)
holds for G, Theorem 1.1 implies that H may be constructed to have the additional
property that dH(xi) ≥ 2 for all xi ∈ X∗. Let H ′ be the detachment of G−y′ obtained
from H by ‘re-attaching’ all the pieces of v, for each v ∈ V − X − y′. Thus H ′ is a
connected r′′-detachment of G − y′, where r′′(v) = r(v) for v ∈ X and r′′(v) = 1 for
v ∈ V −X−y′. Using the fact that equality holds in (3), we have exactly r(X)+b−1
edges in H ′ joining the vertices in X∗ and the components C1, C2, . . . , Cb. Since H ′

is connected and |X∗| = r(X), the graph T obtained from H ′ by contracting each
component Ci to a single vertex ci, is a tree. Since dT (xi) ≥ 2 for all xi ∈ X∗, no
vertex of X∗ is an end-vertex of T . Since r′′(y) = 1, we can label the unique piece of
y in H as y. We then have y ∈ X∗ and dT (y) = dG(y). Thus T has at least dG(y)
end-vertices, all of which belong to {c1, c2, . . . , cb}. Furthermore, if T has exactly
dG(y) end-vertices, then all vertices of T other than y have degree one or two. Let
S = {Ci : dT (ci) = 1, 1 ≤ i ≤ b}. Then eH′(Ci, V (H ′)−Ci) = 1 for all Ci ∈ S. Since
G is 2-edge-connected and r′′(v) = 1 for all v ∈ Ci, there is at least one edge in G
from Ci to y′ for each Ci ∈ S. Since |S| ≥ dG(y), it follows that dG(y′) ≥ dG(y). It
now follows from the initial choice of y that we must have dG(y′) = |S| = dG(y), that
there is exactly one edge in G from y′ to each Ci ∈ S and to no other vertices of G,
and that all vertices of T other than y have degree one or two. Again, since r′′(v) = 1
for all v ∈ Ci, we have eG(Ci, V (G)− Ci) = 2 for all 1 ≤ i ≤ b. Using Claim 2.13, we
deduce that |V (Ci)| = 1 for all 1 ≤ i ≤ b. Thus V (Ci) = {ci}, H ′ = H and since G is
loopless, dG(ci) = 2. By (b), r(ci) = 1 = r′′(ci) for all 1 ≤ i ≤ b and H = T . Let G′

be the graph obtained from H by adding y′ and the edge y′ci for each Ci ∈ S. (Thus
G′ is obtained by adding an edge from y′ to each end-vertex of T .) Then G′ is the
required non-separable r-detachment of G.

Since (c) holds for (G, ry), we may apply induction to deduce that G has a non-
separable ry-detachment. It follows that G has an r-detachment H such that H is
a block-star centered on y. We may suppose that H has been chosen such that the
number of blocks of H is as small as possible. Let f be the r-degree specification for
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G given by H. Since G has no non-separable f -detachment, bH(y) ≥ 2. For i ≥ 0,
let Si and Wi be the subsets of V (H) defined as for Lemma 2.6. Since the sets Si are
pairwise disjoint and H is finite, we may choose i such that Si+1 = ∅. Let X ′ = Wi−y
and X = {x ∈ V (G) : some piece of x in H belongs to X ′}. By Lemma 2.6, every
edge x1v ∈ E(H − y) with x1 ∈ X ′ is a cut-edge in H − y. Thus the graph F we
get from H − y by contracting each component of H − X ′ − y to a single vertex is
a forest with bH(y) components and bH(X ′ + y) + |X ′| vertices. Using the facts that
X + y ⊆ N(G), and N(G) is an independent set of vertices in G, we deduce that
|E(F )| = eH(X ′, V (H)−X ′). Thus

eH(X ′, V (H)−X ′) = bH(X ′ + y) + |X ′| − bH(y). (4)

We have eH(X ′, V (H) − X ′) = eG(X,V (G) − X), |X ′| = r(X) and bH(y) ≥ 2.
Furthermore, for each v ∈ V (G) − X − y, all pieces of v in H belong to the same
component of H−X ′−y, since Si+1 = ∅. Thus bG(X+y) = bH(X ′+y). Substituting
into (4) we obtain eG(X, V (G) − X) ≤ r(X) + bG(X + y) − 2. This contradicts
hypothesis (c) of the theorem and completes our proof.

