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Edge-connection of graphs, digraphs, and
hypergraphs

András Frank?

Abstract

In this work extensions and variations of the notion of edge-connectivity of
undirected graphs, directed graphs, and hypergraphs will be considered. We
show how classical results concerning orientations and connectivity augmenta-
tions may be formulated in this more general setting.

1 Introduction

A digraph D = (V,E) is called strongly connected if there is a directed path from
every node to every other node. By an easy excercise, this is equivalent to requiring
that %D(X) ≥ 1 for every proper non-empty subset X of V wehre %D(X) denotes the
number of edges entering X. An undirected graph, or, in short, a graph G = (V,E) is
called 2-edge-connected if there are two edge-disjoint paths from every node to every
other. It is not difficult to show that this is equivalent to requiring that dG(X) ≥ 2
for every proper non-empty subset X of V where dG(X) denotes the number of edges
connecting X and V − X. The prototypes of theorems we are interested in concern
strong-connectivity and 2-edge-connectivity.

1. ORIENTATION [H.E. Robbins] [43] An undirected graph has a strongly
connected orientation iff it is 2-edge-connected.

2. AUGMENTATION [K.P. Eswaran and R.E. Tarjan] [9] A digraph can be
made strongly connected by adding at most γ new edges if and only if there are no
γ + 1 disjoint sink-sets (sets with no leaving edges) and there are no γ + 1 disjoint
source-sets (sets with no entering edges). A connected undirected graph can be made
2-edge-connected by adding at most γ new edges if and only if the number of ”leaves”
is at most 2γ where a leaf is a minimal subset X with dG(X) = 1.
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3. CONSTRUCTIVE CHARACTERIZATION [folklore:] A digraph is
strongly connected iff it can be built from a node by the following two operations:
(i) add a new directed edge connecting existing nodes, (ii) subdivide an existing edge
by a new node. A graph is 2-edge-connected iff it can be built from a node by the
following two operations: (i) add a new edge connecting existing nodes, (ii) subdivide
an existing edge by a new node. In both cases the two operations may be included into
one: add a path connecting two existing nodes (which may be equal), an operation
called adding an ear. Therefore these theorems are also formulated in the form:
a graph is 2-ec or a digraph is strongly connected if and only if they admit an ear-
decomposition. Moreover, such an ear-decomposition exists if the starting (di)graph
is an arbitrary 2-ec (respectively, strongly connected) sub(di)graph.

We survey these types of results concerning higher edge-connection. Here the word
‘edge-connection’ is used in its informal meaning to describe the intuitive notion of a
graph G = (V,E) or a digraph D = (V,A) being ‘pretty much connected by edges’.
To capture this idea formally, there are (at least) two distinct approaches, and both
of them admit several versions.

The first approach requires the (di)graph to be not dismantleable into smaller parts
by leaving out only few edges. Here are four possible definitions to make this intuition
formal.

(A1) A graph G = (V,E) is k-edge-connected (k-ec, in short) if discarding less
than k edges leaves a connected graph. (This is easily seen to be equivalent to requiring
dG(X) ≥ k whenever ∅ ⊂ X ⊂ V ).

(A2) A digraph D = (V,A) is k-edge-connected if discarding less than k edges
leaves a strongly connected digraph. (This is easily seen to be equivalent to requiring
%D(X) ≥ k whenever ∅ ⊆ X ⊆ V ). For k = 1, this is just strong-connectivity.

(A3) G is k-partition-connected if discarding less than kq edges leaves a graph
with at most q connected components for every q = 1, 2, . . . |V | − 1. Equivalently,
there are at least kq edges connecting distinct parts for every partition of V into q+ 1
nonempty parts for every q, 1 ≤ q ≤ |V | − 1. (These edges will be called cross-
edges of the partition.) Note that for k = 1, partition-connectivity is equivalent to
connectivity.

(A4) D is rooted k-edge-connected if there is a root-node s so that after dis-
carding less than k edges every node keeps to be reachable from s. (This is easily seen
to be equivalent to requiring %D(X) ≥ k for every non-empty subset X of V − s).

The second possible approach to capture high edge-connection is to require the
graph or digraph to contain several edge-disjoint ‘simple’ connected constituents. Here
are four possibilities.

(B1) In G there are k edge-disjoint paths between every pair u, v of nodes.
(B2) In D there are k edge-disjoint directed paths from every node to every other.
(B3) G contains k edge-disjoint spanning trees (in which case G is called k-tree-

connected.)
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Section 1. Introduction 3

(B4) D contains a node s so that there are k edge-disjoint spanning arborescences
rooted at s (in which case D is called k-edge-connected from s or rooted k-ec).

Some basic results of graph theory asserts the equivalence of the corresponding
definitions. Namely, by the edge-versions of Menger’s theorem [12], the definitions
(A1) and (B1) [resp., (A2) and (B2)] are equivalent:

Theorem 1.1. An undirected graph is k-edge-connected iff there are k edge-disjoint
paths between every pair of nodes. A digraph is k-edge-connected iff there are k edge-
disjoint paths from every node to every other.

The equivalence of (A3) and (B3) was proved by W.T. Tutte [47]:

Theorem 1.2 (Tutte). A graph contains k edge-disjoint spanning trees iff the num-
ber of cross-edges of every partition {V1, . . . , Vt} of V is at least k(t− 1).

Finally, the equivalence of definitions (A4) and (B4) was proved by J. Edmonds [7].

Theorem 1.3 (Edmonds). A digraph D contains k edge-disjoint spanning arbores-
cences rooted at r iff %D(X) ≥ k for every non-empty subset X of V − r.

We extend these notions even further. For non-negative integers l ≤ k, a digraph D
is (k, l)-edge-connected if D has a node r so that there are k (resp., l) edge-disjoint
paths from r to every other node (there are l edge-disjoint paths from every node to
r). Equivalently, the digraph is l-ec and rooted k-ec. Note that D is (k, k)-ec iff D is
k-ec, and (k, 0)-edge-connectivity is equivalent to rooted k-edge-connectivity. We also
remark that, by relying on max-flow min-cut computations, it is possible to decide in
polynomial time if a digraph is (k, l)-edge-connected or not.

Another general notion is as follows. For two subsets S, T of nodes, D is said to
be k-edge-connected from S to T if there are k edge-disjoint paths from every
element of S to every element of T . In the special case S = T we briefly say that
D is k-edge-connected in S. If S = T = V we are back at k-edge-connectivity. If
S = {s} and T = V we are back at rooted edge-connectivity.

For an integer l (which may be negative), we say an undirected graph G = (V,E)
to be (k, l)-partition-connected if there are at least k(t−1) + l cross-edges of every
partition of V into t (t ≥ 2) non-empty parts. For l ≥ 0, this definition tries to
capture the intuitive notion for high edge-connection that leaving out only few edges
does not result in too many components.

A very first question concerning this notion is whether there exists a certificate for
a graph being (k, l)-partition-connected. The answer depends on whether l ≤ 0, or
1 ≤ l ≤ k, or k < l. If l = 0, we are back at k-partition-connectivity, and then the
certificate (by Tutte’s theorem) is a set of k disjoint spanning trees. When l = −γ is
negative, we will prove (Theorem 2.11) that a graph is (k, l)-partition-connected if and
only if it is possible to add γ new edges so that the resulting graph contains k disjoint
spanning trees. That is, in this case the certificate for (k, l)-partition-connectivity is
k disjoint spanning trees whose union may contain γ new edges.

For l ≥ k, we claim that (k, l)-partition-connectivity is equivalent to (k + l)-edge-
connectivity. Indeed, if G is (k, l)-partition-connected, then the definition for t = 2
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implies that every cut contains at least k(t − 1) + l = k + l edges, that is, G is
(k+ l)-ec. Conversely, let G be (k+ l)-ec and let P := {V1, . . . , Vt} be a partition. By
letting eG(P) denote the number of cross-edges of P , we have eG(P) =

∑t
i dG(Vi)/2 ≥

(k + l)t/2 = tk + t(l − k)/2 ≥ tk + (l − k) = (k − 1)t + l, and hence we conclude
that G is (k, l)-partition-connected. Therefore we will be interested in (k, l)-partition-
connectivity only if l < k.

Finally, for 0 < l < k one has the following characterization (Theorem 4.2): a graph
is (k, l)-partition-connected if and only if it has a (k, l)-edge-connected orientation.
Such an orientation may indeed serve as a certificate for (k, l)-partition-connectivity
since a digraph can be tested for (k, l)-edge-connectivity by relying on Menger’s the-
orem.

A directed edge st with s ∈ S, t ∈ T will be called an ST -edge. Let V be a ground-
set. A family of subsets of V is a co-partition if {V − X : X ∈ F} is a partition
of V . By a sub-partition of V we mean a partition of a subset A of V . If F is a
sub-partition of A, then {V −X : X ∈ F} is called a sub-co-partition of A (with
respect to V ). For a set X and for two elements x, y, we say that X is an xȳ-set if
x 6∈ X, y ∈ X.

For non-negative integers k, l, we call an undirected graph G (k, l)-tree-connected
if deleting any subset of at most l edges leaves a k-tree-connected graph. By Tutte’s
theorem, G is (k, l)-tree-connected if and only if G is (k, l)-partition-connected.

In a graph G = (V,E) the local edge-connectivity λ(x, y;G) of nodes x and y is
the minimum cardinality of a cut separating x and y. By Menger, this is equal to the
maximum number of edge-disjoint paths connecting x and y.

In a digraph D = (V,E) the local edge-connectivity λ(x, y;D) from node x to
node y is the minimum number of edges entering a yx̄-set. By Menger, this is equal to
the maximum number of edge-disjoint paths from x to y. %(X) denotes the number
of edges entering X and δ(X) := %(V −X).

Typically we will work with directed or undirected graphs and write (di)graph when
either of them is meant. Sometimes mixed graphs are considered which may consider
both directed and undirected edges.

2 Relations between old results

The three motivating theorems mentioned at the beginning of the introduction rep-
resent, respectively, the following general problem classes.

