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A proof of Connelly’s conjecture on 3-connected
generic cycles

Alex R. Berg? and Tibor Jordán??

Abstract

A graph G = (V,E) is called a generic cycle if |E| = 2|V | − 2 and every
X ⊂ V with 2 ≤ |X| ≤ |V | − 1 satisfies i(X) ≤ 2|X| − 3. Here i(X) denotes
the number of edges induced by X. The operation extension subdivides an
edge uw of a graph by a new vertex v and adds a new edge vz for some vertex
z 6= u, w. R. Connelly conjectured that every 3-connected generic cycle can
be obtained from K4 by a sequence of extensions. We prove this conjecture.
As a corollary, we also obtain a special case of a conjecture of Hendrickson on
generically globally rigid graphs.
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1 Introduction

Let G = (V,E) be a loopless undirected graph, where V is the set of vertices and E
is the set of edges of G. For a subset X ⊆ V let i(X) denote the number of edges
induced by X in G. A graph G = (V,E) with |V | ≥ 4 is called a generic cycle if
|E| = 2|V | − 2 and G satisfies

i(X) ≤ 2|X| − 3 for all X ⊂ V with 2 ≤ |X| ≤ |V | − 1. (1)

It is easy to see by (1) that every generic cycle G is a simple graph (i.e. G has no
multiple edges) with minimum degree 3 and with at least four vertices of degree 3.

Generic cycles appear in rigidity problems of graphs. A graph is said to be generi-
cally rigid in the plane if every embedding of G in the plane with algebraically inde-
pendent coordinates results in a rigid framework (where vertices of G correspond to
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Section 1. Introduction 2

joints and edges of G correspond to rigid rods). By a celebrated result of Laman [7] a
graph G = (V,E) is minimally generically rigid in the plane (or isostatic) if and only
if |E| = 2|V | − 3 and G satisfies (1). Thus the “minimally redundantly rigid” graphs
are the generic cycles. Furthermore, the edge set of a generic cycle corresponds to
a cycle in a certain rigidity matroid. This motivates the name “generic cycle”. (For
more details on the rigidity background and the matroid connections see e.g. [4].)

R. Connelly conjectured that 3-connected generic cycles have a simple constructive
characterization (see e.g. [4, p.99]). The operation extension of a graph H = (V,E)
consists of subdividing an edge uw ∈ E by a new vertex v and adding a new edge
vz for some z 6= u,w. It is easy to see that an extension of a 3-connected generic
cycle is also a 3-connected generic cycle. Connelly conjectured that every 3-connected
generic cycle can be obtained from the complete graph K4 on four vertices (which
is the smallest generic cycle) by a sequence of extensions. To prove this conjecture
it is enough to show that every 3-connected generic cycle on at least five vertices
has a vertex v of degree 3 which can be the last vertex added by such a sequence of
extensions, i.e. which can be eliminated from G by the inverse operation of extension.
This operation is called splitting off: it consists of deleting one of the edges vz incident
to v and replacing the remaining two edges vu, vw by a new edge uw (and then deleting
v).

Our main result (Theorem 4.4) shows that every 3-connected generic cycle G has a
vertex of degree 3 which can be split off in such a way that the resulted graph is also
a 3-connected generic cycle. This implies that Connelly’s conjecture is true. Note
that it is not true that any vertex of degree 3 can be split off. For example, there is
no splitting off at the topmost vertex of the graph of Figure 1(a) which results in a
generic cycle (or preserves 3-connectivity). The graph of Figure 1(c) has no vertex
of degree 3 which can be split off preserving the generic cycle property. This shows
that the 3-connectivity condition is necessary. By using our new characterization of
3-connected generic cycles we can prove a special case of a conjecture of Hendrickson
on generically globally rigid graphs (see Section 5 for the definition).

In the rest of this section we mention some related results. Based on earlier work of
Henneberg [6] and Laman [7], Tay and Whiteley [9] gave a constructive characteriza-
tion of isostatic graphs: they showed that every graph G = (V, E) with |E| = 2|V |−3
satisfying (1) can be obtained from an edge K2 by a sequence of extensions and “ver-
tex attachments”. The latter operation adds a new vertex v and two edges vu, vw
for some u,w ∈ V , u 6= w. To show this they proved that any vertex of degree 3
can be split off (and any vertex of degree 2 can be deleted) from an isostatic graph
on at least three vertices in such a way that the resulted graph is isostatic. Tay [8]
extended this result to the family of graphs G = (V, E) satisfying |E| = k|V | − k − 1
and i(X) ≤ k|X| − k − 1 for every X ⊆ V with |X| ≥ 2, in the following sense.
He proved that by using one of two operations (including a more general version of
splitting off) G can be “reduced” along any vertex of degree at most 2k − 1 in such
a way that the smaller graph also belongs to the family. If k ≥ 3 then some vertices
of degree at most 2k − 1 may not be splittable. Recently Frank and Szegő [3] proved
that there exists a vertex of degree at most 2k − 1 which can be split off. This led to
a constructive characterization of this family of graphs.
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Section 2. Properties of generic cycles and fragments of 2-connected graphs 3