Proof of Theorem 2.1. Let G′ be obtained from G by subdividing every edge of G.
Then G′ is loopless, N(G′) = N(G) and N(G′) is independent in G′. Extend r to r′

by putting r′(v) = r(v) for all v ∈ V (G) and r′(v) = 1 for all v ∈ V (G′) − V (G).
Then N1(G

′, r′) = N1(G, r) and N2(G
′, r′) = N2(G, r). We shall show that conditions

(a), (b), (c) and (d) of Theorem 2.1 hold for (G, r) if and only if conditions (a),
(b), and (c) of Theorem 2.12 hold for (G′, r′). Clearly Theorem 2.1 (a) and (b) hold
for (G, r) if and only if Theorem 2.12 (a) and (b) hold for (G′, r′). Furthermore for
y ∈ N1(G, r) = N1(G

′, r′) and X ⊆ N2(G, r) = N2(G
′, r′), we have r(X) = r′(X), and

eG(X, V − X − y) + eG(X) − bG(X + y) − eG(y) = eG′(X,V − X) − bG′(X + y). If
Theorem 2.1 (c) and (d) hold for (G, r), then eG(y) = 0 and the above equalities imply
that Theorem 2.12 (c) holds for (G′, r′). Suppose, on the other hand, that Theorem
2.12 (c) holds for (G′, r′). Taking X = ∅ we have bG′(y) ≤ 1 for all y ∈ N1(G

′r′) and
hence eG(y) = 0 for all y ∈ N1(G, r). Thus Theorem 2.1 (c) holds for (G, r). The
above equalities now imply that Theorem 2.1 (d) also holds for (G, r).

We shall next prove Theorem 2.2. Given a graph G = (V,E) and X ⊆ V , let
Γ(X) be the set of vertices of V − X which are adjacent to vertices in X and put
γ(X) = |Γ(X)|. We shall use the following operation to adjust the degree sequence in
a detachment of a graph. For vertices x, y, z of G with xz ∈ E(G), we define the graph
G(xz → yz) obtained by flipping xz to yz by putting G(xz → yz) = G − xz + yz.
The following lemma characterises when we may flip edges in a non-separable graph
and preserve non-separability.

Lemma 2.16. Let G = (V,E) be a non-separable graph and let x, y ∈ V be distinct
vertices of G. Let xz1, xz2, . . . , xzt be distinct edges of G − y with t ≥ 3. Then
G(xzi → yzi) is separable for all 1 ≤ i ≤ t if and only if there exist distinct components
C1, C2, . . . , Ct of G− {x, y} with zi ∈ V (Ci) and e(x,Ci) = 1 for all 1 ≤ i ≤ t.
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Proof. Sufficiency is easy to see. To prove necessity first note that G(xzi → yzi)
has no loops for all 1 ≤ i ≤ t since G is non-separable and zi 6= y. Suppose that
G(xz → yz) has a cut-vertex for all 1 ≤ i ≤ t. It is easy to see that flipping an edge
xzi to yzi creates a cut-vertex if and only if there is a set W ⊂ V − x in G with
e(W,x) = 1, γ(W ) = 2, and zi ∈W , y ∈W ∪ Γ(W ). We call W a certificate for zi.

Let us choose a minimal family F = {W1, ...,Wm} which contains a certificate for
zi for all 1 ≤ i ≤ t. Since e(Wi, x) = 1 for 1 ≤ i ≤ m and by the minimality of F
we have t = m and Γ(x) ∩Wi ∩Wj = ∅ for all 1 ≤ i < j ≤ t. Furthermore, since
e(Wi, x) = 1 and G is non-separable, each Wi induces a connected subgraph of G.

First we show that Wi ∩Wj = ∅ for 1 ≤ i < j ≤ t. Suppose that Wi ∩Wj 6= ∅
holds for two distinct Wi,Wj ∈ F . Since e(Wi, x) = e(Wj, x) = 1 and d(x) ≥ 3, it
follows that Z := V − (Wi∪Wj)−{x} is non-empty. The subgraphs G[Wi] and G[Wj]
are connected, hence we have that both Γ(Wi) ∩ (Wj −Wi) and Γ(Wj) ∩ (Wi −Wj)
are non-empty. Since γ(Wi) = γ(Wj) = 2 and x ∈ Γ(Wi) ∩ Γ(Wj), this implies that
e(Wi ∪Wj, Z) = 0. Hence x is a cut-vertex in G, a contradiction.

Now suppose that y ∈ Wi holds for some 1 ≤ i ≤ t. Since Wi ∩Wj = ∅, we must
have y ∈ Γ(Wj) for all Wj ∈ F − Wi. Since x ∈ Γ(Wi) and t ≥ 3, this implies
γ(Wi) ≥ 3, a contradiction. Thus y ∈ Γ(Wi) for all 1 ≤ i ≤ t. This, and the facts
that γ(Wj) = 2 and x ∈ Γ(Wj) for all 1 ≤ j ≤ t, imply that Ci = G[Wi], 1 ≤ i ≤ t,
are the required components of G− {x, y}.

