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Restricted t-matchings in bipartite graphs

András Frank?

Abstract
Given a simple bipartite graph G and an integer t ≥ 2, we derive a formula

for the maximum number of edges in a subgraph H of G so that H contains
no node of degree larger than t and H contains no complete bipartite graph
Kt,t as a subgraph. In the special case t = 2 this fomula was proved earlier by
Z. Király [6], sharpening a result of D. Hartvigsen [4]. For any integer t ≥ 2,
we also determine the maximum number of edges in a subgraph of G that
contains no complete bipartite graph, as a subgraph, with more than t nodes.
The proofs are based on a general min-max result of [2] concerning crossing
bi-supermodular functions.

1 Introduction

Throughout the paper we work with a bipartite graph G = (S, T ;E) with node set
V := S ∪ T . We will always assume, without any further reference, that G is simple.
Let t ≥ 2 be an integer. By a t-matching (resp., t-factor) we mean a subgraph H
of G in which the degree dH(v) of every node v is at most t (resp., is exactly t). Note
that in the literature such a subgraph is sometimes called a simple t-matching and in
a t-matching multiple copies of an edge are also allowed. Since we never use multiple
edges and work exclusively with subgraphs of G, the adjective ”simple” will not be
used.

For a subset Z ⊆ V , the number of edges induced by Z is denoted by iG(Z) = i(Z),
while the number of edges with at least one end-node in Z is denoted by eG(Z) = e(Z).
It is known from (bipartite) matching theory that G has a t-factor if and only if
|S| = |T | and

t|S| ≤ t|Y |+ i(V − Y ) (1)

holds for every subset Y ⊆ V (and actually, it is enough to assume (1) only for subsets
Y for which V −Y induces a graph of maximum degree at most t−1). More generally,
the maximum number of edges in a t-matching of G is equal to

min
Z⊆V

(t|Z|+ i(V − Z)). (2)
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dapest, Hungary, H-1053 and Traffic Lab Ericsson Hungary, Laborc u.1, Budapest, Hungary H-1037.
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W.H. Cunningham and J. Geelen proposed to investigate the problem of maximum
C4-free (or square-free) 2-matchings of bipartite graphs where C4 or a square is a
circuit of length four. In a recent paper, D. Hartvigsen [4] provided an answer to this
problem in the following sense. He introduced a linear program (P ′), as follows.

maxx(E)

0 ≤ x ≤ 1

dx(v) ≤ 2 for every v ∈ V, (3)

x(K) ≤ 3 for every 4-circuit K of G (4)

where dx(v) :=
∑

(x(e) : e ∈ E, e is incident with v).
Clearly, a 0−1 vector satisfies these constraints if and only if it is the characteristic

vector of a square-free 2-matching of G. Hartvigsen [4] announced the following result.

Theorem 1.1. [4] The linear program (P ′) has an otpimum solution which is 0− 1-
valued. The dual linear program to (P ′) has an optimum solution which is half-integer-
valued.

To prove this, Hartvigsen constructed a (combinatorial) strongly polynomial algo-
rithm that computes a 0 − 1-valued primal solution along with a half-integer-valued
dual solution so that this pair of solutions satisfies the complementary slackness con-
dition. This immediately gives rise to a min-max formula on the maximum cardinality
of a square-free 2-matching of G but Hartvigsen did not explicitly mention this, only
gave he a characterization for the existence of a square-free 2-factor. (That paper is
an extended abstract and does not include the detailed algorithm and its proof.)

That formulation however was not completely correct as was pointed out by Z.
Király in an unpublished manuscript around September, 1999. Király not only cor-
rected Hartvigsen’s characterization but proved a stronger result asserting that the
linear programming dual to problem (P ′) has always an integer-valued optimum (and
not only half-integer-valued). What actually Király proved was the following.

Theorem 1.2. [6] The maximum cardinality of a square-free 2-matching in a bipar-
tite graph G = (S, T ;E) is equal to

min
Z⊆V

(2|Z|+ i(V − Z)− c2(Z)) (5)

where c2(Z) is the number of those components of G − Z which are a square. The
optimal Z may be chosen in such a way that each component of G − Z consists of a
single node, or two adjacent nodes, or a square.