Constructive characterizations of 3-connected graphs have also been investigated.
The most relevant result is due to Barnette and Grünbaum [1]. They showed that
every 3-connected graph can be obtained from K4 by a sequence of extensions and
“double extensions”. The latter operation consists of subdividing two edges uw and
xy by two new vertices v and z, respectively, and adding a new edge vz. It is easy
to see that these operations preserve 3-connectedness. Using extensions only is not
sufficient: consider any 3-regular 3-connected graph on at least 6 vertices.

a) b) c)

Figure 1: Generic cycles

2 Properties of generic cycles and fragments of 2-

connected graphs

In this section we prove several basic properties of generic cycles and 2-connected
graphs. We start with some definitions. Given a graph G = (V, E) and two disjoint
subsets X, Y ⊂ V , we use d(X,Y ) to denote the number of edges from X to Y .
We define d(X) := d(X, V − X). The degree of a vertex v is denoted by d(v). Let
V3 := {v ∈ V : d(v) = 3} denote the set of degree 3 vertices of G. For convenience,
vertices of degree 3 are called nodes. The subgraph induced by some X ⊆ V is denoted
by G[X]. We call G[V3] the subgraph of nodes of G. A node of G with degree at most
one (exactly two, exactly three) in the subgraph of nodes of G is called a leaf node
(series node, branching node, respectively). A wheel Wn = (V,E) is a graph on n ≥ 4
vertices which has a vertex z which is adjacent to all the other vertices and for which
Wn[V −z] is a cycle. Thus the subgraph of nodes of a wheel Wn with n ≥ 5 is a cycle.

Lemma 2.1. If G = (V,E) is a generic cycle then either G is a wheel or G[V3] is a
forest.

Proof. Suppose that the subgraph of nodes of G contains a cycle and choose a shortest
(diagonal free) cycle C of G[V3]. Since G is not a cycle, C̄ := V − V (C) 6= ∅. Since
each vertex of C is a node and C has no diagonals, |C̄| = 1 implies that G is a wheel.
Hence we may assume that |C̄| ≥ 2. In this case i(C̄) = 2|V | − 2− i(C)− d(C, C̄) =
2|V | − 2− |C| − |C| = 2(|V | − |C|)− 2 = 2|C̄| − 2, contradicting (1).
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Section 2. Properties of generic cycles and fragments of 2-connected graphs 4

We shall frequently use the following equality, which is easy to check by counting
the contribution of an edge of G = (V, E) to the two sides: for every pair X,Y ⊆ V
we have

i(X) + i(Y ) + d(X − Y, Y −X) = i(X ∩ Y ) + i(X ∪ Y ). (2)

A set X ⊂ V with |X| ≥ 2 is called critical in a generic cycle G = (V,E) if i(X) =
2|X| − 3 holds. In the rest of this subsection let G = (V, E) be a given generic cycle.

Lemma 2.2. Let X,Y ⊂ V be critical sets with |X ∩ Y | ≥ 2 and |X ∪ Y | ≤ |V | − 1.
Then X ∩ Y and X ∪ Y are both critical, and d(X − Y, Y −X) = 0.

Proof. By (1) and (2) we get 2|X| − 3 + 2|Y | − 3 + d(X − Y, Y − X) = i(X) +
i(Y ) + d(X − Y, Y − X) = i(X ∩ Y ) + i(X ∪ Y ) ≤ 2|X ∩ Y | − 3 + 2|X ∪ Y | − 3 =
2|X| − 3 + 2|Y | − 3. Thus equality holds everywhere, and hence X ∩ Y and X ∪ Y
are critical, and d(X − Y, Y −X) = 0.

A graph H = (V,E) is 2-connected (3-connected) if it has at least three (resp. four)
vertices and H −X is connected for any X ⊂ V with |X| ≤ 1 (|X| ≤ 2, respectively).
A pair u, v ∈ V is a cutpair in a 2-connected graph H if H − {u, v} is disconnected.

Lemma 2.3. (a) For every ∅ 6= X ⊂ V we have d(X) ≥ 3 and if d(X) = 3 holds
then either |X| = 1 or |V −X| = 1;
(b) If X ⊂ V is critical with |X| ≥ 3 then G[X] is 2-connected;
(c) G is 2-connected, and for any cutpair a, b and for any bipartition A,B of G−{a, b}
with d(A,B) = 0 we have that ab /∈ E, A+{a, b} and B +{a, b} are both critical, and
d(a), d(b) ≥ 4.

Proof. To prove (a) first consider a bipartition X ∪ Y = V , X ∩ Y = ∅ of V with
|X|, |Y | ≥ 2. By (1) we obtain |E| = i(X)+i(Y )+d(X) ≤ 2|X|−3+2|Y |−3+d(X) =
2|V | − 6 + d(X) = |E| − 4 + d(X). This implies d(X) ≥ 4. Furthermore, (1) implies
that each vertex of G has degree at least 3. This proves (a).