Corollary 2.17. Let t ≥ 3 be an integer. Let G = (V,E) be a non-separable graph,
x, y ∈ V and xzi ∈ E(G − y) for 1 ≤ i ≤ t. If t ≥ d(y) − e({x, y}) + 1, then
G(xzi → yzi) is non-separable for some 1 ≤ i ≤ t.

Proof. Suppose that for all 1 ≤ i ≤ t the graph G(xzi → yzi) is separable. We may
apply Lemma 2.16 and deduce that b({x, y}) ≥ t. Since t ≥ d(y) − e({x, y}) + 1, it
follows that e(C, y) = 0 for some component C of G− {x, y}. Thus x is a cut-vertex
in G, a contradiction.

Corollary 2.18. Let G = (V,E) be a non-separable graph and let x, y, w ∈ V be
distinct vertices of G such that d(x) ≥ 3 and xy, xw 6∈ E. Then there exists a
z ∈ Γ(x) such that either G(xz → yz) or G(xz → wz) is non-separable.

Proof. Suppose that for all z ∈ Γ(x) the graph G(xz → yz) is separable. By Lemma
2.16 we have b({x, y}) = d(x). Let C1, C2, . . . , Cd(x) be the components of G−{x, y},
where w ∈ V (C1). Then each neighbour of x other than the unique neighbour in
C1 belongs to the same component of G − {x,w}. Thus Lemma 2.16 implies that
G(xz → wz) is non-separable for some z ∈ Γ(x).

Lemma 2.19. Let G = (V,E) be a non-separable graph and suppose that b({x, y}) =
d(x) ≥ 3 for some pair x, y ∈ V . Let w be a vertex in some component C of G−{x, y}
with e(w, y) = e(w, x) = 0 and let z ∈ Γ(x)−C. Then either G(xz → wz)(wz′ → yz′)
is non-separable for some z′ ∈ Γ(w) or every edge incident to w in G is a cut-edge in
C.
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Proof. Let the components of G−{x, y} be C1, C2, ..., Cd(x) and, without loss of gener-
ality, suppose that z ∈ V (C1). Then C1 6= C. We first observe that H := G(xz → wz)
is non-separable. This follows from the fact that, since d(x) ≥ 3, there is a cycle con-
taining x and z in H. Thus we need to show that either there is flip from w to y
in H which creates no cut-vertices or C has the required property. Suppose that
H(wz′ → yz′) has a cut-vertex for every z′ ∈ Γ(w) ∩ V (C). Using the facts that
dH(w) ≥ 3, eH(w, y) = 0, and y is a cut-vertex in H(wz → yz), we may apply Lemma
2.16 to deduce that bH({w, y}) = dH(w) = dG(w) + 1. This implies that every edge
incident to w in H is a cut-edge in H − y. Since z /∈ V (C) and H is obtained from G
by flipping xz to wz, and y /∈ V (C), we may deduce that every edge incident to w in
G is a cut-edge in C. This proves the lemma.

We next apply the above results to obtain some preliminary results on f -detach-
ments.

Lemma 2.20. Let G = (V,E) be a loopless graph and r : V (G)→ Z+. Suppose that
G has a non-separable r-detachment H. Let f be the r-degree specification for G given
by f v

1 = d(v) if r(v) = 1; and f(v) = (f v
1 , f

v
2 , . . . , f

v
r(v)) where f v

1 = d(d(v) − 2r(v) +

4)/2e, f v
2 = b(d(v)− 2r(v) + 4)/2c, and f v

i = 2 for all v ∈ N2(G, r) and 3 ≤ i ≤ r(v).
Then G has a non-separable f -detachment.

Proof. For each v ∈ V , let v1, v2, . . . , vr(v) be the pieces of v in H, where dH(v1) ≥
dH(v2) ≥ . . . ≥ dH(vr(v)). Note that the pieces of v are independent in H since G is
loopless.

Suppose dH(vi) ≥ 3 for some 3 ≤ i ≤ r(v). Using Corollary 2.18, we can construct
a new non-separable r-detachment by flipping an edge viz to either v1z or v2z for some
z ∈ ΓH(vi). Applying this operation iteratively, and relabelling v1 and v2 if necessary,
we may construct a non-separable r-detachment H ′ of G on the same vertex set as H
with dH′(v1) ≥ dH′(v2) and dH′(vi) = 2 for all v ∈ N2(G, r) and i ≤ 3 ≤ r(v).

Suppose dH′(v1) ≥ dH′(v2) + 2. By Corollary 2.17, we can construct a new non-
separable r-detachment by flipping an edge v1z to v2z for some z ∈ ΓH(v1). Ap-
plying this operation iteratively to H ′ we may construct the required non-separable
f -detachment G.