1. In a connectivity augmentation problem we want to add some new edges to
a graph or digraph so that the resulting graph or digraph satisfy a prescribed con-
nectivity property. In the minimization problem the number (or, more generally,
the total cost) of new edges is to be minimized. In the degree-specified problem,
in addition to the connectivity requirement, the (di)graph of the newly added edges
must meet some (in)degree specification. Another aspect of augmentation problems
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distinguishes between the type of graphs of usable new edges. In a restricted aug-
mentation the new edges must be chosen from a specified graph. We speak of a free
augmentation if any possible edge is allowed to be added in any number of parallel
copies. In the directed case, ST -free augmentations, when the new edges must be
ST -edges, will also be considered.

2. In a connectivity orientation problem we want to orient the edges of an undi-
rected graph so that the resulting digraph satisfies a prescribed connectivity property.
The proof of Robbins’ theorem is fairly easy (say, by ear-decomposition) but there
are even easier orientation results: (A) a graph G has a root-connected orientation
(:every node is reachable from a root-node) iff G is connected, and (B) G has an
orientation in which a specified node t is reachable from s iff s and t belong to the
same component of G. These are indeed so trivial that they deserve mentioning only
because they serve as an excellent ground for possible generalizations.

3. In the constructive characterization problem we want to provide some simple
operations for a given connectivity property so that every (di)graph can be obtained
from a small initial (di)graph. It will turn out that this type of results often help
proving connectivity orientation results.

In earlier survey type works ([18] [19], [21]) I endeavored to overview some aspects
of connectivity orientations and augmentations with special emphasis on their rela-
tionship to sub- and supermodular functions. Therefore in the present paper those
results are mentioned only if the overview of the developments of the past 6-7 years
require them. To exhibit this progress is our main goal, with a special emphasis on
some known and some newly discovered links connecting the different problems. Some
brand new observations will also be outlined.

By comparing older results, this section is offered to demonstrate how closely the
orientation, augmentation, and characterization problems are related to each other.
But first a small remark is in order. The augmentation problem may be considered
as one of finding a supergraph of a (di)graph with certain connectivity properties.
This is naturally strongly related to the subgraph problem which consists of finding
an optimal subgraph of a (di)graph satisfying connectivity requirements (sometimes
called Steiner network problem). The minimum cost versions of these problems are
actually equivalent and to explain this we invoke a concrete subgraph versus super-
graph problem-pair. Subgraph problem: given a digraph D = (V,A) with specified
nodes s and t endowed with a cost function c on A, find a minimum cost subdigraph
D′ of D which is k-ec from s to t. Supergraph (=augmentation) problem: given a di-
graph D = (V,A) with specified nodes s and t, moreover another digraph H = (V, F )
endowed with a cost function cF on F , find a minimum cost augmentation of D which
is k-ec from s to t. Now if the subgraph problem is tractable, then so is the super-
graph problem: Let D1 = (V,A ∪ F ) be the union of G and H and define a cost
function c1 on A ∪ F by c1(e) := 0 if e ∈ A and c1(e) := cF (e) if e ∈ F . Obviously,
an optimal solution to the subgraph problem on D1 determines an optimal solution
to the augmentation problem. Conversely, the subgraph problem can be viewed as
an augmentation problem because it is equivalent to augment, at a minimum cost, of
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2.1 Splitting and augmentation 6

the empty digraph (V, ∅) by using edges of D. Typically we use this equivalence in
one direction: when the minimum cost subgraph problem is tractable then so is the
augmentation problem. In our concrete case the subgraph problem is indeed solvable
with the help of a minimum cost flow algorithm. On the same ground, as the minimum
cost connected subgraph problem is solvable with the greedy algorithm, the minimum
cost augmentation problem, to make a given graph connected, is also solvable.

We hasten to emphasize however that in several cases the subgraph problem is NP-
complete while the corresponding (free) augmentation problem is nicely solvable. A
prime example for this phenomenon is the problem of finding a minimum cardinality
2-edge-connected subgraph of a graph G which is known to be NP-complete as it
includes the Hamiltonian circuit problem (:the minimum is equal to |V | if and only
if G is Hamiltonian). On the other hand, the second introductory problem on the
corresponding connectivity augmentation is solvable.

2.1 Splitting and augmentation

At the heart of many results are there two splitting lemmas. By splitting off a pair
of undirected edges e = zu, f = zv we mean the operation of replacing e and f by
a new edge connecting u and v. In the directed case directed edges uz and zv are
replaced by a directed edge uv.

Theorem 2.1 (Lovász’ undirected splitting lemma). [34] Let k ≥ 2 be an in-
teger and G = (V + z, E) an undirected graph with a special node z of even degree.
If G is k-ec in V , then there is a pair of edges e = zu, f = zv which can be split off
without destroying k-edge-connectivity in V .

Theorem 2.2 (Mader’s directed splitting lemma). [37] Let k ≥ 1 be an integer
and D = (V + z, E) a directed graph with a special node z having the same in- and
out-degree. If D is k-ec in V , then there is a pair of edges e = zu, f = vv which can
be split off without destroying k-edge-connectivity in V .

Both lemmas may be used repeatedly, as long as there are edges incident to z and in
this case we speak of a complete splitting. Sometimes by the splitting lemma this
complete version is meant: Under the same hypotheses, there is a complete splitting
at z so that the resulting (di)graph on node set V is k-edge-connected.

An easy observation shows that the existence of a complete undirected splitting
that preserves k-edge-connectivity is equivalent to the following degree-specified aug-
mentation result [16].

Theorem 2.3. We are given an undirected graph G = (V,E), a degree-specification
m : V → Z+, and an integer k ≥ 2. There is a graph H = (V, F ) so that dH(v) = m(v)
for every node v ∈ V and G+H is k-edge-connected if and only if m(X) ≥ k−dG(X)
for every nonempty subset X ⊂ V.

Here and throughout m(X) :=
∑

(m(v) : v ∈ X). This result was used in [16] to
exhibit a short derivation of T. Watanabe and A. Nakamura’s [48] earlier solution to
the minimization form of the undirected edge-connectivity augmentation problem:
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2.2 Connectivity orientation and augmentation 7

Theorem 2.4 (Watanabe and Nakamura). An undirected graph G can be made
k-edge-connected (k ≥ 2) by adding at most γ new edges if and only if

∑
(k−dG(Xi)) ≤

2γ for every subpartition {X1, . . . , Xt} of V .

Note that the last theorem fails to hold for k = 1. On the other hand, for this case,
even the minimum cost version is solvable by the greedy algorithm since it is equivalent
to the min-cost tree problem (while for k ≥ 2 the min-cost version is NP-complete.)

Mader’s directed splitting lemma is easily seen to be equivalent to the degree-
specified directed edge-connectivity augmentation problem:

Theorem 2.5. We are given a directed graph D = (V,E), an in- and out-degree
specifications mi : V → Z+ and mo : V → Z+ so that mi(V ) = mo(V ). Let k ≥ 1
be an integer. There is a digraph H = (V, F ) so that δH(v) = mo(v), %H(v) = mi(v)
for every node v ∈ V and so that D + H is k-edge-connected if and only if mi(X) ≥
k − %D(X) and mo(X) ≥ k − δD(X) holds for every nonempty subset X ⊂ V .

This implies rather easily the minimization form of directed edge-connectivity aug-
mentation [16]:

Theorem 2.6. A digraph D = (V,E) can be made k-edge-connected (k ≥ 1) by
adding at most γ (directed) edges if and only if

∑
i(k − %D(Xi)) ≤ γ and

∑
i(k −

δD(Xi) ≤ γ hold for every family of disjoint subsets {X1, . . . , Xt} of nodes.

2.2 Connectivity orientation and augmentation

The easy orientation results mentioned above concerning strong-connectivity, connec-
tivity from s to t, and s-rooted 1-edge-connectivity naturally raise questions on higher
connectivity: when does a graph G have an orientation which is (a) k-ec from s to t,
(b) rooted k-ec, (c) k-ec? Among these, the first one is easy (modulo Menger).

Theorem 2.7. For integers k1, k2 ≥ 0 and specified nodes s, t ∈ V , an undirected
G = (V,E) has an orientation which is k1-ec from s to t and k2-ec from t to s if and
only if every cut of G separating s and t has at least k1 + k2 edges.

Proof. The necessity of the condition is straightforward. The sufficiency follows by
observing that the condition implies, by Menger’s theorem, the existence of k1 + k2

edge-disjoint paths between s and t. We can orient the edges of k1 paths toward t,
the edges of the remaining k2 paths toward t, and the remaining edges arbitrarily.

The first non-trivial result concerning orientation is due to C.St.J.A. Nash-Williams
[38]. He proved the following extension of Robbins’ theorem (actually in a much
stronger form).

Theorem 2.8 (Nash-Williams: weak form). An undirected graph G has a k-ec
orientation iff G is 2k-ec.

By using induction, the undirected splitting lemma immediately implies Nash-
Williams’s theorem. Recently, we noticed [26] that using the splitting lemma in a
slightly more intricate way, the following odd version of the orientation theorem can
also be proved.
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2.2 Connectivity orientation and augmentation 8

Theorem 2.9. An undirected graph G is (2k + 1)-ec if and only if for every pair of
nodes s and t G has a k-ec orientation which is (k + 1)-ec from s to t.

The following orientation result on rooted edge-connectivity follows immediately
from Tutte’s theorem 1.2 on disjoint trees:

Theorem 2.10. An undirected graph G = (V,E) has a rooted k-ec (that is, (k, 0)-ec)
orientation iff G is k-partition-connected.

On the other hand, theorem 2.10 combined with Edmonds theorem 1.3 gives rise
to Tutte’s theorem 1.2. At this point the question naturally emerges: if the required
orientations do not exist, then how many new undirected edges have to be added so
that the augmented graph do admit an orientation?

The answer is easy when our goal is to augment a graph so as to become k-edge-
connected orientatable. Namely, by Nash-Williams’ theorem this is equivalent to
augment the graph to make it (2k)-edge-connected, a problem solved in theorems
2.4 and 2.3. Now suppose we want to augment G to become k-tree-connected (=k-
partition-connected). For the special case of free augmentation one has the following:

Theorem 2.11. Let G = (V,E) be an undirected graph, s ∈ V a specified node, and
γ a nonnegative integer. It is possible to add at most γ new edges to G so that the
enlarged graph has an s-rooted k-edge-connected orientation iff G is (k,−γ)-partition-
connected. Moreover, all the newly added edges may be chosen to be incident to s.