To verify (b) consider a critical set X with |X| ≥ 3 and suppose that for some
v ∈ X the graph G[X − v] can be partitioned into two non-empty sets A,B such that
there are no edges from A to B in G[X − v]. Then (1) gives 2|X| − 3 = i(X) =
i(A + v) + i(B + v) ≤ 2(|A|+ 1)− 3 + 2(|B|+ 1)− 3 = 2(|A|+ |B|+ 1)− 4 = 2|X|− 4,
a contradiction.

It is easy to see that G is 2-connected (by using an argument similar to that of the
proof of (b)). To prove (c) suppose that a, b is a cutpair in G and A,B is a bipartition
of G− {a, b} with d(A,B) = 0. By (1) and (2), and since there is no edge from A to
B, this gives 2(|A|+ |B|+ 2)− 2 = 2(|A|+ 2)− 3 + 2(|B|+ 2)− 3 ≥ i(A + {a, b}) +
i(B +{a, b}) = i(V ) + i({a, b}) = 2|V |−2 + i({a, b}) = 2(|A|+ |B|+ 2)−2 + i({a, b}).
Thus equality holds everywhere. Hence A+{a, b} and B +{a, b} are both critical and
ab /∈ E. It follows from (b) that G[A+{a, b}] and G[B +{a, b}] are both 2-connected.
Hence a and b have at least two neighbours in each of these subgraphs. Since ab /∈ E,
this implies d(a), d(b) ≥ 4.
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2.1 Fragments and ends of 2-connected graphs 5

Lemma 2.4. Let X ⊂ V be a critical set with |V − X| ≥ 2. Then V −X contains
at least two nodes.

Proof. Let X be a critical set and let Y := V −X. Clearly, 2i(Y ) =
∑

v∈Y dG[Y ](v) =∑
v∈Y d(v) − d(Y ). For a contradiction suppose that d(v) ≥ 4 for at least |Y | − 1

vertices of Y . This implies
∑

v∈Y d(v) ≥ 4|Y | − 1. Using this inequality and Lemma
2.3(a) we can count as follows. 2i(Y ) + 2d(Y ) =

∑
v∈Y d(v) + d(Y ) ≥ 4|Y | − 1 + 4.

Since the left hand side is even, this implies 2i(Y ) + 2d(Y ) ≥ 4|Y | + 4, and hence
i(Y ) + d(Y ) ≥ 2|Y |+ 2.

Therefore, since X is critical, (1) gives |E| = i(X)+i(Y )+d(Y ) ≥ 2|X|−3+2|Y |+
2 = 2|V | − 1, a contradiction. This shows that Y contains at least two nodes.

2.1 Fragments and ends of 2-connected graphs

Let G = (V, E) be a graph. For some X ⊆ V let N(X) denote the set of neighbours
of X (that is, N(X) := {v ∈ V − X : uv ∈ E for some u ∈ X}). A set X ⊂ V is
called a fragment in a 2-connected graph G if |N(X)| = 2 and V −X−N(X) 6= ∅. An
inclusionwise minimal fragment is an end. The proofs of the following simple lemmas
are omitted.

Lemma 2.5. Let G be a 2-connected graph with at least one cutpair. Then (a) there
exist two ends A,B with A ⊆ V − B −N(B) and B ⊆ V − A−N(A); (b) for every
end X the subgraph G[X] is connected.

Lemma 2.6. Let A be an end in a 2-connected graph G and suppose that |N(Y )∩A| =
1 for some Y ⊂ A. Then N(A) ⊂ N(Y ).

Lemma 2.7. Let A be an end with |A| ≥ 2 in a 2-connected graph G and let N(A) =
{x, y}. Then G[A ∪N(A)] + xy is 3-connected.

3 Finding admissible nodes

Recall that splitting off a node v with N(v) = {u, w, z} means deleting one of the
edges incident to v, say vz, and replacing the remaining two edges vu, vw by a new
edge uw (and deleting v as well). To specify the split we perform at v we say that this
split is made on the pair uv, wv. Let Gv denote the graph obtained from G by splitting
off node v. Since each node can be split off in three different ways, Gv depends on
the split as well. When we write Gv later on then either it will be clear which split
is meant or it will be irrelevant. The pair uv, wv (and the corresponding splitting)
is called admissible if splitting off v on the pair uv, wv results in a generic cycle Gv.
We call a node v admissible if there is an admissible splitting at v. Otherwise v is
non-admissible. In this section we show that every 3-connected generic cycle has an
admissible node (in fact, either it has at least four admissible nodes or it has three
pairwise non-adjacent admissible nodes).
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Lemma 3.1. Let v be a node of a generic cycle G = (V,E) with neighbour set
{u, w, z}. Then v cannot be split off on the pair uv, wv if and only if there is a
critical set X in G with u,w ∈ X and v, z /∈ X.

Proof. First suppose that X is a critical set in G with u, w ∈ X and v, z /∈ X. Then
by splitting off the pair uv, wv (and hence adding a new edge uw) increases i(X) by
one. Since z /∈ X, X contradicts (1) in Gv. Thus v cannot be split on uv, wv.