Király’s proof is relatively simple though not algorithmic. Having Király’s charac-
terization at hand, Hartvigsen was able to revise his algorithm to provide an integer-
valued dual optimum, as well. This improved version will appear in his detailed paper
[5] (a first draft is available in September, 2000). In December 1999, I noticed a re-
lation of the problem to a result in [2] and this led not only to a third approach to
the square-free 2-matching problem but to its extensions, as well. (The present paper
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contains the details: see theorems 2.1 and 3.3). Having heard of theorem 2.1, Király
was able to apply his proof technique and proved that result too. This will appear in
[7].

As far as generalizations of theorem 1.2 are concerned, several possibilities show
up naturally. For example, one may be interested in finding maximum cardinal-
ity 2-matchings not containing circuits of length six. J. Geelen [3] proved the NP-
completeness of this problem. As the ordinary min-cost 2-factor problem is tractable
through network flows, one may want to find a minimum cost square-free 2-factor
of G. However, Z. Király [8] noticed that Geelen’s proof can be modified to prove
the NP-completeness of this problem. Finally, for higher integers t, the problem of
maximum t-matchings not containing certain forbidden subgraphs is worth for inves-
tigation, too.

But what kind of forbidden subgraphs are hopeful for good characterizations? Gee-
len’s NP-completeness observation above indicates that forbidding circuits longer than
four is not promising. A circuit C4 of length four, however, may also be considered
as a complete bipartite graph K2,2, and this fact will prove to be a suitable ground
for generalizations. In what follows, Kk,l denotes a complete bipartite graph, that is,
a graph whose node set is partitioned into a k-element set K and an l-element set L,
and its edge set is {uv : u ∈ K, v ∈ L}. When k ≥ 1, l ≥ 1, we speak of a bi-clique.
The size of a bi-clique is the number (= k + l) of its nodes. If k = 1 or l = 1, the
bi-clique is called trivial. A trivial bi-clique may be called a star.

The goal of this note is to exhibit two extensions of the result of Hartvigsen and
Király. In the first one we consider t-matchings of G containing no Kt,t. That is, we
are interested in subgraphs containing neither trivial bi-cliques of size t + 1 nor bi-
cliques Kt,t. In the other case, subgraphs of G are considered containing no bi-clique
of size larger than t for a given integer t ≥ 2. In both cases, we derive a formula for the
maximum number of edges in such subgraphs. The proofs are based on a general min-
max theorem [2] concerning positively crossing bi-supermodular functions (which have
already found several applications such as node- and edge-connectivity augmentation
of directed graphs, directed splitting-off results, extensions of Győri’s theorem on
intervals). Before presenting the main results, we recall this formula.

Let S and T be two disjoint sets and let A∗ := {st : s ∈ S, t ∈ T} denote the set
of all directed edges with tail in S and head in T . Let A∗ := {(A,B) : ∅ ⊂ A ⊆
S, ∅ ⊂ B ⊆ T}. The first member A of a pair (A,B) is called its tail while the second
member B is its head. A pair (A,B) is called trivial if |A| = 1 or |B| = 1. We say
that a directed edge st covers a pair (A,B) ∈ A∗ if s ∈ A, t ∈ B. A subset F of A∗
is called independent if no two members of F can be covered by an element of A∗,
which is equivalent to saying that for any two members of F their heads or their tails
are disjoint. Let p : A∗ → Z+ be a nonnegative integer-valued function. We say that
p is positively crossing bi-supermodular if

p(X,Y ) + p(X ′, Y ′) ≤ p(X ∩X ′, Y ∪ Y ′) + p(X ∪X ′, Y ∩ Y ′) (6)

holds whenever p(X,Y ) > 0, p(X ′, Y ′) > 0, X ∩ X ′ 6= ∅, Y ∩ Y ′ 6= ∅. For a subset
F of A∗, let p(F) =

∑
(p(X,Y ) : (X,Y ) ∈ F). For a vector z : A∗ → R and a

pair (X, Y ) ∈ A∗ we use the notation dz(X, Y ) :=
∑

(z(xy) : x ∈ X, y ∈ Y ). We
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Section 2. Kt,t-free t-matchings 4

say that a non-negative vector z on A∗ covers p or that z is a covering of p if
dz(A,B) ≥ p(A,B) holds for every member (A,B) of A∗.