Proof. Recall that by definition G is (k,−γ)-partition-connected if

i(F) ≥ k(t− 1)− γ, (1)

holds for every partition F := {V1, . . . , Vt} of V where i(F) denotes the number of
cross edges of F . For brevity we call an orientation good if it is k-edge-connected
from s. If there is a good orientation after adding γ edges, then %(Vi) ≥ k holds for
every subset Vi ⊂ V not containing V and hence i(F) + γ ≥ i+(F) ≥ k(t− 1), where
i+ refers to the enlarged graph, proving the necessity of the condition.

To see the sufficiency, add a minimum number of new edges to G, each incident to
s so that the enlarged graph have a good orientation and let γ′ denote this minimum.
Our goal is to prove γ′ ≤ γ.

Let % denote the in-degree function of the good orientation of the enlarged graph.
we may assume that %(s) = 0. Let us call a set X ⊆ V − s tight, if %(X) = k.
By standard submodular technique, we see that both the intersection and the union
of two tight sets with non-empty intersection are tight. Let T denote the subset of
nodes which can be reached from the head of at least one new edge. Clearly, s 6∈ T
és %(V − T ) = 0.

Lemma 2.12. If Z is tight and Z ∩ T 6= ∅, then Z ⊆ T .

Proof. Suppose indirectly that Z 6⊆ T . Then for Y := V − T we have k = %(Y ) +
%(Z) = %(Y ∩Z) + %(Y ∪Z) + d+(Y, Z) ≥ k+ 0 + d+(Y, Z) ≥ k. Hence %(Y ∪Z) = 0
and d+(Y, Z) = 0. From the first equality there is a new edge e = st for which t ∈ Z
for otherwise no element of Z ∩T would be reachable from the head of any new edge.
But then, by the existence of edge e, we have d+(Y, Z) > 0, a contradiction.
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2.2 Connectivity orientation and augmentation 9

There are two cases. If there is a node v in T which does not belong to any tight set,
then let st be a new edge for which there is a path P from t to v. Reorient each edge
of P and discard e. Since v does not belong to any tight set the revised orientation is
good, contradicting the minimality of γ′.

In the second case every element of T belongs to a tight set. Let V1, . . . , Vt−1 be
maximal tight sets intersecting T . These are pairwise disjoint and by the lemma they
form a partition of T . Let Vt := V − T and F := {V1, . . . , Vt}. Since %(Vt) = 0, and
every new enters T , we get k(t − 1) =

∑
(%(Vi) : i = 1, . . . , (t − 1)) =

∑
(%(Vi) : i =

1, . . . , t) = i+(F) = i(F) + γ′. This and (1) give rise to γ′ = k(t− 1)− i(F) ≤ γ, as
required.

Note that the problem in Theorem 2.11 is equivalent to asking if a graph can be
augmented by γ new edges so as to have k disjoint spanning trees. This problem is a
matroid partition problem even in the more general case when the new edges may be
taken only from a specified graph. Hence Edmonds’ matroid partition theorem does
provide a characterization for the existence of the required augmentation in Theorem
2.11. Our goal has simply been to show a direct, graphical proof.

By combining theorems 2.11 and 2.10, we obtain the following extension of Tutte’s
theorem 1.2 which serves as a characterization of (k, l)-partition-connected graphs in
case l ≤ 0.

Theorem 2.13. An undirected graph G = (V,E) can be augmented by adding γ ≥ 0
new edges so that the enlarged graph is k-tree-connected iff G is (k,−γ)-partition-
connected. Moreover, the newly added edges may be chosen to be incident to any
given node in V .

This theorem shows that the free augmentation problem for k-tree-connectivity is
tractable. But using general matroid techniques, even the minimum cost version is
solvable in polynomial time. To see this, let G = (V,E) be an undirected graph and
let Gu = (V,Eu) be a graph where Eu is the set of edges usable in the augmentation
of G. Let cu : Eu → R+ be a cost function. We want to choose a subset F of edges
of Gu of minimum total cost so that the inreased graph G+ = (V,E + F ) is k-tree-
connected. To this end, let us define a cost function c′ on the edge set of the union
G′ = (V,E + Eu) of G and Gu so that c′(E) := 0 if e ∈ E and c′(e) = c(e) if e ∈ Eu.

Then the problem is equivalent to finding k disjoint spanning trees of G′ with
minimum total cost. Since the edge-sets which are the union of k disjoint spanning
trees form the basis sets of a matroid, this problem solvable in polynomial time by
using Edmonds’ matroid partition algorithm and the greedy algorithm.

One may also consider the degree-specified version of the k-tree-connected augmen-
tation problem. This does not seem to be a matroid problem and it does not follow
from the previous material either. Section 4 includes an answer even for the more
general case of (k, l)-partition-connectivity.
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2.3 Constructive characterizations

Let G′ = (V + z, E ′) be an undirected graph with a special node z of even degree
and suppose that G′ is k-edge-connected in V . By the unsplitting lemma we know
that there is a complete splitting at z so that the resulting graph G = (V,E) is k-ec.
In other words the d(z) edges incident to z can be paired so that splitting off these
j := d(z)/2 pairs (and discarding z) we obtain a k-ec graph. In a directed graph
D′ = (V + z, A′) a complete splitting at z consists of pairing the edges entering z
with those leaving z and then splitting off the pairs. Both in the directed and in the
undirected case the inverse operation of complete splitting is as follows. Add a new
node z, subdivide j existing edges by new nodes and identify the j subdividing node
with z. This will be called pinching j edges (with z). When j = 0 this means
adding a single new node z, while in case j = 1 we subdivide one edge with a node z.

By the operation of adding a new edge to a (di)graph we always mean that the new
edge connects existing nodes. Unless otherwise stated, the newly added edge may be
a loop or may be parallel to existing edges.

After these definitions, we exhibit how the splitting lemmas give rise to consructive
characterizations of 2k-ec graph and k-ec digraphs. By using the easy observation that
a minimally (with respect to edge-deletion) K-edge-connected undirected graph (with
at least two nodes) always contains a node of degree K (whether K is or odd even),
one can easily derive from the undirected splitting lemma the following constructive
characterization of 2k-edge-connected graphs.

Theorem 2.14 (Lovász). An undirected graph G = (V,E) is 2k-edge-connected if
and only if G can be obtained from a single node by the following two operations : (i)
Add a new edge, (ii) pinch k existing edges.

By using a rather difficult theorem of Mader [35], stating that a minimally (with
respect to edge-deletion) k-edge-connected directed graph (with at least two nodes) al-
ways contains a node of in-degree and out-degree k, one can derive from the directed
splitting lemma the following constructive characterization of k-edge-connected di-
graphs.

Theorem 2.15 (Mader). A directed graph D = (V,E) is k-edge-connected if and
only if D can be obtained from a single node by the following two operations: (i) Add
a new edge, (ii) pinch k existing edges.

It is useful to observe that Mader’s characterizaton in theorem 2.15 for k-ec digraphs
combined with Nash-Williams’ orientation result give rise to theorem 2.14. The same
phenomenon will occur later as well: with the help of an orientation result, a con-
structive characterization for directed graphs may be used to derive its undirected
counterpart.

By an easy reduction, theorem 2.15 provides a constructive characterization of
rooted k-edge-connected digraphs:

Theorem 2.16. A digraph D = (V,E) is rooted k-edge-connected if and only if D
can be built up from a root-node s by the following two operations. (j) add a new edge,
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Section 3. Splitting and detachment 11

(jj) pinch i (0 ≤ i ≤ k − 1) existing edges with a new node z, and add k − i new
edges entering z and leaving existing nodes.

In [37] Mader showed that this characterization can easily be used to derive Ed-
monds’ theorem 1.3. Combining theorems 2.10 and 2.16, one obtains the following
constructive chracterization.

Theorem 2.17. An undirected graph G = (V,E) is k-tree-connected (= k-partition-
connected) iff G can be built from a node by the following two operations: (j) add a
new edge, (jj) pinch i (0 ≤ i ≤ k − 1) existing edges with a new node z, and add
k − i new edges connecting z with existing nodes.

3 Splitting and detachment

In this section first we exhibit extensions of the splitting lemmas of section 2 and their
applications. After that the notion of splitting will be extended to detachments.

3.1 Undirected splitting

As a significant generalization of Lovász’ undirected splitting lemma, W. Mader [36]
proved the following result. Recall (from the introduction) the definition of local
edge-connectivity λ.

Theorem 3.1 (Mader). Let G = (V + z, E) be an undirected graph so that there is
no node-cut incident to z and the degree of d(z) is even. Then there exists a complete
splitting at z preserving the local edge-connectivities of all pairs of nodes u, v ∈ V .

Mader originally formulated his result in a slightly different form: If z is not a node-
cut of G = (V + z, E) and d(z) ≥ 4, then there exists a pair of edges incident to z
which can be split off without lowering any local edge-connecivity in V . However the
two forms are easily seen to be eqivalent. This and a relatively short proof of Mader’s
theorem was given in [17]. Mader [36] used his result to characterize (2k + 1)-edge-
connected graphs.

Theorem 3.2 (Mader). Let K = 2k + 1. An undirected graph G = (U,E) is K-
edge-connected if and only if G can be constructed from the initial graph of two nodes
connected by K parallel edges by the following thee operations:
(i) add an edge,
(ii) pinch k edges with a new node z′ and add an edge connecting z′ with an existing
node,
(iii) pinch k edges with a new node z′, pinch then again in the resulting graph k edges
with another new node z so that not all of these k edges are incident to z′, and finally
connect z and z′ by a new edge.

The theorem is obviously equivalent to the first part of the following form:
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3.1 Undirected splitting 12

Theorem 3.3. An undirected graph G with more than two nodes is K-ec (K odd) if
and only if G can be obtained from a (smaller) K-ec graph by one application of one
of the operations (i), (ii), (iii). Moreover, for any node s of G, G′ can be chosen so
as to contain s.