Conversely, suppose that Y ⊂ V (Gv) = V − v violates (1) in Gv after splitting off v
on the pair uv, wv. Then iGv(Y ) ≥ 2|Y | − 2. Since iGv(Y ) ≤ i(Y ) + 1, it follows that
Y is critical in G and u, w ∈ Y . If z ∈ Y then i(Y + v) = i(Y ) + 3 = 2|Y | − 3 + 3 =
2|Y + v| − 2, contradicting (1). Thus z /∈ Y .

If v is a node with N(v) = {u, w, z} and X is a critical set with u, w ∈ X and
v, z /∈ X then we call X a v-critical set on u and w. If d(z) = 3 then it is obvious that
splitting off v on uv, wv is non-admissible, since such a split would make dGv(z) = 2.
(This observation shows that all branching nodes are non-admissible.) In this case
V − {v, z} is a “trivial” v-critical set on u and w. “Non-trivial” critical sets will
be of particular interest: if X is a v-critical set on u and w for some node v with
N(v) = {u, w, z}, and d(z) ≥ 4, then X is called node-critical.

Lemma 3.2. Let G = (V,E) be a 3-connected generic cycle with |V | ≥ 5 and suppose
that v is a non-admissible leaf node of G. Then there exist two v-critical sets X,Y
such that |X ∩ Y | ≥ 2 and X ∪ Y = V − v. Moreover, if v is adjacent to a node z,
then X and Y can be chosen to satisfy z ∈ X ∩ Y as well.

Proof. Let N(v) = {x, y, z}. Since v is non-admissible, Lemma 3.1 implies that there
exist three v-critical sets X,Y, Z on y and z, x and z, x and y, respectively. Suppose
that no two of these sets intersect each other in at least two vertices. Let m denote
the number of those edges in G[X ∪ Y ∪ Z] which do not belong to the edge set of
G[X], G[Y ], or G[Z]. Then 2(|X ∪ Y ∪ Z|) − 3 = 2(|X| + |Y | + |Z| − 3) − 3 ≥
i(X ∪ Y ∪ Z) = i(X) + i(Y ) + i(Z) + m = 2|X| − 3 + 2|Y | − 3 + 2|Z| − 3 + m =
2(|X| + |Y | + |Z| − 3) − 3 + m = 2(|X ∪ Y ∪ Z|) − 3 + m. Thus equality holds
everywhere, and hence X ∪ Y ∪ Z is critical and m = 0. Since d(v, X ∪ Y ∪ Z) = 3,
this implies that X ∪Y ∪Z = V − v (otherwise (X ∪Y ∪Z) + v violates (1)). Hence,
since |V | ≥ 5, at least one of the three critical sets X,Y, Z (say, X) satisfies |X| ≥ 3.
But we have m = 0, and hence y, z is a cutpair in G, contradicting the fact that G
is 3-connected. This contradiction shows that we have two sets (say, X and Y ) with
|X ∩ Y | ≥ 2. Hence X ∪ Y is also critical by Lemma 2.2 and so X ∪ Y = V − v
follows, since d(v, X ∪ Y ) = 3.

To see the second part of the statement of the lemma suppose that z is a node.
Then the edges xz, yz cannot be both present in G because then x, y would be a
cutpair. Thus we may assume, without loss of generality, that yz /∈ E. Then for
the v-critical set X on y and z we must have |X| ≥ 3. By Lemma 2.3(b) G[X] is
2-connected and hence z has two neighbours in X. If z has no neighbours in Y then
xz /∈ Y , |Y | ≥ 3, and z is an isolated vertex in G[Y ]. This would contradict Lemma
2.3(b). Hence z has a neighbour in Y and this implies that |X ∩ Y | ≥ 2. By Lemma
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2.2 this gives that X ∪ Y is also critical, and since d(v,X ∪ Y ) ≥ 3, we must have
X ∪ Y = V − v, as required.

It is easy to see that the wheels are all 3-connected generic cycles. It is also easy to
see that each node v of a wheel Wn, n ≥ 5, is admissible (and the unique admissible
splitting at v preserves 3-connectivity as well). Thus in the following four lemmas we
shall assume that the given generic cycle is not a wheel.

Lemma 3.3. Let G = (V, E) be a 3-connected generic cycle and let v be a node with
N(v) = {x, y, z} and d(z) ≥ 4. Suppose that X is a v-critical set on x, y and suppose
that either (a) there is a non-admissible series node u ∈ V − X − v with precisely
one neighbour w in X, and w is a node, or (b) there is a non-admissible leaf node
t ∈ V − X − v. Then there is a node-critical set X ′ in G with |X ′| > |X| and
(X ∩ V3) ⊆ (X ′ ∩ V3).

Proof. (a) Let u ∈ V −X − v be a non-admissible series node with N(u) = {w, p, n}.
By our assumption N(u) ∩X = {w} and d(w) = 3. Since u is a series node, we can
assume that d(p) = 3 and d(n) ≥ 4. Since u is non-admissible, there exists a u-critical
set Y on w and p by Lemma 3.1. Since G[V3] has no cycles, we have pw /∈ E and
hence |Y | ≥ 3. Thus G[Y ] is 2-connected by Lemma 2.3(b) and hence Y contains two
neighbours of w. Since G[X] is connected, at least one of these neighbours of w must
be in X. Thus |X ∩ Y | ≥ 2. Furthermore, X ′ := X ∪ Y ⊆ V − u− n. By Lemma 2.2
it follows that X ′ is a u-critical set on w and p. Thus, since d(n) ≥ 4 and p /∈ X, the
set X ′ is a node-critical set with |X ′| > |X| and (X ∩ V3) ⊆ (X ′ ∩ V3), as required.