Let S be the set of all sequences of integers of length r in decreasing order of
magnitude. Let ≥r be the lexicographic ordering on S, (hence f = (f1, f2, . . . , fr) ≥r

g = (g1, g2, . . . , gr) if and only if either f = g, or, for some 1 ≤ i ≤ r, f1 = g1, f2 =
g2, . . . , fi−1 = gi−1, fi > gi).

Lemma 2.21. Let G = (V,E) be a loopless graph, r : V (G) → Z+, and f and g be
two r-degree specifications for G. Suppose that G has a non-separable f -detachment,
f(v) ≥r(v) g(v) and gv

i ≥ 2 for all v ∈ V and 1 ≤ i ≤ r(v). Then G has a non-
separable g-detachment.

Proof. We assume that, for each v ∈ V the sequences f(v) and g(v) occur in decreasing
order of magnitude. Note that

∑r
i=1(v)f v

i = dG(v) =
∑r

i=1(v)gv
i for all v ∈ V . Given

an integer z let z∗ = z if z ≥ 0, and otherwise let z∗ = 0. We may suppose that f has
been chosen to satisfy the hypotheses of the lemma and such that:
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(i) θ1(f) =
∑

v∈V

∑
3≤i≤r(v)(f

v
i − gv

i )∗ is as small as possible;

(ii) subject to (i), θ2(f) =
∑

v∈V

∑
3≤i≤r(v)(g

v
i − f v

i )∗ is as small as possible;

(iii) subject to (i) and (ii), θ3(f) =
∑

v∈V (f v
1 − gv

1) is as small as possible.

Let H be a non-separable f -detachment of G. Let v1, v2, . . . , vr(v) be the pieces of v
in H, where dH(vi) = f v

i for all v ∈ V and all 1 ≤ i ≤ r(v).
Suppose θ1(f) ≥ 1. Then we may choose v ∈ V such that f v

i ≥ gv
i + 1 for some

3 ≤ i ≤ r(v). Then f v
i ≥ 3 and by Corollary 2.18 there exists a z ∈ ΓH(vi) such that

either H(viz → v1z) or H(viz → v2z) is non-separable. In both cases, the resulting
non-separable graph H ′ is an f ′-detachment of G for some r-degree specification f ′

with f ′(u) ≥r(u) g(u) for all u ∈ V and θ1(f
′) = θ1(f)−1. This contradicts the choice

of f . Thus θ1(f) = 0 and f v
i ≤ gv

i for all v ∈ V and all 3 ≤ i ≤ r(v).
Suppose θ2(f) ≥ 1. Then we may choose v ∈ V such that gv

i ≥ f v
i + 1 for some

3 ≤ i ≤ r(v). We first consider the case when f v
1 ≥ gv

1 + 1. Then f v
1 > f v

i and by
Corollary 2.17 there exists a z ∈ ΓH(v1) such that H(v1z → viz) is non-separable.
The resulting non-separable graph H ′ is an f ′-detachment of G for some r-degree
specification f ′ with f ′(u) ≥r(u) g(u) for all u ∈ V , θ1(f

′) = 0, and θ2(f
′) = θ2(f)− 1.

(Note that f ′(v) ≥r(v) g(v) since θ1(f) = 0 and hence either f v
1 − 1 > gv

1 , or else
f v

1 − 1 = gv
1 and f v

2 ≥ gv
2 with equality only if f ′(v) = g(v).) This contradicts the

choice of f and hence f v
1 ≤ gv

1 . Since f(v) ≥r(v) g(v), θ1(v) = 0 and θ2(v) ≥ 1, we
must have f v

1 = gv
1 and f v

2 ≥ gv
2 + 1. We can now obtain a contradiction as above by

using Corollary 2.17 to show that there exists a z ∈ ΓH(v2) such that H(v2z → viz)
is non-separable. Thus we must have θ2(f) = 0 = θ1(f) and hence f v

i = gv
i for all

v ∈ V and all 3 ≤ i ≤ r(v).
Suppose θ3(f) ≥ 1. Then we may choose v ∈ V such that f v

1 ≥ gv
1 + 1. Then

f v
1 > gv

2 > f v
2 and by Corollary 2.17 there exists a z ∈ ΓH(v1) such that H(v1z → v2z)

is non-separable. The resulting graph H ′ is a non-separable f ′-detachment of G for
some r-degree specification f ′ with f ′(u) ≥r(u) g(u) for all u ∈ V , θ1(f

′) = 0 = θ2(f
′),

and θ3(f
′) = θ3(f) − 1. This contradicts the choice of f and hence θ3(f) = 0. Thus

f = g and the lemma is trivially true.

We shall need one more lemma which is an extension of Lemma 2.3.