Proof. It is not difficult to check that each of these operations preserves K-edge-
connectivity. (Note that if all the k edges to be pinched with z′ in the second part of
(iii) were adjacent to z, then only K − 1 = 2k edges would leave the subset {z, z′}.)

For a subset X ⊆ V , the set of edges connecting X and V − X will be denoted
by [X, V − X]. We call a cut [X, V − X] trivial if |X| = 1 or |U − X| = 1. By a
minimum cut we mean one with cardinality K.

Lemma 3.4. Suppose that X is a minimal subset of nodes of a K-edge-connected
graph G = (U,E) for which

dG(X) = K and |X| ≥ 2. (2)

Then any minimum cut B containing an edge e = zz′ with z, z′ ∈ X is trivial (that
is, B is [z, U − z] or [z′, U − z′]).

Proof. Suppose indirectly that there is a subset Y for which z ∈ Y, z′ ∈ U−Y, d(Y ) =
K, |Y | ≥ 2, |U − Y | ≥ 2. Then by the minimal choice of X we have Y 6⊆ X and
U − Y 6⊆ X. But it is well-known (and an easy exercise anyway to show) that in
a K-ec graph with K odd there cannot exist two such crossing sets X, Y . (Indeed,
we have K + K = d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X,Y ) ≥ K + K + 0
from which d(X ∩ Y ) = K = d(X ∪ Y ) and d(X,Y ) = 0, where d(X, Y ) denotes the
number of edges connecting X−Y and Y −X. Analogously, we obtain for Ȳ := U−Y
that d(X ∩ Ȳ ) = K = d(X ∪ Ȳ ) and d(X, Ȳ ) = 0. So if α := d(X ∩ Y, Y −X), then
d(X∩Y,X−Y ) = K−α = d(Y −X, (U−(X∪Y )) from which d(Y ) = d(X∩Y,X−Y )
from which K = d(Y ) = d(X ∩ Y,X − Y ) + d(Y −X, (U − (X ∪ Y )) = 2K − 2α, that
is, K is even, a contradiction.)

If there is an edge e so that G′ := G − e is K-ec, then G arises from G′ by (i).
So we may assume that G is minimally K-ec. We may assume that there is no node
z which is connected only with s since otherwise, then by the minimality, d(z) = K
and then G arises from G′ by operation (ii) where G′ is a graph arising from G by
deleting z and adding k loops at s. (Clearly G′ is K-ec.)

If every minimum cut is trivial, then let e = zz′ be an arbitrary edge not incident
to s. If there are non-trivial minimum cuts, then there is a set X satisfying (2). Since
the complement of X also satisfies (2), there exists a minimal set X satisfying (2) so
that s 6∈ X.

Let e = zz′ be an arbitrary edge induced by X. As X induces a connected subgraph,
such an e exists. Now e belongs to at most two minimum cuts, each is trivial. If e
belongs to one minimum cut, than exactly one of z and z′, say z, is of degree K. Then
G− e is K-edge-connected in U − z. By Lovász’ splitting lemma there is a complete
splitting at z resulting in a K-ec digraph G′. Then G arises from G′ by operation (ii).
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3.1 Undirected splitting 13

If both z and z′ are of degree K, then G− e is K-ec in U − {z, z′}. It follows from
Mader’s splitting theorem 3.1 that there is a complete splitting of G− e at z so that
the resulting graph G1 is K-ec in U − {z, z′}. By applying the splitting lemma to G1

(now Lovász’s is enough), we obtain that there is a complete splitting at z′ so that the
resulting graph G′ with node set U − {z, z′} is K-edge-connected. This construction
shows that G arises from G′ by operation (iii).

Since in each cases z and z′ were chosen to be distinct from s, we have also proved
the second half of the theorem.

Operation (iii) may seem to be a bit too complicated and one’s natural wish could
be to try to simplify it. For example, a simpler, more symmetric version would be as
follows: (iii)′ choose two disjoint subsets F and F ′ of edges both having k elements,
pinch the elements of F with a new node z, pinch the elements of F ′ with another new
node z′, and finally connect z and z′. However, Mader in his original paper showed
an example which cannot be obtained with operations (i), (ii), (iii)′.

Fortunately, for K = 3, operations (iii) and (iii)′ coincide and it is worthwile to
formulate this special case separately:

Corollary 3.5. An undirected graph G is 3-edge-connected iff G can be built from a
node by the following operations:
(i) add an edge,
(ii) subdivide an existing edge e = uv by a new node z and connect z to an existing
node,
(iii) subdivide two existing edges by nodes z and z′ and connect z and z′ by a new
edge.

Lovász’ splitting lemma immediately implied Nash-Williams’ orientation theorem (:
a 2k-edge-connected graph always has a k-ec orientation). It would only be natural if
Mader’s stronger splitting result would also imply immediately the following stronger
orientation result of Nash-Williams [38]:

Theorem 3.6 (Nash-Williams: strong form). Every undirected graph G = (V,E)

has an orientation ~G for which λ(x, y; ~G) ≥ bλ(x, y;G)/2c for all x, y ∈ V .

Mader was indeed able to prove theorem 3.6 relying on his splitting theorem but
unfortunately the derivation is not at all simple (as neither is Nash-Williams’ original
proof).

(In the introduction of his paper [39] Nash-Williams remarks that his orientation
theorems ”do not seem particularly closely related to much other existing work in
graph theory”. These words are painfully true even after 40 years as far as the strong
form is concerned, and it remains a major task to find a simple proof of theorem 3.6 or
at least to find some closer link to the body of edge-connectivity problems. Note that
by now pretty much is known about the various connections of the weak form along
with its numerous strengthenings and extensions. Nash-Williams also remarks that
”these theorems seem to have a somewhat natural character which would suggest that
there must ultimately be a place for them in the overall structure of graph theory”.
We hope to demonstrate that wherever this place is located, it is not a lonely one.)
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3.1 Undirected splitting 14

Nash-Williams calls an orientation with the property given in the theorem well-
balanced. He actually proved the existence of a well-balanced orientation which, in
addition, satisfies |%(v)− δ(v)| ≤ 1 for every node v of G.) Nash-Williams also proved
the following generalization of theorem 3.6.

Theorem 3.7. [38] Let G be a graph and H a subgraph of G. Then G has a well-
balanced orientation with the additional property that its restriction to H is a well-
balanced orientation of H.

Mader’s splitting theorem rather easily implies the following new observation [26]
which is a common generalization of theorems 2.8 and 2.7.

Theorem 3.8. Let k1, k2, k be non-negative integers with k1 ≥ k, k2 ≥ k. An undi-
rected graph G = (V,E) with two specified nodes s and t has a k-ec orientation which
is k1-ec from s to t and k2-ec from t to s if and only if G is 2k-ec and G is (k1 +k2)-ec
in {s, t}.

Let us turn to the effect of Mader’s theorem on connectivity augmentation. The
same way as Lovász’ splitting lemma could be used for solving (global) connectivity
augmentation, Mader’s splitting theorem gives rise to a solution of the local edge-
connectivity augmentation problem. Let G = (V,E) be an undirected graph and r
a non-negative integer-valued function on unordered pairs {u, v} of distinct nodes of
G. In the local edge-connectivity augmentation problem we want to augment G so
that the local edge-connectivity in the increased graph G+ majorizes r. By Menger’s
theorem this requirement is equivalent to

dG+(X) ≥ Rr(X) for every sebset X ⊂ V (3)

where Rr(X) := max{r(u, v) : u ∈ X, v ∈ V −X}. The following two results appeared
in [16].

Theorem 3.9. Let G = (V,E) be an undirected graph. Let m : V → Z+ be an
integer-valued function so that m(V ) is even and m(C) ≥ 2 for each component C of
G. There is a set F of new edges so that the local edge-connectivity in G+ = (V,E+F )
is at least r and dF (v) = m(v) for every node v if and only if

m(X) ≥ Rr(X)− dG(X) (5.10)

for every X ⊆ V .

Let C( 6= V ) be the node-set of a component of G and call C a marginal compo-
nent (with respect to r) if Rr(C) ≤ dG(C) + 1 and Rr(X) = dG(X) for every proper
subset X of C.

Theorem 3.10. Suppose that there are no marginal components. There is a set F of
at most γ edges so that the local edge-connectivity in G+ = (V,E + F ) is at least r if
and only if ∑

i

q(Xi) ≤ 2γ (4)

holds for every sub-partition {X1, X2, . . . , Xt} of V .
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3.2 Directed splitting 15

In a recent paper [1], J. Bang-Jensen, H. Gabow, T. Jordán and Z. Szigeti investi-
gated the augmentation problem when the possible set of new edges meets a partition
constraint. Among their numerous new results, we cite here only one:

Theorem 3.11. Let G = (V,E) be an undirected graph and P = {P1, . . . Pr} a par-
tition of V into at least two non-empty parts. Let k ≥ 2 be an even integer. It is
possible to add at most γ new edges to G each connecting distinct parts of P so that
the resulting graph is k-edge-connected if and only if

∑
X∈F(k − d(X) : X ∈ F) ≤ 2γ

holds for every subpartition F of V , and
∑

X∈Fi
(k − d(X) : X ∈ F〉) ≤ γ holds for

every subpartition Fi of Pi (i = 1, . . . , r).

It is not difficult to check that the conditions in the theorem are necessary for even
and odd k, as well. For odd k, however, they are not sufficient. But [1] does find a
characterization even for this more complicated case.

3.2 Directed splitting

Can we extend Mader’s directed splitting lemma so as to preserve local edge-connecti-
vities in directed graph? No such a general result is known but some generalization
of the directed splitting lemma is available. The following is a consequence of a result
in [19].

Theorem 3.12. Let k ≥ l ≥ 1 be integers and D = (V + z, E) a directed graph
with a special node z having the same in- and out-degree. If D is (k, l)-ec in V ,
then there is a pair of edges e = zu, f = vv which can be split off without destroying
(k, l)-edge-connectivity in V .