(b) Since t is a non-admissible leaf node, Lemma 3.2 implies that there exist two
t-critical sets Y1 and Y2 with Y1 ∪Y2 = V − t, |Y1|, |Y2| ≥ 3, and if t has a neighbour r
which is a node then we can assume r ∈ Y1∩Y2. Note that Y1 and Y2 are node-critical.
If |X| = 2 then X induces the edge xy. Since x, y ∈ Y1∪Y2 and d(Y1−Y2, Y2−Y1) = 0
by Lemma 2.2, in this case either X ⊂ Y1 or X ⊂ Y2 holds, which proves part (b) of
the lemma by choosing X ′ = Y1 or X ′ = Y2. Thus we may assume |X| ≥ 3. Since
Y1 ∪ Y2 = V − t, t /∈ X, and |X| ≥ 3, we have |X ∩ Y1| ≥ 2 or |X ∩ Y2| ≥ 2. Let us
assume, without loss of generality, that |X ∩ Y1| ≥ 2 holds.

We must have d(t, X) ≤ 2, since d(t, X) = 3 would imply that X + t violates (1). If
d(t, X) = 2 then X + t is also critical and by choosing X ′ = X + t the lemma follows.
Thus we may assume that d(t, X) ≤ 1 (and hence |N(t)∩X| ≤ 1). First suppose that
N(t) ∩X = ∅. Since |X ∩ Y1| ≥ 2, it follows by Lemma 2.2 that X ∪ Y1 is a t-critical
set. Therefore the lemma follows by choosing X ′ = X ∪ Y1.

Now suppose that |N(t) ∩ X| = 1 and let N(t) ∩ X = {s}. If s ∈ Y1 then
N(t) − (X ∪ Y1) 6= ∅ and hence X ∪ Y1 is a node-critical set. Thus we are done
as above, by choosing X ′ = X ∪ Y1. If d(s) = 3 then s ∈ Y1 ∩ Y2, thus we may
assume that d(s) ≥ 4 and s /∈ Y1. Since Y1 ∪ Y2 = V − t, this gives s ∈ Y2. Hence
if |X ∩ Y2| ≥ 2 then we are done by choosing the node-critical set X ′ = X ∪ Y2. If
|X ∩ Y2| = 1 then |X ∩ Y1| = |X| − 1. Since s /∈ Y1, we have (N(t)− s) ⊆ Y1−X and
hence |Y1 −X| ≥ 2. This shows that |Y1| > |X|. Since X − s ⊂ Y1 and d(s) ≥ 4, we
have (X ∩ V3) ⊆ (Y1 ∩ V3) as well. Thus X ′ = Y1 is a proper choice in this case. This
proves the lemma.
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Every generic cycle G has at least four nodes. Hence if G is not a wheel then the
subgraph of nodes of G is a forest on at least four nodes. It is easy to check that
(∗) a forest on at least four nodes satisfies at least one of the following: (i) it has at
least four leaf nodes (recall that a leaf node has degree at most one); (ii) it has three
pairwise non-adjacent leaf nodes; (iii) it is a path on at least four nodes. We shall use
this simple observation in the next three lemmas.

Lemma 3.4. Let G = (V, E) be a generic cycle. Let X = {X ⊂ V : X is a node-
critical set in G}. If X = ∅ then either G has four admissible nodes or G has three
pairwise non-adjacent admissible nodes.

Proof. If G has a non-admissible leaf node or series node then G has a node-critical
set by Lemma 3.1. Thus every leaf or series node is admissible. This proves the lemma
by (∗).

Lemma 3.5. Let G be a 3-connected generic cycle and suppose that v is an admissible
node in G. Let Y = {Y ⊂ V : v ∈ Y, Y is a node-critical set in G}. If Y = ∅ then
either G has four admissible nodes or G has three pairwise non-adjacent admissible
nodes or G has two adjacent admissible nodes.

Proof. Let w 6= v be a leaf node and suppose that w is non-admissible. Then by
Lemma 3.2 there exist two node-critical sets X,Y with X ∪Y = V −w, contradicting
the fact that v is in no node-critical set. Thus every leaf is admissible. This implies
the lemma by (∗) unless G[V3] is a path P on at least four nodes. If v is not a leaf
node and v is not adjacent to the two leaf nodes of P then G has three pairwise
non-adjacent admissible nodes. If v is adjacent to a leaf then G has two adjacent
admissible nodes. Finally, if v is a leaf node, then let vt and tq be the first two edges
on P . We claim that t is admissible. Otherwise by Lemma 3.1 there is a t-critical
set on v and q, contradicting the fact that Y is empty. Thus G has two adjacent
admissible nodes.