Lemma 2.22. Let G be a 2-edge-connected loopless graph, v ∈ N(G), and r : V →
Z+ be such that r(v) ≥ 2 and r(u) = 1 for all u ∈ V −v. Suppose that v is a cut-vertex
of G and that b(v) ≥ r(v). Then there exists a 2-edge-connected r-detachment H of G
such that, for the pieces v1, v2, . . . , vr(v) of v in H, we have dH(v2) = bG(v)−2r(v)+4,
dH(vi) = 2 for 3 ≤ i ≤ r(v) and neither v1 nor v2 is a cut-vertex of H.

Proof. We use induction on r(v). If r(v) = 2 then the lemma follows from Lemma 2.3.
Hence suppose r(v) ≥ 3 and choose x, y ∈ Γ(v) belonging to different components
of G − v. Let G′ be the graph obtained from G by detaching v into two vertices v′

and v′′, where dG′(v
′′) = 2 and ΓG′(v

′′) = {x, y}. It can be seen that G′ is 2-edge
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connected and bG′(v
′) = bG(v)− 1. The lemma now follows by applying induction to

(G′, v′, r′) where r′(v′) = r(v)− 1.

As for Theorem 2.1, we first prove Theorem 2.2 in the case when G is loopless and
N(G) is independent.

Theorem 2.23. Let G = (V,E) be a loopless graph with at least two edges, r :
V (G) → Z+, and let f be an r-degree specification, where f(v) = (f v

1 , f
v
2 , . . . , f

v
r(v))

and f v
1 ≥ f v

2 ≥ . . . ≥ f v
r(v) for all v ∈ V . Suppose that N(G) is independent. Then G

has a non-separable f -detachment if and only if
(a) G is 2-edge connected,
(b) f v

i ≥ 2 for all v ∈ V and all 1 ≤ i ≤ r(v),
(c) e(X + v, V − X − v) − f v

1 ≥ r(X + v) + b(X + v) − 2 for all v ∈ N(G) and all
X ⊆ N2(G, r)− v.

Proof. We first prove necessity. Suppose that G has a non-separable f -detachment
H. It is easy to see that conditions (a) and (b) must hold for G. Choose v ∈ N(G)
and X ⊆ N2(G, r)− v. Let C1, C2, . . . , Cb be the components of G− (X + v), where
b = b(X + v), and let C ′i be the subgraph of H induced by the pieces of all vertices of
Ci. Let v1 be the piece of v in H of degree f v

1 . Let S be the set of all pieces of vertices
of X in H and all pieces of v other than v1. Then |S| = r(X + v) − 1. Since G is
loopless and N(G) is independent, we have e(X+v, V −X−v)−f v

1 edges in H joining
the subgraphs C ′1, C

′
2, . . . , C

′
b and vertices in S. Since H is non-separable H − v1 is

connected and hence we must have e(X + v, V − X − v) − f v
1 ≥ b + r(X + v) − 2.

Thus (c) holds for G.

We next prove sufficiency. We proceed by contradiction. Suppose that (G, r, f)
satisfies (a), (b) and (c) and that G does not have a non-separable f -detachment.
We first use Theorem 2.12 to show that G has a non-separable r-detachment. Since
(G, r) satisfies (a) and (b), it also satisfies Theorem 2.12 (a) and (b). Furthemore, for
y ∈ N1(G, r) and X ⊆ N2(G, r) we have f y

1 = d(y), r(X + y) = r(X) + 1, and, since
G is loopless and N(G) is independent, e(X + y, V −X − y) = e(X, V −X) + d(y).
Since (G, r) satisfies (c), it follows that (G, r) also satisfies Theorem 2.12 (c). Hence
G has a non-separable r-detachment.

Applying Lemma 2.20, G has a non-separable h-detachment, H for some r-degree
specification h satisfying hv

1 ≥ hv
2 ≥ hv

3 = . . . = hv
r(v) = 2 for all v ∈ V . We may

suppose that H has been chosen such that θ(h) =
∑

v∈V h
v
1 is as large as possible.

If hv
1 ≥ f v

1 for all v ∈ V then h(v) ≥r(v) f(v) for all v ∈ V and by Lemma 2.21, G
has a non-separable f -detachment. Hence we may suppose that hv

1 ≤ f v
1 − 1 for some

v ∈ V . Necessarily we must have v ∈ N2(G, r) and hv
2 ≥ f v

2 + 1 ≥ 3.
Let v1, v2, . . . , vr(v) be the pieces of v in H, where dH(vi) = hv

i for 1 ≤ i ≤ r(v). If
H ′ = H(v2z → v1z) is non-separable for some z ∈ ΓH(v2), then H ′ is a non-separable
h′-detachment of G with θ(h′) > θ(h). This contradicts the choice of H. Applying
Lemma 2.16, we deduce that bH({v1, v2}) = dH(v2) = hv

2.