This result was proved in [19] in a more general form concerning covering of cross-
ing supermodular functions by digraphs. It can be used to solve the free- and the
degree-specified augmentation problem for digraphs when the target is (k, l)-edge-
connectivity. Let D = (V,E) be a digraph with a root-node s and let 0 ≤ l ≤ k be
integers. Define pkl(X) := (k−%D(X))+ if ∅ ⊂ X ⊂ V −s and pkl(X) := (l−%D(X))+

if s ∈ X ⊂ V .

Theorem 3.13. For in- and out-degree specifications mi : V → Z+ and mo : V →
Z+ with mi(V ) = mo(V ), there is a digraph H = (V, F ) so that δH(v) = mo(v),
%H(v) = mi(v) for every node v ∈ V and so that D + H is (k, l)-edge-connected with
respect to root s if and only if mi(X) ≥ pkl(X) and mo(V − X) ≥ pkl(X) holds for
every nonempty subset X ⊂ V .

Theorem 3.14. There is a digraph H = (V, F ) of at most γ edges so that D +H is
(k, l)-edge-connected with respect to root s if and only if

∑
(pkl(X) : X ∈ F) ≤ γ and∑

(pkl(V −X) : X ∈ F) ≤ γ hold for every partition F of V .
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3.3 Detachment

Let G = (V + z, E) be an undirected graph. We modify slighly the operation of
splitting off a pair of edges e = uz, f = vz as follows. Replace e and f by a new edge
h = uv and subdivide then h by a new node z′. More generally, by a detachment
of node z into p nodes we mean the following operation. Replace z by p new nodes
z1, . . . , zp and replace each edge uz by an edge uzi. If the degree of each new node zi
is required to be a specified number di, we speak of a degree-specified detachment of
z. In order for this to make sense we assume that d1, . . . , dp add up to dG(z).

Theorem 3.15 (Nash-Williams). [41] Let G = (U,E) be a graph with a given
positive integer p(z) at every node z. It is possible to detach each node z into p(z)
parts so that the resulting graph is connected if and only if

e(X) ≥ m(X) + cG(X)− 1 (5)

holds for every nonempty subset X ⊆ V where m(X) :=
∑

(m(v) : v ∈ X) and cG(X)
denotes the number of components of G−X.

Note that Nash-Williams pointed out that this type of detachment can be handled
as a maroid partition problem.

Suppose first that we are given at each node z of a graph G = (U,E) a degree-
sequence specification d1(z), . . . , dp(z)(z). Nash-Williams investigated the problem
whether there exists a degree-specified detachment of all nodes so that the result-
ing graph is connected.

What if we want a detachment which is k-edge-connected for k ≥ 2? Clearly,
for the existence of such detachment it is necessary that G be k-edge-connected and
that each di(z) is at least k. This is not always sufficient and we exhibit even two
examples to show that. Let k be odd. First, suppose G consists of just two nodes
u and v connected with 2k parallel edges, and d1(u) = d(u) = k = d1(v) = d2(v).
Second, suppose that G has a cut node z of degree 2k and d1(z) = d2(z) = k. It is
not difficult two check that no k-edge-connected detachment may exist in either case.
Quite surprisingly, there are no other bad cases:

Theorem 3.16 (Nash-Williams). [41] Let G = (V,E) be an undirected graph with
a degree-sequence specification d1(z), . . . , dp(z)(z) at each node z. It is possible to
detach each node z into p(z) nodes having specified degrees so that the resulting graph
is k-edge-connected if and only if G is k-edge-connected, each requested degree di(z) is
at least k, except if kis odd and G is one of the two exceptional examples mentioned
above.

How is this result related to Lovász’ undirected splitting lemma? They are not
really comparable (in the sense that neither implies the other.) The splitting lemma
detaches only one node, into nodes of degree two, and is clearly not ”interested” in
preserving k-edge-connectivity at the detached nodes. But there is a very nice result
of B. Fleiner [10] which is a generalization of the splitting lemma on one hand and
implies easily theorem 3.16 on the other.
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The splitting lemma asserted that if G was k-edge-connected on V then a k-edge-
connectivity preserving splitting always existed. If there are odd numbers in the
degree-specification of the detachment, then this is not necessarily true. Let G consist
of two disjoint triangles plus a node z connected to all the other six nodes. Then G
is 3-edge-connected on V (even the whole G is) but it is not possible to detach z into
two nodes of degree 3 so that the resulting graph keeps to be 3-ec on V .

Theorem 3.17 (Fleiner). Let G = (V + z, E) be an undirected graph with a special
node z and k ≥ 2 an integer. Let d1, . . . , dp be integers for which di ≥ 2,

∑
di = dG(z)

and p ≥ 2. It is possible to detach z into p nodes of degree d1, . . . , dp, respectively, so
that the resulting graph is k-edge-connected on V if and only if G is k-edge-connected
on V and G− z is k′-edge-connected where

k′ := k −
p∑
i=1

bdi/2c . (6)

Note that if each di is even, then G − z is automatically k′-ec so we do not have
to explicitly require it, and this special case follows immediately from the undirected
splitting lemma. As Lovász’ splitting lemma could be used to derive Watanabe and
Nakamura’s theorem 2.4 on minimum k-edge-connected augmentation of a graph,
Fleiner used his result to prove the following generalization [10].

Theorem 3.18 (Fleiner). Let G = (V,E) be an undirected graph and d1, . . . , dp and
k integers larger than one. It is possible to augment G by adding p new nodes of degree
di, respectively, so that the enlarged graph G+ is k-edge-connected in V if and only if

∑
((k − dG(X)) : X ∈ F) ≥

p∑
i=1

di (7)

holds for every sub-partition F of V , and

λ(u, v;G) ≥ k −
p∑
i=1

bdi/2c (8)

holds for every pair of nodes u, v ∈ V .

So, B. Fleiner’s theorem 3.17 is one generalization of the undirected splitting lemma
while Mader’s theorem 3.1 is another. Does there perhaps exist a common general-
ization of these difficult theorems? Yes, T. Jordán and Z. Szigeti proved the following
beautiful theorem [30].

Theorem 3.19 (Jordán and Szigeti). Let G = (V + z, E) be a 2-ec undirected
graph with a special node z. Let d1, . . . , dp be integers for which di ≥ 2,

∑
di = dG(z)

and p ≥ 2. Also, we are given a symmetric function r(u, v) on the pairs of nodes in
V . There is a detachment of z into t node of degree d1, . . . , dp, respectively so that
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Section 4. Uncrossing-based results 18

in the resulting graph G′ each local edge-connectivity λ(u, v;G′) is at least r(u, v) for
every (u, v ∈ V ) if and only if

r(u, v) ≤ λ(u, v;G) and λ(u, v;G− s) ≥ r(u, v)−
p∑
i=1

bdi/2c (9)

for all u, v ∈ V .

In the augmentation results so far we always added edges to an existing graph
G = (V,E). This may be interpreted as adding new nodes of degree two so that the
(local) edge-connectivity should attain a certain prescribed value. It is quite natural to
investigate an extension of the problem when the newly added nodes are of prescribed
degree, not necessarily two. The following is a straight generalization of theorem 3.10
is taken from [30]. As in theorem 3.10, we are given an undirected graph G = (V,E)
and a symmetric non-negative integer-valued function r(u, v) on the pair of nodes,
called local edge-connectivity requirement. Let Rr(X) := max{r(u, v) : u ∈ X, v ∈
V −X} for every X ⊆ V and let q(X) := R(X) − dG(X). Recall the definition of a
marginal component of G.

Theorem 3.20. Let G = (V,E) be an undirected graph, r(u, v) a local edge-con-
nectivity demand function so that there are no marginal components. Moreover, let
d1, d2, . . . , dp be integers each larger than 1. It is possible to add to G p new nodes
of degree di, respectively, so that the enlarged graph G+ satisfies λ(u, v;G+) ≥ r(u, v)
for every pair nodes u, v ∈ V if and only if

∑
((q(X)) : X ∈ F) ≥

p∑
i=1

bdi/2c (10)

holds for every sub-partition F of V , and

λ(u, v;G) ≥ r(u, v)−
p∑
i=1

di (11)

holds for every pair of nodes u, v ∈ V .

We conclude the section by remarking that no detachment-type results are known
for directed graphs.

4 Uncrossing-based results

In the previous two sections we overviewed results evolving from the splitting lemma.
Here the fruits of another basic technique, the uncrossing procedure, will be surveyed.
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4.1 Orientations and augmentations through submodular flows

One of the most general and most flexible framework concerning sub- or supermodular
functions is submodular flows. In [21] a rather exhaustive survey was given to show
how basic results on submodular flows can be applied to orientation problems. One of
the most general results is a characterization of mixed graphs having k-edge-connected
orientations. (By an orientation of a mixed graph M = (V,E +A), with directed

and undirected edge-sets A and E respectively, we mean a directed graph (V,A+ ~E)
arising from M by orienting each undirected edges and leaving alone the directed
ones). This characterization however is rather complicated in the sense that cut-
type or partition-type necessary conditions are not sufficient anymore, in general.
We formulate it, even in a slightly more general form, to indicate that submodular
functions seem to be unavoidable even in such a purely (and rather natural) graph-
theoretic problem of characterizing mixed graphs having a k-edge-connected (or (k, l)-
ec) orientation.

For A a proper nonempty subset of V we introduce the notion of a tree-composition
of A. Let {A1, . . . , Aα} be a partition of A and {B1, . . . , Bβ} a partition of V − A
(α, β ≥ 1). Let T = (U,F ) be a directed tree such that U := {a1, . . . , aα, b1, . . . , bβ}
and each directed edge goes from a bj to an ai. The family A := {ϕ−1(Tf ) : f ∈ F} is
called a tree-composition of A where ϕ(v) = ai if v ∈ Ai and ϕ(v) = bj if v ∈ Bj.
We will also say that a partition or a co-partition of V is a tree-composition of
V . Note that a tree-composition A of A is cross-free and every element of A belongs
to the same number t of members and every element belongs to t − 1 members. (If
α = β = 1, then A consists of the single set A. If β = 1 < α, then A is a partition of
A. If α = 1 < β, then A is a co-partition of A.)