Theorem 1.3. [2] For an integer-valued positively crossing bi-supermodular function
p, the following min-max equality holds: min(z(A∗) : z an integer-valued covering of
p) = max(p(F): F ⊆ A∗,F independent).

2 Kt,t-free t-matchings

We say that a t-matching H is Kt,t-free if it contains no Kt,t as a subgraph, which is
equivalent to saying that no component of H is a Kt,t. For a subset Z ⊆ V , let ct(Z)
denote the number of those components of G− Z which are a Kt,t.

Theorem 2.1. The maximum number of edges in a Kt,t-free t-matching of a bipartite
graph G = (S, T ;E) is equal to

γ := min
Z⊆V

(t|Z|+ i(V − Z)− ct(Z)). (7)

Moreover, it suffices to take the minimum only over those subsets Z of V for which
all the non-Kt,t components of G− Z induce a (t− 1)-matching.

Proof. First we show the second part. Let Z be a set minimizing (7) for which |Z|
is as large as possible. We show that each non-Kt,t component K of G − Z induces
a (t − 1)-matching. Suppose on the contrary that K has a node u which has at
least t neighbours in K and let Z ′ := Z + u. Then i(V − Z ′) ≤ i(V − Z) − t and
ct(Z

′) ≥ ct(Z). Hence t|Z ′|+ i(V −Z ′)−ct(Z ′) ≤ (t|Z|+ t)+(i(V −Z)− t)−ct(Z ′) =
t|Z| + i(V − Z) − ct(Z), that is, Z ′ is another minimizer of (7) contradicting the
maximum choice of Z.

Next we prove for any subset Z that the cardinality of a Kt,t-free t-matching H
is at most t|Z| + i(V − Z) − ct(Z). Indeed, since H is a t-matching, the number of
edges of H which are incident to a node in Z is at most t|Z|. Furthermore, since H is
Kt,t-free, each Kt,t-component of G−Z has an edge not in H, so the number of edges
of H not incident to any element of Z, that is, the edges of H induced by V − Z, is
at most i(V − Z) − ct(Z). Hence the total number of edges of H is indeed at most
t|Z|+ i(V − Z)− ct(Z).

Finally, we turn to the main content of the theorem and prove that max ≥ min . For
a number x, let x+ := max(x, 0). Let us define p : A∗ → Z+ as follows. p(A,B) :=
(|A|+ |B| − 2t+ 1)+ if A ∪ B induces a non-trivial bi-clique of G, p(A,B) := (|A|+
|B| − t− 1)+ if A ∪B induces a trivial bi-clique in G, and p(A,B) := 0 otherwise.

Claim 2.2. p is positively crossing bi-supermodular.

Proof. Let (A,B) and (X,Y ) be two pairs for which p(A,B) > 0 and p(X,Y ) >
0, X ∩ A 6= ∅, Y ∩ B 6= ∅. Suppose first that they are non-trivial. Note that if
(A∩X,B∪Y ) is trivial, then, by t ≥ 2, (|A∩X|+|B∪Y |−2t+1)+ ≤ p(A∩X,B∪Y ) and
similarly if (A∪X,B∩Y ) is trivial, then (|A∪X|+|B∩Y |−2t+1)+ ≤ p(A∪X,B∩Y ).
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Hence p(A,B)+p(X,Y ) = |A|+|B|−2t+1+|X|+|Y |−2t+1 = |A∩X|+|B∪Y |−2t+
1+|A∪X|+|B∩Y |−2t+1 ≤ (|A∩X|+|B∪Y |−2t+1)++(|A∪X|+|B∩Y |−2t+1)+ ≤
p(A ∩X,B ∪ Y ) + p(A ∪X,B ∩ Y ). (The last inequality is satisfied with equality if
none of (A ∩X,B ∪ Y ) and (A ∪X,B ∩ Y ) is trivial.)

When both pairs are trivial, then both (A ∩ X,B ∪ Y ) and (A ∪ X,B ∩ Y ) are
trivial, as well, from which (6) follows.