Lemma 3.6. Let G be a 3-connected generic cycle and suppose that v and w are
adjacent admissible nodes in G. Let Z = {Z ⊂ V : v, w ∈ Z, Z is a node-critical
set in G}. If Z = ∅ then either G has four admissible nodes or G has three pairwise
non-adjacent admissible nodes.

Proof. Let u 6= v, w be a leaf node. If u is non-admissible then by Lemma 3.2 there
exist two u-critical sets X, Y with |X ∩ Y | ≥ 2 and X ∪ Y = V − u. By Lemma 2.2
we have d(X − Y, Y − X) = 0. Thus either {v, w} ⊂ X1 or {v, w} ⊂ X2 (or both),
contradicting Z = ∅. Thus every leaf is admissible. Hence (∗) implies that either G
has four admissible nodes or G has three pairwise non-adjacent admissible nodes or
G[V3] is a path P on at least four nodes. Consider the last case. If v and w are both
inner nodes on P then G has four admissible nodes. Otherwise suppose, without loss
of generality, that v is a leaf on P and let the first three edges on P be vw, wt, tq. We
claim that splitting off t on the edges wt, tq is admissible. If not, then there exists a
t-critical set X on w and q by Lemma 3.1. Since wq /∈ E, we have |X| ≥ 3. Thus
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by Lemma 2.3(b) G[X] is 2-connected. This implies that both neighbours of w other
than t must be in X and hence v ∈ X follows. This contradicts the fact that Z = ∅.
Thus t is admissible and hence G has at least four admissible nodes.

The next result on the number of admissible nodes is the main result of this section.

Theorem 3.7. Let G = (V, E) be a 3-connected generic cycle with |V | ≥ 5. Then
either G has four admissible nodes or G has three pairwise non-adjacent admissible
nodes.

Proof. The theorem trivially holds if G is a wheel, so suppose that G is not a wheel.
Hence the subgraph of nodes of G is a forest by Lemma 2.1. Let X = {X ⊂ V :
X is a node-critical set in G}. If X = ∅ then we are done by Lemma 3.4. Otherwise
let X be a maximum size member of X . Since X is node-critical, there exists a node
v and t ∈ N(v) such that X is a v-critical set, d(t) ≥ 4, and t /∈ X. Clearly, X + v is
also critical and |V −X − v| ≥ 2. By applying Lemma 2.4 to X + v we obtain that
V −X − v contains at least two nodes. The maximality of |X| implies that if z is a
branching node in V −X−v then z has at most one neighbour in X (otherwise either
X + z would be a larger node-critical set or X + z would contradict (1)). Therefore
the leaves of the subforest G[V3 ∩ (V −X − v)] cannot be branching nodes in G. This
subforest has at least two nodes and hence it has at least two leaves. This implies
that V −X − v contains two non-branching nodes u,w. If u (or w) is a series node
then it has precisely one neighbour in X by the maximality of X and by (1), and this
neighbour must be a node, since u is a leaf in the subforest. By Lemma 3.3 and by
the maximality of |X| the nodes u,w are admissible.

Now let us define Y = {Y ⊂ V : u ∈ Y, Y is a node-critical set in G}. If Y = ∅
then either Lemma 3.5 completes the proof of the theorem or G has two adjacent
admissible nodes. First suppose that G has no adjacent admissible nodes. Then
Y 6= ∅ and we can choose a maximum size member Y of Y . Since Y is node-critical,
there exists a node v′ and t′ ∈ N(v′) such that Y is v′-critical, d(t′) ≥ 4, and t′ /∈ Y .
By using a similar argument we applied to X ∈ X above, we obtain that there exist
two admissible nodes u′, w′ in V − Y − v′. Since we are in the case when G has
no adjacent admissible nodes, and since u ∈ Y , it follows that G has three pairwise
non-adjacent admissible nodes, as required.

Now suppose that G has two adjacent admissible nodes s, r. Let Z = {Z ⊂ V :
s, r ∈ Z, Z is a node-critical set in G}. If Z = ∅ then the theorem follows by Lemma
3.6. Otherwise let Z be a maximum size member of Z. Since Z is node-critical, there
exists a node v′′ and t ∈ N(v′′) such that Z is v′′-critical, d(t′′) ≥ 4 and t′′ /∈ Z. By
using a similar argument we applied to X ∈ X and Y ∈ Y above we obtain that there
exist two admissible nodes in V − Z − v′′. Since s, r ∈ Z are admissible, this shows
that G has at least four admissible nodes. This proves the theorem.

The theorem is best possible in the sense that there exist 3-connected generic cycles
containing precisely four admissible nodes but no three pairwise non-adjacent admis-
sible nodes (see Figure 1(b)) and there exist 3-connected generic cycles containing
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3.1 A characterization of generic cycles 10

precisely three non-adjacent admissible nodes but no four admissible nodes (see Fig-
ure 1(a)). Furthermore, the graph of Figure 1(c) is a generic cycle with no admissible
nodes. This shows that the assumption on 3-connectivity is essential.