Suppose that G = (V,E) is an undireted graph. Let A be a tree-composition of a
subset A ⊆ V and j = uv an edge of G. Let euv̄(A) denote the number of uv̄-sets in
A. That is, euv̄(A) is the number of sets in A entered by the directed edge with tail
v and head u. Let ej(A) := max(euv̄(A), eūv(A)) and

eG(A) :=
∑
j∈E

ej(A). (12)

Note that |euv̄(A) − evū(A)| ≤ 1 with equality if and only if |A ∩ {u, v}| = 1. The
quantity ej(A) indicates the (maximal) possible contribution of an edge j = uv to the

sum
∑

(% ~G(X) : X ∈ A) for any orientation ~G of G. Hence eG(A) measures the total
of these contributions and we have∑

X∈A

% ~G(X) ≤ eG(A) (13)

for any orientation ~G of G. Let D = (V,A) be a digraph and M = (V,A + E) a
mixed graph. Let s be a root-node of M . For integers 0 ≤ l ≤ k define pkl(X) :=
(k − %D(X))+ if ∅ ⊂ X ⊂ V − s and pkl(X) := (l − %D(X))+ if s ∈ X ⊂ V .

Theorem 4.1. M has a (k, l)-edge-connected orientation (with respect to root-node
s) if and only if ∑

(pkl(X) : X ∈ A) ≤
∑

(eG(A) : e ∈ E) (14)
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holds for every tree-composition A.

This is indeed a bit complicated but there are small examples (see, [21]) even
for k = l = 2, (that is, when the target is 2-edge-connectivity) which show that
tree-compositions are inevitable. In some important special cases, however, they are
supefluous as we have already seen in theorems 2.8 and 2.10. We exhibit first a
common generalization of these last two results when partition type conditions turn
out to be sufficient. Recall that theorem 2.7 was about k-ec orientation which, in
addition, K-ec from s to t. Now we investigate the orientation problem when l-edge-
connectivity and rooted k-edge-connectivity are simultaneously expected (that is, we
want a (k, l)-ec orientation).

Theorem 4.2. Let 0 ≤ l ≤ k be integers. An undirected graph G = (V,E) has a
(k, l)-ec orientation if and only if G is (k, l)-partition-connected.

Another special case of the mixed graph (k, l)-ec orientation problem when only
partition type condidions are required is the case of l ≤ 1. The case l = 0, which is a
generalization of theorem 2.10, appeared in [13].

Theorem 4.3. A mixed graph D+G = (V,A+E) of root-node s has a (k, 0)-ec (that
is, s-rooted k-edge-connected) orientation iff the number of cross-edges of G is at least

t∑
i=1

(k − %D(Vi)) (15)

for every partition {V0, V1, . . . , Vt} of V into non-empty parts with s ∈ V0.

The case l = 1 appeared in [21].

Theorem 4.4. A mixed graph D + G = (V,A + E) of root-node s has a (k, 1)-ec
orientation (that is, strongly connected and s-rooted k-edge-connected) iff the number
of cross-edges of G is at least

∑t
i=1(k−%D(Vi))+1 for every partition {V0, V1, . . . , Vt}

of V into non-empty parts with s ∈ V0.

The rooted edge-connectivity augmentation problem (in digraphs) behaves nicely in
the sense that even the minimum cost version is tractable. Suppose that we are given
a digraph with a special root-node s and we want to augment the digraph by adding
a minimum cost of new edges so as to have a rooted k-ec digraph. At the beginning of
secion 2, we mentioned that the minimum cost subgraph problem is equivalent to the
minimum cost augmentation problem, and in this case the subgraph problem (:find
in a digraph a minimum cost rooted k-ec subgraph) can be solved with the help of
submodular flows, see [14] and [45]. Here we mention only one consequence of this:

Theorem 4.5. Let D = (V,E) and H = (V,A) be two digraphs so that their union
D + H = (V,E ∪ A) is k-ec from a root-node s. The minimum number of edges of
H whose addition to D results in a s-rooted k-ec digraph is equal to the maximum of∑

(k − %D(X) : X ∈ F) where the maximum is taken over all laminar families F of
non-empty subsets of V − s for which no edge of H enters more than one member of
F .
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4.2 Connectivity orientation and augmentation combined

Now comes an account on some brand-new developments making possible to combine
orientation and augmentation problems. In subsection 2.2 we have already mentioned
this type of results: theorem 2.11 characterized undirected graphs which can be aug-
mented by adding at most γ edges so as to have a (k, 0)-ec orientation. We also
remarked that even the minimum cost augmentation was tractable by using matroid
techniques. Here we consider the same problem for mixed graphs (where those ma-
troid techniques do not work.) Let us consider theorem 4.3 and suppose that the
required orientation does not exists, that is, the necessary and sufficient condition in
15 fails to hold. How many new undirected edges should be added to M so as to
have a (k, 0)-ec orientation. Or more generally, what is the minimum cost of required
new edges? By considering the existing undirected edges having zero cost, this latter
problem is equivalent to the following.

Given a mixed graph with a root node s endowed with a non-negative cost function
on the set of undirected edges, delete a maximum cost of edges so that the resulting
mixed graph has a (k, 0)-ec orientation. S. Khanna, S. Naor and F.B. Shepherd [31]
solved this problem in an even more general form when the directed edges may also
have costs and the two possible directions e′ = uv and e′′ = vu of an undirected edge
uv may have different costs.

To be more specific, let M = (V,E + A) be a mixed graph consisting of a digraph
D = (V,A) and an undirected graph (V,E). Let s be a root-node of M and let
A1 := A ∪ {e′, e′′ : e ∈ E}. Furthermore we are given a nonnegative cost function
c : A1 → R+. We say that a subset F ⊆ A1 of directed edges (or the subdigraph
D′ := (V, F )) is orientation-constrained if F may contain at most one of the two
possible directions e′ and e′′ of any undirected edge e ∈ E.

The (k, 0)-orientable subgraph problem consists of finding a minimum cost
(k, 0)-ec orientation-constrained subdigraph D′ = (V, F ) of D1 := (V,A1).

Khanna, Naor and Shepherd considered the following linear program:

min
∑

(c(f)x(f) : f ∈ A1) (16)

subject to

0 ≤ x(f) ≤ 1 for every directed edge f ∈ A1 (17)

x(e′) + x(e′′) ≤ 1 for every edges e ∈ E (18)

∑
(x(f) : f ∈ A1, f enters Z) ≥ k for every subset ∅ ⊂ Z ⊆ V − s. (19)

Let P denote the polytope described by the three constraints. Clearly, an integer
vector in P is actually 0 − 1-valued and the 0 − 1 vectors of P are precisely the
characteristic vectors of orientation constrained (k, 0)-ec subdigraphs of D1.

The main result of [31] is as follows:
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Theorem 4.6 (Khanna, Naor, and Shepherd). The vertices of polytope P are
0 − 1 vectors, or equivalently, P is the convex hull of (characteristic vectors) of
orientation-constrained (k, 0)-ec subdigraphs of D1.

By relying on linear programming duality, this theorem provides a min-max formula
for the minimum cost of a solution. We avoid formulating this since the result can be
even further improved. In [26] we proved the following.

Theorem 4.7. The linear inequality system of (17), (18), and (19) is totally dual
integral (implying the integrality of P ). Moreover, P is a submodular flow polyhedron.

This theorem enables us to solve the problem algorithmically by invoking a sub-
modular flow algorithm. Furthermore, one has a better structured duality theorem.
For the sake of simplicity we formulate it only for 0− 1-valued cost functions.

Theorem 4.8. Let M = (V,A + E) be a mixed graph with a root-node s endowed
with a 0 − 1 valued cost function c : A ∪ E → {0, 1}. The minimum cost of a
mixed subgraph of M which has a (k, 0)-ec orientation is equal to the maximum of
tk − eE(F) −

∑
(%D(X) : X ∈ F) + q(F) where the maximum is taken over all

laminar families F of t (t ≥ 1) subsets of V − s, eG is defined in (12), and q(F)
denotes the number of (directed or undirected) edges of cost 1 which enter at least one
member of F .

This is a common generalization of theorems 4.3 and 4.5. When c is zero on all
directed edges, we are back at our starting problem of finding a minimum number of
new undirected edges to be added to a mixed graph to have a (k, 0)-ec orientation.

So, we can solve quite reassuringly the combined orientation/augmentation problem
in mixed graphs when the target is (k, 0)-edge-connectivity. Wouldn’t it be natural
to lift our horizon to (k, l)-edge-connectivity? The directed (k, l)-edge-connectivity
augmentation problem is solved by theorem 3.14. The (k, l)-edge-connectivity orien-
tation problem is solved for undirected graphs by theorem 4.2 (and even for mixed
graphs by theorem 4.1). We show now how to solve the problem of augmenting an
undirected graph by adding undirected edges so that the resulting graph has a (k, l)-ec
orientation. Due to the relatively complicated nature of tree-compositions in theorem
4.1, so far we have not taken courage to try to attack the corresponding augmenta-
tion problem for mixed graphs. And even for undirected graphs the minimum cost
version is out of question because the NP-complete problem of finding a Hamilton-
circuit problem is a special case. We consider the degree-specified and the minimum
augmentation problems as well. The following results are taken from [25].

Theorem 4.9. Let G = (V,E) be an undirected graph, k ≥ l ≥ 0 integers, and
m := V → Z+ a degree-specification for which m(V ) is even. There exists a graph
H = (V,A) so that dH(v) = m(v) for every v ∈ V and so that G + H is (k, l)-tree-
connected ( = (k, l)-partition-connected = (k, l)-ec orientable) if and only if

m(V )/2 ≥ (t− 1)k + l − iG(F) (20)
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and
min
X∈F

m(V −X) ≥ (t− 1)k + l − iG(F) (21)

hold for every partition F of V into t ≥ 2 non-empty parts where iG(F) denotes the
number of cross-edges of F .