Finally, suppose that one of the two pairs, say (A,B), is trivial while (X, Y ) is
non-trivial. Then at least one of (A ∩ X,B ∪ Y ) and (A ∪ X,B ∩ Y ) is also trivial
and (6) follows again.

In what follows we will not distinguish in notation between an (undirected) edge of
G connecting u and v and a directed edge in A∗ with tail u and head v. Both will be
denoted by uv. Also, when no ambiguity may arise, we do not distinguish between a
one-element set {a} and its only element a.

Lemma 2.3. If z : A∗ → Z+ is a minimal covering of p, then z(uv) may be positive
on an edge uv ∈ A∗ only if uv ∈ E. Morover, z is 0 − 1-valued and the edge set
Ez := {uv ∈ E : z(uv) = 0} is a Kt,t-free t-matching.

Proof. If uv is not an edge of G, then uv does not belong to any bi-clique of G, that
is, uv does not cover any pair (A,B) with positive p(A,B) and hence the minimality
of z implies z(uv) = 0.

Suppose now indirectly that z(uv) ≥ 2 for some uv ∈ A∗. By the minimality of
z, there is a pair (A,B) ∈ A∗ for which 2 ≤ dz(A,B) = p(A,B) and u ∈ A, v ∈ B.
We may assume that |A| ≤ |B|. Then |B| ≥ 2 for otherwise |A| = |B| = 1 and then
p(A,B) = (2−t−1)+ = 0. Hence B′ := B−v is nonempty and p(A,B′) ≥ p(A,B)−1.
We have dz(A,B′) ≤ dz(A,B)−z(uv) = p(A,B)−z(uv) ≤ p(A,B)−2 ≤ p(A,B′)−1
contradicting the assumption that z covers p.

To show that Ez is a t-matching, assume indirectly that for some node u of G
there are t + 1 edges uv1, uv2, . . . , uvt+1 in Ez incident to u. Let A := {u}, B :=
{v1, . . . , vt+1}. Then p(A,B) = 1 and dz(A,B) = 0 contradicting that z is a covering
of p. Therefore Ez is indeed a t-matching.

Finally, let A ⊆ S and B ⊆ T be subset of nodes so that |A| = |B| = t and A ∪ B
induces a bi-clique K of G. Then p(A,B) = (|A| + |B| − 2t + 1)+ = 1, and since z
covers p there must be an edge uv for which u ∈ A, v ∈ B and z(uv) = 1. Therefore
K cannot belong to Ez, that is, Ez is Kt,t-free.

Let F be an independent subset of A∗ for which p(F) is maximum, and subject to
this, F has a maximum number of trivial pairs. We collect some properties of trivial
and non-trivial members of F . Clearly, p(A,B) ≥ 1 for (A,B) ∈ F .

Claim 2.4. For every node a ∈ S, F contains at most one (trivial) pair of form
(a,B). For every node b ∈ T , F contains at most one (trivial) pair of form (A, b).

Proof. By symmetry, it is enough to prove only the first part. If (a,B1) and (a,B2)
belong to F , then B1 ∩ B2 = ∅ by the independence of F . Hence F ′ := F −
{(a,B1), (a,B2)} ∪ {(a,B1 ∪ B2)} is also independent. Moreover p(F ′) = p(F) −
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(|B1| − t) − (|B2| − t) + (|B1 ∪ B2| − t) = p(F) + t, contradicting the maximality of
p(F).

Let a1, . . . , ak be those elements of S for which there are trivial members
(a1, B1), . . . , (ak, Bk) in F (there may be none). Let b1, . . . , bl be those elements of
T for which there are trivial members (A1, b1), . . . , (Al, bl) in F (there may be none).
Let Z1 := {a1, . . . , ak, b1, . . . , bl}.

Let (A,B) be a non-trivial member of F .

Claim 2.5. |A| = |B| = t.