Claim 2.24. bH({v1, v2, . . . , vr(v)}) = hv
2 + r(v)− 2.
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Proof. We have already shown that bH({v1, v2}) = dH(v2) = hv
2 and hence the claim

holds for r(v) = 2. Suppose r(v) ≥ 3 and choose i, 3 ≤ i ≤ r(v). Let z be a
neighbour of v2 in H such that z, vi belong to different components of H−{v1, v2}. If
H ′′ = H(v2z → viz)(viz

′ → v1z
′) is non-separable for some z′ ∈ ΓH(vi), then H ′′ is a

non-separable h′′-detachment of G with θ(h′′) > θ(h). This contradicts the choice of
H. Applying Lemma 2.19, we deduce that each edge of H incident to vi is a cut-edge
of H − {v1, v2} for all 3 ≤ i ≤ r(v). Since hv

i = 2 for 3 ≤ i ≤ r(v), it follows that
H − {v1, v2, . . . , vr(v)} has hv

2 + r(v)− 2 components.

Let L be the graph obtained from H by contracting {v1, v2 . . . , vr(v)} back to the
single vertex v. Then L is an `-detachment of G for the r′-degree specification for G
defined by r′(v) = 1, `(v) = dG(v); and r′(u) = r(u) and `(u) = h(u) for u ∈ V − v.
Furthermore L is a block-star centered on v and bL(v) = hv

2 + r(v)− 2.

Claim 2.25. Let L′ be an `-detachment of G such that L′ is a block-star centered on
v. Then bL′(v) ≥ bL(v).

Proof. Suppose bL′(v) ≤ bL(v) − 1. By Lemma 2.22, we can detach v in L′ into
r(v) pieces v′1, v

′
2, . . . v

′
r(v) such that, in the resulting graph H∗ we have dH∗(v

′
2) =

bL′(v) − 2r(v) + 4, dH∗(v
′
i) = 2 for 3 ≤ i ≤ r(v), dH∗(v

′
1) > hv

1, and neither v′1 nor v′2
is a cut-vertex of H∗. Using Claim 2.24, we have

dH∗(v
′
2) = bL(v)− 2r(v) + 4 = hv

2 − r(v) + 2 ≤ hv
2.

Since H∗ is 2-edge-connected and dH∗(v
′
i) = 2 for 3 ≤ i ≤ r(v), v′i is not a cut-vertex

of H∗ for 1 ≤ i ≤ r(v). Thus, if H∗ had a cut-vertex x, then x would belong to some
component of L′−v, and x would be a cut-vertex of L′ distinct from v. Hence H∗ is a
non-separable h∗-detachment of G for some r-degree specification h∗ for G satisfying
θ(h∗) > θ(h). This contradicts the choice of H.

It follows from Claim 2.25 that we may apply Lemma 2.6 to (G,L, `). Let Si and
Wi be the subsets of V (L) defined as in Lemma 2.6 (but with respect to v). Since the
sets Si are pairwise disjoint and L is finite, we may choose i such that Si+1 = ∅. Let
X ′ = (Wi − v) and X = {x ∈ V (G) : some piece of x in L belongs to X ′}.

By Lemma 2.6, every edge x1u of L− v with x1 ∈ X ′ is a cut-edge in L− v. Thus
the graph we get from L− v by contracting each component of L−X ′− v to a single
vertex is a forest F with bL(v) components and |X ′|+ bL(X ′ + v) vertices. Using the
facts that X+v ⊆ N(G), and N(G) is an independent set of vertices in G, we deduce
that F has eL(X ′, V (L)−X ′) edges. Thus

eL(X ′, V (L)−X ′) = bL(X ′ + v) + |X ′| − bL(v). (5)

We have eL(X ′, V (L) − X ′) = eG(X + v, V (G) − X − v) − dL(v), |X ′| = r(X),
bL(v) = hv

2 + (r(v) − 2 = dG(v) − hv
1 − (r(v) − 2), and dL(v) = dG(v). Furthermore,

for each u ∈ V (G) − X − v, all pieces of u in L belong to the same component of
L −X ′ − v, since Si+1 = ∅. Thus bG(X + v) = bL(X ′ + v). Substituting into (5) we
obtain eG(X + v, V (G)−X − v) = r(X + v) + bG(X + v) + hv

1− 2. Since hv
1 ≤ f v

1 − 1,
this contradicts the fact that G satisfies (c).