3.1 A characterization of generic cycles

In this subsection we give a constructive characterization of generic cycles based on
the fact that every 3-connected generic cycle has an admissible node. We note that we
shall not use this characterization in the proof of our main result in the next section
(but we shall rely on some of the lemmas given in this subsection).

Let H = (V,E) be a graph and suppose that for two sets X, Y ⊂ V with |X|, |Y | ≥ 3
and X ∪ Y = V we have X ∩ Y = {a, b}, d(X − Y, Y − X) = 0, and ab /∈ E. A
2-separation of H along the cutpair a, b (or along the pair X, Y ) results in two graphs
H[X] + ab and H[Y ] + ab. The inverse operation of 2-separation is 2-sum: given two
graphs H1 = (V1, E1) and H2 = (V2, E2) with two designated edges u1v1 ∈ E1 and
u2v2 ∈ E2, the 2-sum of H1 and H2 (along the edge pair u1v1, u2v2), denoted by
H1 ⊕H2, is the graph obtained from H1 − u1v1 and H2 − u2v2 by identifying u1 with
u2 and v1 with v2. The following lemma can be verified by simple calculations, using
inequality (1).

Lemma 3.8. Let G1 = (V1, E1) and G2 = (V2, E2) be generic cycles and let u1v1 ∈ E1

and u2v2 ∈ E2. Then the 2-sum G1 ⊕ G2 along the edge pair u1v1, u2v2 is a generic
cycle.

The next lemma is also easy to prove, using Lemma 2.3(c) and (1).

Lemma 3.9. Let G = (V, E) be a generic cycle and let G′ and G′′ be the graphs
obtained from G by a 2-separation. Then G′ and G′′ are both generic cycles.

Let G = (V, E) be a graph and let uw ∈ E. Recall that an extension of G along
uw is obtained from G by subdividing the edge uv by a new vertex v (i.e. replacing
the edge uw by a path uvw) and adding a new edge vz for some z ∈ V −{u, v}. The
next lemma is easy to prove.

Lemma 3.10. Let G be a generic cycle (a 3-connected graph) and let G′ be obtained
from G by an extension. Then G′ is a generic cycle (a 3-connected graph, respectively).

The following theorem shows that we can construct any generic cycle G by using
a sequence of 2-sum and extension operations, starting from a collection of disjoint
K4’s. Note that the 2-sum (extension) operation is always performed on two distinct
connected components (within a connected component, respectively). In the next
section we shall prove that if G is 3-connected then it is sufficient to use extensions
only.

Theorem 3.11. G = (V,E) is a generic cycle if and only if G is a connected graph
obtained from disjoint copies of K4’s by taking 2-sums and applying extensions.
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Proof. By Lemma 3.8 and Lemma 3.10 it follows that a connected graph built up from
disjoint copies of K4’s by 2-sums and extensions is a generic cycle. To prove the other
direction we need to show that if G is a generic cycle then the inverse operation of
either the 2-sum or the extension can be applied to G in such a way that the resulting
graphs (or graph) are (is) generic cycle(s). The inverse operations are 2-separation
and splitting off, respectively. If G has a cutpair then Lemma 2.3(c) and Lemma
3.9 show that we can apply 2-separation. If G is 3-connected then either G = K4

or |V | ≥ 5 and Theorem 3.7 shows that we can apply splitting off. This proves the
theorem.

4 Finding a feasible node

We call a node v of a 3-connected generic cycle G feasible if there is an admissible
splitting at v for which Gv is 3-connected. In this section we prove Connelly’s conjec-
ture by showing that every 3-connected generic cycle G on at least five vertices has
a feasible node. In the next three lemmas we describe three special configurations
and prove that if one of these configurations is present in a 3-connected generic cycle
G = (V,E) then G has a feasible node.

Lemma 4.1. Let v and w be two adjacent nodes and suppose that x ∈ N(v)∩N(w).
Then v is feasible.

Proof. Let N(v) = {w, x, y}. Since G is 3-connected, wy /∈ E. We claim that splitting
off v on the pair vw, vy is admissible. If this is not the case, then by Lemma 3.1 there
exists a v-critical set X on w and y with x /∈ X. Since wy /∈ X, |X| ≥ 3 must hold.
By Lemma 2.3(b) this implies that G[X] is 2-connected and hence w has at least two
neighbours in X. This is a contradiction, since w is a node which is adjacent to x and
v, and x, v /∈ X. Thus v is admissible.

Next we show that the graph Gv obtained by this admissible splitting at v is 3-
connected. If this is not the case then Gv has a cutpair a, b. Let A and B be two
components of Gv − {a, b}. Since G is 3-connected, v has neighbours a′ ∈ A and
b′ ∈ B in G. Since wy,wx ∈ E(Gv) and a′ and b′ are separated in Gv, we can assume
that a′ = x, b′ = y, and w ∈ {a, b}. Since dGv(w) = 3, this contradicts Lemma 2.3(c).
Thus v is feasible.

Lemma 4.2. Let v be a node in G with i(N(v) + v) = 5. Then v is feasible.