Let us indicate briefly the proof of necessity. If G + H has a (k, l)-ec orientation,
than it is G + H is (k, l)-partition-connected, that is, iG+H(F) ≥ k(t − 1) + l and
hence iH(F) ≥ k(t − 1) + l − iG(F). If H satisfies the degree-specification, than
m(V )/2 = |A| ≥ iH(F) and m(V − X) ≥ iH(F) for every X ∈ F from which both
(20) and (21) follow.

This result might be interesting even in the special case of l = 0:

Corollary 4.10. Let G = (V,E) be an undirected graph, k ≥ 1 an integer, and
m := V → Z+ a degree-specification for which m(V ) is even. There exists a graph
H = (V,A) so that dH(v) = m(v) for every v ∈ V and so that G + H is k-tree-
connected if and only if

m(V )/2 ≥ (t− 1)k − iG(F) (22)

and
min
X∈F

m(V −X) ≥ (t− 1)k − iG(F) (23)

hold for every partition F of V into t ≥ 2 non-empty parts where iG(F) denotes the
number of cross-edges of F .

The following theorem is a bit out of the main line of the paper since the target of
the augmentation is not a connectivity property. As a counterpart to tree-packing in
corollary 4.10, here our target is tree-covering:

Theorem 4.11. Let G = (V,E) be an undirected graph, k ≥ 1 an integer, and
m := V → Z+ a degree-specification for which m(V ) is even. There exists a graph
H = (V,A) so that dH(v) = m(v) for every v ∈ V and so that G+H is the union of
k forests if and only iff

m(X)−m(V )/2 ≤ k(|X| − 1)− iG(X) (24)

for every ∅ ⊂ X ⊆ V where iG(X) denotes the number of edges of G induced by X.

Again it is useful to prove the necessity. If H is a graph for which G + H is
the union of k forests, than iG+H ≤ k(|X| − 1) holds for every subset X ⊆ V ,
that is, iH(X) ≤ k(|X| − 1) − iG(X). If H satisfies the degree-specification, than
|A| = m(V )/2 and at most m(V − X) edges may be incident with an element of
V − X. So at least m(V )/2 − m(V − X) edges are induced by X in H and hence
m(X)−m(V )/2 = m(V )/2−m(V −X) ≤ iH(X) ≤ k(|X| − 1)− iG(X).

To conclude this subsection, we cite a result from [25] on the minimization form of
(k, l)-tree-connectivity augmentation.
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Theorem 4.12. Let G = (V,E) be an undirected graph. It is possible to add at most
γ new edges to G so that the resulting graph G+ is (k, l)-tree-connected (that is, G+

has a (k, l)-ec orientation) if and only if

γ ≥ k(t− 1) + l − eG(F) (25)

holds for every partition F of V with t members, and

2γ ≥ t1k + t2l − eG(F) (26)

holds whenever F is the the union a partition F1 of a subset Z ⊆ V and a co-partition
F2 of Z so that |Fi| = ti (i = 1, 2) and so that F1 is a finer partition of Z than partition
{X : V −X ∈ F2}.

4.3 Directed edge-connectivity augmentation

In [20] we proved a general min-max formula concerning minimum coverings of a so-
called bi-supermodular function by directed graphs. This result implies theorem 3.14
(which has had an independent and simpler proof) and implies the following, as well.

Theorem 4.13. Let D = (V,A) be a directed graph and S, T two (not necessarily
disjoint) nonempty subsets. It is possible to add at most γ ST -edges so that the
resulting digraph is k-edge-connected from S to T if and only if∑

(k − %D(X) : X ∈ F) ≤ γ (27)

holds for every family F of ST -independent sets.

In a sharp contrast with the existence of a good characterization in theorem 3.10
concerning local edge-connectivity augmentations of undirected graphs, the directed
counterpart of this problem is known to be NP-complete even in the special case
when the requirement is one between the nodes of a specified subset T of nodes and
zero otherwise. (That is, given a digraph, add a minimum number of new edges so
that there is a path from every element of T to every other element of T .) Recently
however, I found the following characterization for |T | = 2 [22]. (This result seems to
be independent of the rather general main theorem of [20].)

Theorem 4.14. Let D = (V,E) be a digraph with two specified nodes s, t and let k, l
be two non-negative integers. Let S, T be nonempty subsets of V so that every st̄-set
X with %D(X) < k and every ts̄-set X with %D(X) < l is antered by an ST -edge. D
can be augmented by adding at most γ (possibly parallel) ST -edges so that there are
k edge-disjoint paths from s to t and there are l edge-disjoint paths from t to s iff
γ ≥ k − %D(X) whenever t ∈ X ⊆ V − s, γ ≥ l − %D(X) whenever s ∈ X ⊆ V − t,
and γ ≥ (l− %D(X)) + (k − %D(Y )) holds whenever s ∈ X, t ∈ Y and X ∩ Y ∩ T = ∅
or X ∪ Y ⊇ S.
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5 Consructive characterizations

We have already seen constructive characterizations of k-ec graphs and digraphs (the-
orems 2.14, 3.2, 2.15), of (k, 0)-ec digraphs (2.16) and k-tree-connected graphs (2.17).
For integers 0 ≤ l < k we offer the following:

Conjecture 5.1. A directed graph D is (k, l)-edge-connected if and only if it can be
built form a node by the following two operations: (j) add a new edge, (jj) pinch i
(l ≤ i < k) existing edges with a new node z, and add k− i new edges entering z and
leaving existing nodes. An undirected graph is (k, l)-tree-connected (=(k, l)-partition-
connected) if and only if it can be built from a node by the following two operations:
(j) add a new edge, (jj) pinch i (l ≤ i < k) existing edges with a new node z, and
add k − i new edges connecting z with existing nodes.

Note that by theorem 4.2 the undirected version of the conjecture follows from the
directed one. As mentioned above, the case l = 0 is settled by theorem 2.16. Jointly
with Zoltán Király [24], we characterized (k, k− 1)-ec digraphs (and hence (k, k− 1)-
partition-connected graphs, as well). At the other end of the range of l, recently I
proved the case l = 1. All other cases of the conjecture is open (for example, when
k = 4, l = 2).

The theorem in [24] concerning the case l = k − 1, in turn, can be used to derive
the following orientation result. Let G = (V,E) be an undirected graph. A subset T
of nodes is called G-even is |T | + |E| is even. We call an orientation of G T -odd if
the indegree of a node v is odd precisely when v belongs to T . The following is taken
from [24].

Theorem 5.2. An undirected graphs G has a k-edge-connected and T -odd orientation
for every G-even subset T if and only if G is (k + 1, k)-partition-connected.

Corollary 5.3. A (2k + 2)-edge-connected graph always admits a k-edge-connected
orientation in which the indegree of all but possibly one nodes are odd.

As mentioned above, the proof is based on constructive characterization of (k+1, k)-
partition-connected graphs. It would be interesting to have a simple direct proof of
the corollary, even for the special case k = 2 when it asserts that a 4-ec graph has a
strongly connected orientation in which every node but possibly one is of odd indegree.

The motivation behind such a theorem is the natural attempt to have a better un-
derstanding of problems where both parity and connectivity are involved. In theorem
5.2 we charaterized graphs having a certain orientation for every G-even subset T . It
would be interesting to know the necessary and sufficient condition of the existence
of a k-edge-connected T -odd orientation of a graph G for one specified G-even subset
T . This is open. However, the analogous question concerning k-tree-connectivity has
been settled in [23].

Theorem 5.4. Let G = (V,E) be a graph with a root-node s. Let T be a G-even
subset of V − s. G has a (k, 0)-edge-connected (=s-rooted k-ec) T -odd orientation if
and only if the number of cross edges of every partition P := {V1, . . . , Vt} of V into at
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least two non-empty parts is at least k(t−1)+o(P) where o(P) (which depends also on
G, k, and T ) denotes the number of those parts X of P for which |X ∩T |− iG(X)−k
is odd.

As a possible counterpart to Corollary 5.3, we can derive:

Corollary 5.5. Let G = (E, V ) be an undirected graph with |E| + |V | even. If G is
(k + 1)-tree-connected, then G has a (k, 0)-edge-connected V -odd orientation.

But this is straightforward anyway since we can take k+1 edge-disjoint trees, orient
the edges of k of these away from a root node s, orient the remaining edges not in
the last tree Fk+1 arbitrarily, and finally, orient the edges of Fk+1 so as to meet the
parity prescription.

A problem related to the constructive characterization of k-edge-connected digraphs
is to find a characterization of (acyclic) digraphs whose all directed cuts admit at least
k edges. Such an approach could perhaps be used to prove D. Woodall’s long-standing
conjecture:

Conjecture 5.6. If every directed cut of a digraph D has at least k edges, then the
edge-set of D can be partitioned into k parts so that each part has at least one edge
from every directed cut.

Woodall’s conjecture can easily be seen to be true for k = 2 but no answer is known
even for k = 3 and for planar digraphs. (In which case, after planar dualization, the
conjecture reads as follows: in a simple planar digraph, the edge-set can be coloured by
three colours so that every directed triangle contains each colour.) A straighforward
generalization of Woodall’s conjecture concerning a crossing family of directed cuts
was disproved by A. Schrijver [44] even for k = 2.

(k, 1)-tree-connectivity has meant that the graph has k disjont spanning trees even
after deleting any edge. We call a graph G = (V,E) k-stiff if it is the union of k
disjont spanning trees after adding any new edge, that is, G+e is the union of k edge-
disjoint spanning trees for every possible new edge e = uv (u, v ∈ V ), and no proper
induced subgraph of G has this property. By a theorem of Nash-Williams [40], a graph
G = (V,E) is k-stiff if and only if |E| = k(|V |− 1)− 1 and iG(X) ≤ k(|X|− 1)− 1 for
every subset X ⊆ V with |X| ≥ 2. The notion of 2-stiff graphs has been introduced
in the theory of graph rigidity. By combining theorems of L. Henneberg [29] and of G.
Laman [33], one obtains the following constructive characterization of 2-stiff graphs.

Theorem 5.7 (Henneberg and Laman). A graph G is 2-stiff if and only if G can
be constructed from one (non-loop) edge by the following two operations: (i) add a
new node z and connect z to two distinct existing nodes, (ii) subdivide an existing
edge uv by a node z and connect z to an existing node distinct from u and v.