Proof. We may assume that |A| ≤ |B|. From 0 < p(A,B) = |A| + |B| − 2t + 1 we
have |A| + |B| ≥ 2t. So if |A| = |B| = t does not hold, then |B| > t. As (A,B) is
non-trivial, A′ := A−a is non-empty for an element a of A. Let F ′ := F −{(A,B)}∪
{(A′, B), ({a}, B)}. Now p(a,B) = |B| − t ≥ 1 and p(A′, B) ≥ p(A,B)− 1 and hence
p(a,B) + p(A′, B) ≥ p(A,B), that is, p(F ′) ≥ p(F) contradicting the extreme choice
of F .

Claim 2.6. (A ∪B) ∩ Z1 = ∅.

Proof. Suppose indirectly that (A ∪B) ∩ Z1 6= ∅. By symmetry we may assume that
A∩Z1 6= ∅ and let ai ∈ A∩Z1. (Recall that (ai, Bi) is a trivial member of F , and then
|Bi| ≥ t+1). Let F ′ := F−{(A,B), (ai, Bi)}∪{(ai, B∪Bi)}. Then F ′ is independent.
We have p(A,B) = |A|+|B|−2t+1 = 1, p(ai, Bi) = |Bi|−t, p(ai, B∪Bi) = |B∪Bi|−t
from which p(A,B) +p(ai, Bi) = 1 + |Bi|− t < |Bi∪B|− t = p(ai, B∪Bi) from which
p(F ′) > p(F), a contradiction.

Claim 2.7. If (A,B), (A′, B′) are non-trivial members of F , then (A∪B)∩(A′∪B′) =
∅.

Proof. Suppose indirectly that the intersection is nonempty. By symmetry we may
assume that A ∩ A′ 6= ∅, in which case B ∩ B′ = ∅. Let a ∈ A ∩ A′, and F ′ := F −
{(A,B), (A′, B′)}∪{(a,B∪B′)}. Then F ′ is independent. Now p(A,B)+p(A′, B′) =
1 + 1 = 2 and p(a,B ∪ B′) = |B ∪ B′| − t = 2t − t = t ≥ 2. That is, p(F ′) ≥ p(F),
contradicting the extreme choice of F .

Claim 2.8. If xy ∈ E and x ∈ A ∪B, then y ∈ Z1.

Proof. Suppose that y 6∈ Z1. By symmetry we may assume that x ∈ A. Let B′ :=
B + y. Then F ′ := F − {(A,B)} ∪ {(x,B′)} is independent. Now p(A,B) = 1 and
p(x,B′) = |B′| − t = 1. Hence p(F ′) ≥ p(F), contradicting the extreme choice of
F .

EGRES Technical Report No. 2001-10



Section 3. Subgraphs with no large bi-cliques 7

Let F1 = {(a1, B1), . . . , (ak, Bk), (A1, b1), . . . , (Al, bl)}, that is, F1 consists of the
trivial members of F . Let F2 consist of the non-trivial members of F . We have shown
that members of F2 are pairwise disjoint Kt,t-subgraphs which may be connected
only to elements of Z1 (= {a1, . . . , ak, b1, . . . , bl}). In other words the members of F2

are components of G − Z1 hence p(F2) = |F2| ≤ ct(Z1). Furthermore, since F1 is
independent, we cannot have both ai ∈ Aj and bj ∈ Bi for i = 1, . . . , k, j = 1, . . . , l
. Hence p(F1) =

∑
|Ai| +

∑
|Bj| − t|Z1| ≤ e(Z1) − t|Z1| = |E| − i(V − Z1) − t|Z1|

where e(Z1) denotes the number of edges of G with at least one end-node in Z1. By
the definition of γ in (7), γ ≤ t|Z1| + i(V − Z1) − ct(Z1). The combination of these
inequalities gives rise to p(F) = p(F1) + p(F2) ≤ |E| − i(V − Z1) − t|Z1| + ct(Z1) ≤
|E| − γ. By Theorem 1.3, z(E) = p(F) ≤ |E| − γ for the minimum covering z of
p and hence the Kt,t-free t-matching Ez has cardinality |Ez| = |E| − z(E) ≥ γ, as
required.