EGRES Technical Report No. 2001-12



Section 3. Some Corollaries and Open Problems 16

Proof of Theorem 2.2. Let Ĝ = (V̂ , Ê) be obtained from G by subdividing every edge
of G. Then Ĝ is loopless, N(Ĝ) = N(G) and N(Ĝ) is independent. Extend r to r̂ and
f to f̂ by putting r̂(v) = r(v) and f̂(v) = f(v) for all v ∈ V (G); r̂(v) = 1 and f̂(v) = 2
for all v ∈ V̂ −V . Then N1(Ĝ, r̂) = N1(G, r), N2(Ĝ, r̂) = N2(G, r). We shall show that
conditions (a), (b), and (c) of Theorem 2.2 hold for (G, r, f) if and only if conditions
(a), (b), and (c) of Theorem 2.23 hold for (Ĝ, r̂, f̂). Clearly Theorem 2.2 (a) and (b)
hold for (G, r, f) if and only if Theorem 2.23 (a) and (b) hold for (Ĝ, r̂, f̂). Furthermore
for v ∈ N(G) = N(Ĝ) and X ⊆ N2(G, r) = N2(Ĝ, r̂), we have f v

1 = f̂ v
1 , r(X) = r̂(X),

and eG(X+v, V −X−v)+eG(X+v)−bG(X+v) = eĜ(X+v, V̂ −X−v)−bĜ(X+v).
Thus Theorem 2.2 (c) holds for (G, r, f), if and only if Theorem 2.23 (c) holds for
(Ĝ, r̂, f̂).

We close this section by noting that our proofs of Theorems 2.1 and 2.2 are con-
structive and give rise to polynomial algorithms which either construct the specified
detachment or construct a certificate that shows it does not exist.

3 Some Corollaries and Open Problems

Our first corollary extends Euler’s Theorem.

Corollary 3.1. Let G = (V,E) be a 2-edge-connected graph and r : V → Z+ such
that d(v) ≥ 2r(v) for all v ∈ V and r(v) ≥ 2 for all v ∈ N(G). Let f be an r-degree
specification for G such that f(v) = (f v

1 , f
v
2 , . . . , f

v
r(v)) and 2 ≤ f v

i ≤ dd(v)/2e−r(v)+2

for all v ∈ V and all 1 ≤ i ≤ r(v). Then G has a nonseparable f -detachment.

Proof. Theorem 2.1 implies that G has a non-separable r-detachment (conditions (b)
and (c) of Theorem 2.1 hold vacuously for G since N2(G) = ∅). The existence of a
non-separable f detachment now follows from Lemma 2.20 and 2.21. It can also be
derived from Theorem 2.2.

The more difficult direction of Euler’s theorem follows from Corollary 3.1 by taking
r(v) = d(v)/2 in a graph in which all vertices have even degree. Our next corollary
is a result of Hakimi [1] which characterises the degree sequences of non-separable
graphs.

Corollary 3.2. Let d1 ≥ d2 ≥ . . . ≥ dn ≥ 2 be integers with n ≥ 2. Then there exists
a non-separable graph with degree sequence (d1, d2, . . . , dn) if and only if
(a) d1 + d2 + . . .+ dn is even, and
(b) d1 ≤ d2 + d3 + . . .+ dn − 2n+ 4.

Proof. We first prove necessity. Suppose there exists a non-separable graph H with
this degree sequence and let vi ∈ V (H) have degree di for 1 ≤ i ≤ n. Clearly (a)
holds. Since H is non-separable, H − v1 is connected. Thus |E(H − v1)| ≥ n − 2.
Hence d1 = e(V − v1, v1) ≤ d2 + d3 + . . .+ dn − 2n+ 4.

Sufficiency follows by applying Theorem 2.2 to the graph G consisting of a single
vertex v incident to (d1 + d2 + . . . + dn)/2 loops, by setting r(v) = n and f(v) =
(d1, d2, . . . , dn).
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Our next result considers the case when we only want to detach one vertex in a
graph. The special case when d(v) is even and r(v) = d(v)/2 gives a ‘splitting off’
result for non-separable graphs.

Corollary 3.3. Let G = (V,E) be a graph, u ∈ V , and r : V → Z+ such that
r(u) = m ≥ 2 and r(v) = 1 for all v ∈ V − u. Let f be an r-degree specification
for G where f(u) = (f1, f2, . . . , fm), f1 ≥ f2 ≥ . . . ≥ fm ≥ 2, and f(v) = d(v) for
v ∈ V − u. Then G has a non-separable f -detachment if and only if
(a) G is 2-edge-connected,
(b) e(v) = 0 and b(v) = 1 for all v ∈ V − u,
(c) f2 + f3 + . . .+ fm ≥ b(u) + e(u) +m− 2, and
(d) e(u, V − v − u) + e(u) ≥ m+ b(u, v)− 1 for all v ∈ V − u.