Jointly with László Szegő [28], we were able to extend this result for k-stiff graphs.
Note however that this extension has no meaning in term of rigidity.
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Theorem 5.8. A graph G is k-stiff if and only if G can be constructed from an initial
graph, consisting of two nodes and k − 1 parallel edges connecting them one, by the
following two operation: choose a subset F of j existing edges (0 ≤ j ≤ k − 1), pinch
the elements of F with a new node z, and add k− j new edges connecting z with other
nodes so that there are no k parallel edges among these new edges.

6 Hypergraphs

So far our interest have been fully occupied by graphs and digraphs. In this last
section we let hypergraphs take over the center stage. A hypergraph H = (V,F)
consists of a ground-set V and a family F of (not necessarily distinct) subsets of
V , called hyperedges. The cardinality |Z| of a hyperedge Z is called its size. We
are naturally back at undirected graphs when each hyperedge is of size two. The
maximum size of a hyperedge is called the rank of H. Throughout we will assume
that the size of every hyperedge is at least two.

It is often useful to associate a bipartite graph BH = (V, UF ;E) with hypergraph H
as follows. The elements of UF correspond to the hyperedges of H and a node v ∈ V
is connected to a node uX in UF precisely if u ∈ X ∈ F . In this correspondence the
size of a hyperedge Z will be the degree of its corresponding node uZ in B.

For a subset X ⊆ V let dH(V ) denote the number of hyperedges of H intersecting
both X and V −X. For a specified subset R ⊆ V , a hypergraph H is called k-edge-
connected in R if dH(X) ≥ k for every subset X ⊂ V separating R. (X is said to
separate R if X ∩ R 6= ∅, R − X 6= ∅.) If R = V , the hypergraph itself is is called
k-edge-connected. When k = 1 we simply say that H is connected.

¿From the definitions it follows that H is k-edge-connected in R if and only if
the elements of R belong to one component of the graph arising from the associated
bipartite graph (V, UF ;E) by deleting at most k − 1 elements of UF . By a version of
Menger’s theorem, it follows that B has this property if and only if there are k paths
between any pair of nodes u, v of R so that each node of UF belongs to at most one
of these paths (but the paths may share freely elements of V ).

This implies that a hypergraph H is k-edge-connected in R if and only if there are k
hyperedge-disjoint hyperpaths between every pair of nodes u, v ∈ R. Here a hyperpath
means a sequence {u1 := u, F1, u2, F2, . . . , ut, Ft, ut+1 := v} so that ui, ui+1 ∈ Fi ∈ H
for i = 1, . . . , t.

Theorem 2.4 has been extended by J. Bang-Jensen and B. Jackson to hypergraphs
[2].

Theorem 6.1 (Bang-Jensen and Jackson). A hypergraph H = (V,A) can be made
k-edge-connected by adding at most γ new graph-edges iff

∑
(k−dH(X) : X ∈ P) ≤ 2γ

holds for every sub-partition P of V and c(H ′) − 1 ≤ γ for every hypergraph H ′ =
(V,A′) arising from H by leaving out k−1 hyperedges where c(H ′) denotes the number
of components of H ′.
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In [4] we extended this to the case when the target is k-edge-connectivity in a
specified subset R ⊆ V .

For q ≥ 3, it is an open problem to characterize hypergraphs which can be made
k-edge-connected by adding at most γ hyperedges of size at most q. The special case,
when H is already (k − 1)-edge-connected, was solved by T. Fleiner and T. Jordán
[11].

Let r be a symmetric function on pairs of nodes, that is, r(u, v) = r(v, u). This
defines a set-function Rr by Rr(X) := max{r(u, v) : u ∈ X, v ∈ V − X}. We
say that H is r-edge-connected if there are at least r(u, v) edge-disjoint hyperpaths
between every pair of nodes u, v. Again by Menger, this is equivalent to requiring
dH(X) ≥ Rr(X) for every nonempty subset X ⊂ V .

Since local edge-connectivity augmentation is nicely tractable for undirected graphs,
one may want to extend this to hypergraphs and determine the minimum number
of new graph edges whose addition to H results in r-edge-connected hypergraph.
However, B. Cosh, B. Jackson and Z. Király [6] pointed out that this problem is
NP-complete even if r is (1− 2)-valued.

Another interesting version of the local edge-connectivity augmentation of hyper-
graphs was solved nicely by Z. Szigeti [46].

Theorem 6.2 (Z. Szigeti). Given a symmetric two-variable function r on the pairs
of nodes of V , a hypergraph can be made r-edge-connected by adding hyperedges
with total size at most γ iff

∑
i(Rr(Xi) − dH(Xi)) ≤ γ holds for every subpartition

X1, . . . , Xt of V .

The material below is taken from a recent work [26]. Not only edge-connectivity,
but tree-connectivity as well can be extended to hypergraphs. But first we should
make clear what we mean by a hyper-tree. Clearly there are several ways, we use the
following one. A hypergraph H = (V, T ) is said to be a hyper-tree if it is possible
to pick up two elements from each hyperedge so that the chosen pairs, considered as
graph edges, form a tree. The hyper-tree is spanning if it has |V | − 1 hyperedges.
We say that a hypergraph is tree-connected if it contains a spanning hyper-tree. A
tree-connected hypergraph is clearly connected but the converse is not necessarily true
as shown by a hypergraph on three nodes x, y, z with the single hyperedge {x, y, z}.
Note that for graphs the notion of tree-connectivity and connectivity coincide and it
is trivial to decide if a graph has a spanning tree.

It is not trivial to decide if a hypergraph is tree-connected. Just to recognize
whether a hypergraph is a hyper-tree or not needs some work. The following is an
old observation of Lovász. (It follows also from the matroid intersection theorem of
Edmonds).

Theorem 6.3. A hypergraph H = (V, T ) is a hyper-tree if and only if |T | = |V | − 1
and the union of any j hyperedges (j ≥ 1) has at least j + 1 nodes.

Proof. (outline) The necessity is staightforward. To see the sufficiency, consider the
bipartite graph B = (V, UT ;E) associated with H. Let U = UU . Since the Hall
condition is (strongly) satisfied, there is a matching M of B covering the elements of
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U . There is a unique node s not covered by M . Orient the elements of M toward
V while all other edges toward U . Itt follows from the condition of the theorem that
each node of B is reachable from s. Hence there is a spanning arborescence of B
rooted at s and this determines the required tree.

The following can be proved with standard matroid-theoretic tools.

Theorem 6.4. The spanning hyper-trees of a hypergraph (V,F) form the basis set of a
matroid on ground-set F . A subset I of F is independent iff |∪(X : X ∈ J | ≥ |J |+1
for every non-empty subset J of I.

More generally, a hypergraph H = (V,F) is called k-tree-connected if its hyper-
edges can be partitioned into k parts F1, . . . ,Fk so that each of the k hypergraphs
(V,Fi) (i = 1, . . . , k) is tree-connected, or in other words, if F can be decomposed
into k tree-connected hypergraphs.

By mimicking k-partition-connectivity of graphs, we define a hypergraph to be k-
partition-connected if the number of hyperedges intersecting more than one part
in any t-partite partition of V is at least k(t − 1). When k = 1 we simply say that
H is partition-connected. (An equivalent formulation for partition connectivity is
that the number of connected components of any subhypergraph arising from H by
deleting j hyperedges is at most j + 1.)

By matroid theoretic tools we can prove the following extension of Tutte’s theorem.

Theorem 6.5. A hypergraph H = (V,F) is k-tree-connected if and only if H is k-
partition-connected.

Corollary 6.6. If a hypergraph H of rank at most q is (kq)-edge-connected, then H
is k-tree-connected (and remains so even after leaving out at most k hyperedges).

Proof. Let {V1, . . . , Vt} be a partition of V . There are at least kq hyperedges inter-
secting both Vi and its complement for each i. Since one hyperedge may be counted
at most q times, we obtain that there exist at least kqt/q = kt which is larger by k
than k(t−1), the minimum number of required hyperedges in a k-partition-connected
hypergraph to intersect more than one part.

6.1 Directed hypergraphs

There may be several choices to define directed hypergraphs, we work with the follow-
ing definition. A directed hyperedge (Z, z) is a pair of a subset Z of the ground-set
V and an element z of Z. The element z is called the head of Z. By a directed
hypergraph we mean a collection of directed edges. This obviously generalizes the
notion of directed graphs. A disadvantage of this definition is that the symmetry
between the head and the tail of a directed graph edge is lost. On the positive side of
this definition is that several result concerning edge-connectivity of directed graphs
can be carried over nicely to directed hypergraph.

We say that a direted hyperedge (Z, z) enters a subset X ⊆ V if the head z is in
X but Z − X 6= ∅. A directed hypergraph is called k-edge-connected if there are
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at least k hyperedges entering each nonempty proper subset of V . More genarally,
for integers 0 ≤ l ≤ k, a directed hypergraph is called (k, l)-edge-connected if
there is a node s ∈ V so that each nonempty subset X ⊆ V − s is entered by at
least k hyperedges and and each subset X ⊂ V containing s is entered by at least l
hyperedges.

By orienting an (undirected) hypergraph we mean the operation that consists of
assigning a head to every hyperedge.

Theorem 6.7. A hypergraph has a (k, l)-edge-connected orientation iff there are at
least kt− k+ l hyperedges intersecting more than one part of every t-partite partition
of V .

Finally we mention that Edmonds’ theorem 1.3 can also be carried over to hy-
pergraphs. To this end we say that a directed hypergraph H is a spanning hyper-
arborescence of root s if H has |V | − 1 hyperedges whose heads are distinct elements
of V − s and and H is (1, 0)-edge-connected.

Theorem 6.8. A directed hypergraph contains k disjoint spanning hyper-arborescences
of root s if and only if H is (k, 0)-edge-connected (with respect to s).

Note that the special case l = 0 of Theorem 6.7 combined with Theorem 6.8 imme-
diately implies Theorem 6.5 (without using matroids).
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