3 Subgraphs with no large bi-cliques

In the preceding section we were interested in subgraphs of a bipartite graph G =
(S, T ;E) not containing two types of bi-cliques: K1,t+1 and Kt,t. Here we want to
find for a given integer t ≥ 2 the maximum number of edges of a subgraph of G that
does not contain any bi-clique of size larger than t. Such a bi-clique will be called
large (with respect to t). (The problem for t = 1 is void as it asks for the maximum
number of edges in a subgraph with no edges.) For t = 2, the problem is to maximize
the number of edges in a subgraph containing no to adjacent edges: this is exactly
the (ordinary) matching problem solved by Kőnig. When t = 3, the problem requires
finding a largest square-free 2-matching, Hartvigsen’s problem. A subset F of edges
of G will be called a t-covering if F covers every large bi-clique.

We investigate the following equivalent form of the general case t ≥ 2: what is the
minimum cardinality τt(G) of a t-covering in G? For any bi-clique H let pt(H) :=
(|V (H)| − t)+. Clearly, for large bi-cliques pt(H) := |V (H)| − t. Later, for a family
H of bi-cliques, we will use the notation pt(H) :=

∑
(pt(X) : X ∈ H). First we make

an easy observation.

Claim 3.1. If H is a bi-clique, then any t-covering F of H has at least |V (H)| − t
edges, that is,

τt(H) ≥ pt(H). (8)

Proof. The claim is trivial if |V (H)| ≤ t so we may assume that H = Kk,l is a
large bi-clique with k ≤ l. Let K and L denote the two stable sets of H (with
|K| = k, |L| = l.)

If l ≥ t, then, for every element v of K, L+v induces a large bi-clique and therefore
at least l − t + 1 edges incident to v must be in F . Hence |F | ≥ k(l − t + 1) =
(l − t+ 1) + (k − 1)(l − t+ 1) ≥ (l − t+ 1) + (k − 1) = k + l − t = pt(H).

In case l < t let K ′ denote the subset of elements of K which are incident to F . If
K ′ = K, then |F | ≥ |K ′| = k > k + l − t. If K ′ ⊂ K, then (K − K ′) ∪ L induces
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Section 3. Subgraphs with no large bi-cliques 8

a bi-clique not covered by F . Hence |(K − K ′) ∪ L| ≤ t, from which |F | ≥ |K ′| ≥
k + l − t = pt(H), as required.

Let us call a bi-clique Kk,l essential if 2 ≤ k < t, 2 ≤ l < t, k+ l > t. The following
claim is not really required for our discussion but the min-max formula below uses
essential bi-cliques and stars hence it may be useful to establish the τt-value of these
bi-cliques.

Claim 3.2. If H = Kk,l is a trivial bi-clique (that is, a star: k = 1 or l = 1) or an
essential bi-clique, then (8) holds with equality.

Proof. As the claim is obvious for stars, we assume that 2 ≤ k ≤ l < t. By Claim 3.1,
we only have to show that there is a t-covering F of H with |F | = k + l − t. Since
0 < k+l−t < k, H has a matching F of k+l−t edges. We claim that F covers all large
bi-cliques H ′ of H. Indeed, if H ′ is not covered by F , then H ′ may contain at most one
end-node of each matching-edge. Hence |H ′| ≤ |K|+ |L|− |F | = k+ l− (k+ l− t) = t,
contradicting that H ′ is large.

The main result of this section is as follows.

Theorem 3.3. In a bipartite graph G = (S, T ;E) the minimum cardinality τt = τt(G)
of a t-covering of bi-cliques (t ≥ 2) is equal to

max{pt(H) : H is a set of pairwise edge-disjoint bi-cliques}. (9)

The optimal H may be chosen to consist of stars and essential bi-cliques.

Proof. Let M denote the maximum in (9). By Claim 3.1 any t-covering F contains
at least pt(H) edges from every bi-clique, hence F contains at least pt(H) edges from
the members of edge-disjoint bi-cliques in H. Hence τt ≤M follows.

To see the non-trivial direction, let us define p : A∗ → Z+ as follows. p(A,B) :=
pt(A,B) if (A∪B) induces a bi-clique of G and p(A,B) := 0 otherwise. It is straight-
forward to see that p is positively crossing bi-supermodular and we can apply Theorem
1.3. It follows immediately from the definition of p and pt that the maximum in The-
orem 1.3 is M . Hence there exists a covering z : A∗ → Z+ of p for which z(A∗) = M .
z(uv) cannot be positive on any edge uv ∈ A∗−E since such an uv does not belong

to any bi-clique of G, that is, uv does not cover any pair (A,B) with positive p(A,B)
and hence the minimality of z implies z(uv) = 0.