Proof. The necessity of conditions (a)-(d) is easy to see. To prove sufficiency, we
suppose that G satisfies (a)-(d) and use Theorem 2.2 to deduce that G has a non-
separable f detachment. It is easy to see that conditions (a) and (b) of Theorem
2.2 hold for G. To see that condition (c) of Theorem 2.2 holds, let v ∈ N(G) and
X ⊆ N2(G) − v. Since N2(G) = {u} we have (v,X) ∈ {(v, ∅), (u, ∅), (v, {u})}.
Condition (c) of Theorem 2.2 holds for each of these three alternatives since conditions
(b), (c), and (d) of the corollary hold for G. Note that when (v,X) = (v, {u}) we
have
e(X + v, V −X − v) + e(X + v)− f v

1 = e({u, v}, V − {u, v}) + e({u, v})− d(v)
= e(u, V − v − u) + e(u),

since e(v) = 0 by condition (b) of the corollary.

We next consider non-separable simple detachments.

Corollary 3.4. Let G = (V,E) be a graph and r : V → Z+. Then G has a non-
separable simple r-detachment if and only if
(a) G is 2-edge connected,
(b) d(v) ≥ 2r(v) for all v ∈ V ,
(c) e(X, V −X−y)+e(X) ≥ r(X)+b(X+y)−1 for all y ∈ N1(G, r) and X ⊆ N2(G, r),
and
(d) e(u) ≤ r(u)(r(u)− 1)/2 and e(u, v) ≤ r(u)r(v) for all u, v ∈ V .

Proof. Necessity of (a),(b),(c) follows from Theorem 2.1 while necessity of (d) is ob-
vious. To see sufficiency we use Theorem 2.1 to deduce that G has a non-seperable
r-detachment H. We may assume that H has as few parallel edges as possible. Sup-
pose that eH(u1, v1) ≥ 2 for two vertices u1 and v1 of H. Let u1 and v1 be pieces in
H of the vertices u and v, respectively, of G, (allowing the possibility that u = v).
Then (d) implies that there exist distinct pieces ui of u and vj of v in H such that
eH(ui, vj) = 0. Then H − u1v1 + uivj has one less parallel edge than H.

It is an open, and perhaps difficult, problem to characterise when a graph has a
non-separable simple detachment for some given degree specification.

A graph G = (V,E) is said to be k-connected if |V | ≥ k+ 1 and G−U is connected
for all U ⊆ V (G) with |U | ≤ k − 1. Thus, if |V | ≥ 3, then G is non-separable if and
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only if G is 2-connected and loopless. Our next result characterises when a graph has
a 2-connected r-detachment.

Corollary 3.5. Let G = (V,E) be a graph and r : V → Z+ such that r(V ) ≥ 3.
Then G has a 2-connected r-detachment if and only if
(a) G is 2-edge connected,
(b) d(v) ≥ 2r(v) for all v ∈ V ,
(c) e(X, V −X−y)+e(X) ≥ r(X)+b(X+y)−1 for all y ∈ N1(G, r) and X ⊆ N2(G, r).

Proof. This follows easily by applying Theorem 2.1 to (G′, r) where G′ is the graph
obtained from G by deleting all loops incident to vertices in N1(G, r).

By Theorem 1.3, condition (c) of Corollary 3.5 is equivalent to the statement “G−y
has a connected r|V−y-detachment for all y ∈ N(G) with r(y) = 1”. It is conceivable
that Corollary 3.5 extends to k-connectivity as follows.

Conjecture 3.6. Let k ≥ 2 be an integer, G = (V,E) be a graph, and r : V → Z+

such that r(V ) ≥ k + 1. Then G has a k-connected r-detachment if and only if
(a) G is k-edge connected,
(b) d(v) ≥ kr(v) for all v ∈ V ,
(c) G−y has a (k−r(y))-connected r|V−y-detachment for all y ∈ V with r(y) ≤ k−1.

Using Theorem 1.1, it can be seen that the truth of this conjecture for j-connected
detachments for all 2 ≤ j ≤ k would be equivalent to the truth of the following
conjecture.

Conjecture 3.7. Let k be a positive integer, G = (V,E) be a graph, and r : V → Z+

such that r(V ) ≥ k + 1. Then G has a k-connected r-detachment if and only if
(a) G− Y is (k − r(Y ))-edge connected for all Y ⊆ V with r(Y ) ≤ k − 2,
(b) d(v)−e(v, Y ) ≥ (k−r(Y ))r(v) for all v ∈ V and all Y ⊆ V −v with r(Y ) ≤ k−2,
(c) e(X,V −X − Y ) + e(X) ≥ r(X) + b(X ∪ Y )− 1 for all Y ⊆ V with r(Y ) ≤ k− 1
and all X ⊆ V − Y .

Conjecture 3.7 is true for k = 1, 2 by Theorem 1.1, and Corollary 3.5, respectively.
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