We claim that z is 0− 1-valued. Indeed, let indirectly z(uv) ≥ 2 for some uv ∈ A∗.
By the minimality of z, there is a pair (A,B) ∈ A∗ for which 2 ≤ dz(A,B) = p(A,B)
and u ∈ A, v ∈ B. We may assume that |A| ≤ |B|. Then |B| ≥ 2 for otherwise
|A| = |B| = 1 and hence p(A,B) = (2− t)+ = 0. Hence B′ := B− v is nonempty and
p(A,B′) ≥ p(A,B) − 1. We have dz(A,B′) ≤ dz(A,B) − z(uv) = p(A,B) − z(uv) ≤
p(A,B)− 2 ≤ p(A,B′)− 1 contradicting the assumption that z covers p.

Since p(A,B) is positive whenever A∪B induces a large bi-clique, it follows that the
edge set Fz := {uv ∈ E : z(uv) = 1} is a t-covering of G for which |Fz| = z(A∗) = M,
which proves the min-max formula.
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To see the second half of the theorem, let us choose an optimal H in (9) so that
|H| is maximum. We claim that H consists of stars and essential bi-cliques. Suppose
indirectly that H contains a bi-clique D := Kk,l with stable sets K,L where 2 ≤
|K| = k ≤ |L| = l, l ≥ t. Let u ∈ K, D′ := (u, L) and D′′ := (K − u, L) and let
H′ := F−{D}∪{D′, D′′}. Since pt(D) = k+l−t, pt(D

′) = 1+l−t, pt(D
′′) = k−1+l−t,

we have pt(H′) = pt(H)−(k+ l−t)+(1+ l−t)+(k−1+ l−t) ≥ pt(H)+ l−t ≥ pt(H).
Hence H′ is another optimal packing of bi-cliques contradicting the maximality of
|H|.

Let us formulate the theorem in an equivalent form, too.

Theorem 3.4. In a bipartite graph G = (S, T ;E) the maximum number of edges of
a subgraph not containing large bi-cliques (:bi-cliques with more than t nodes) is equal
to min{|E| −

∑
i(|V (Di)| − t) : {D1, . . . , Dk} is a set of pairwise edge-disjoint stars

and essential bi-cliques}.

The proof of Theorem 1.3 in [2] is not algorithmic and hence the present proof is
not algorithmic either. On the other hand in [2] we showed, relying on the ellipsoid
method and the theorem itself, that there is a polynomial time algorithm to compute
the minimum in Theorem 1.3. Furthermore, T. Fleiner [1] showed how to compute
the maximum. Therefore there are polynomial algorithms to compute the extrema in
question but it remains a challenge to find alternative, combinatorial algorithms as
well.

As far as weighted extensions are considered, we mentioned already Király’s ob-
servation [8] that in bipartite graphs finding a minimum weight (or equivalently the
maximum weight) square-free 2-factor is NP-complete. Therefore so is the more gen-
eral problem of finding a maximum weight square-free 2-matching. However, this
latter problem is tractable for a class of weight functions which includes the cardi-
nality function. Let w : V → R be a node-function and define a weight function
c : E → R on the edge-set E by c(uv) := w(u) + w(v). Then c is called a node-
induced weight-functions on E.

For node-induced weight-functions [2] contained a weighted extension of Theorem
1.3, as well, for the case when a minimum weight covering of a positively crossing
bi-supermodular function is considered. Relying on this, the same approach we used
above may be used to extend, theorems 2.1 and 3.3 for induced weight-functions, and
a formula may be given for the minimum weight of t-covering of bi-cliques or for the
maximum weight of a t-matching not containing Kt,t.
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Special thanks are due to Zoltán Király and Tibor Jordán for several helpful dis-
cussions.

EGRES Technical Report No. 2001-10


	Introduction
	$K_{t,t}$-free $t$-matchings
	Subgraphs with no large bi-cliques