Proof. Let N(v) = {x, y, z} and suppose that xz, yz ∈ E. First we prove that splitting
off v on the pair vx, vy is admissible. If this is not the case, then by Lemma 3.1 there
exists a v-critical set X on x and y with z /∈ X. By (1) we must have d(z,X) = 2
and hence X + z is also critical. If X + z 6= V − v then X + z + v contradicts
(1), since d(v, X + z) ≥ 3. If X + z = V − v then either d(z) = 3, in which case
x, y is a cutpair, contradicting the 3-connectivity of G, or d(z) ≥ 4, in which case
i(X + v + z) ≥ i(X) + 6 = 2|X| − 3 + 6 = 2(|X| + 2) − 1, contradicting (1). This
shows that v is admissible.
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Next we show that the graph Gv obtained by this admissible split at v is 3-
connected. Suppose that Gv has a cutpair a, b and let A, B be two components
of Gv−{a, b}. Since a, b is not a cutpair in G, v has two neighbours a′ ∈ A and b′ ∈ B
in G, which are separated in Gv. This contradicts the fact that x, y, z are pairwise
adjacent in Gv. Thus v is feasible.

Lemma 4.3. Let a and b be two nodes of G with N(a) = N(b) such that there exists
a node v ∈ N(b). Then b is feasible.

Proof. Let N(a) = N(b) = {v, x, y}. It is easy to see that |V | = 5 implies G = W5

and hence each node of G is feasible. Thus we may assume that |V | ≥ 6. Since G is
3-connected, vx, vy /∈ E. Let z = N(v) − {a, b}. First we prove that splitting off b
on the edge pair bx, bv is admissible. If this is not the case, then by Lemma 3.1 there
exists a b-critical set X on x and v. Since vx /∈ E, we have |X| ≥ 3, and hence G[X]
is 2-connected. This implies that both vertices in N(v)− b are in X. Thus a, z ∈ X
holds and, since y /∈ X, a has degree two in G[X]. Therefore X − a is also critical.
Since |X − a| ≥ 3, G[X − a] is also 2-connected. This contradicts the fact that v has
only one neighbour (namely, z) in X − a. This proves that splitting off b on bx, bv is
admissible.

To see that this split preserves 3-connectivity suppose that r, s is a cutpair in Gb.
Then, since G is 3-connected, it follows that b has at least one neighbour in G in
each component of Gv − {r, s}. Since N(a) = N(b), this implies that a ∈ {r, s}.
Since dGb

(a) = 3 and Gb is a generic cycle, this contradicts Lemma 2.3(c). Thus b is
feasible.

We call the configurations of Lemma 4.1 (Lemma 4.2, Lemma 4.3) a good triangle
(a dense node, a good pair, respectively).

Theorem 4.4. Let G = (V,E) be a 3-connected generic cycle with |V | ≥ 5. Then G
has at least two feasible nodes.

Proof. We can assume that G is not a wheel. Let us fix a vertex c ∈ V arbitrarily.
We shall prove that G has a feasible node v′ 6= c. This will imply the existence of
at least two feasible nodes. By Theorem 3.7 G has an admissible node in V − c.
For a contradiction suppose that no admissible node in V − c is feasible in G. Then
any admissible splitting at any admissible node w 6= c results in a generic cycle Gw

which is not 3-connected. Hence Gw has at least one cutpair, implying that it has two
disjoint fragments, and so it has a fragment not containing c. For every admissible
node w 6= c let us fix Yw to be a minimum cardinality fragment not containing c
among all fragments of all possible generic cycles Gw we can obtain from G by an
admissible splitting at w. Note that |Yw| ≥ 2. Let us choose an admissible node
v 6= c in G for which |Yv| is as small as possible and let Gv be the generic cycle which
contains Yv. Let NGv(Yv) = {x, y}. By Lemma 3.9, a 2-separation of Gv along the
pair (Yv + x + y), (V − Yv) results in two generic cycles GY and GȲ . Let GY be the
generic cycle containing Yv.

Claim 4.5. If |V (GY )| = 4 then G has a feasible node v′ 6= c.
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Proof. We shall prove that if |V (GY )| = 4 then either G has a good triangle or G
has a dense node or G has a good pair. The claim will then follow from Lemma
4.1, Lemma 4.2, or Lemma 4.3 (by noting that the corresponding feasible node is in
Yv). Let V (GY ) = {a, b, x, y}, where Yv = {a, b} and NGY

(Yv) = {x, y}. Since G is
3-connected, we have |NG(v) ∩ Yv| ≥ 1 and |NG(v) ∩ V (GY )| ≤ 2. First suppose that
v has precisely one neighbour in V (GY ) in G. We can assume that this neighbour
is a. Then b is a dense node in G. Next suppose that |NG(v) ∩ V (GY )| = 2. Then,
without loss of generality, either {x, a} = NG(v)∩V (GY ) or {a, b} = NG(v)∩V (GY ).
In the former case either b is a dense node in G or a is a node in G and a, b and y
form a good triangle in G. In the latter case a, b is a good pair in G.

By Claim 4.5 we can assume that |V (GY )| ≥ 5. Furthermore, since Yv is an end
in Gv by the minimality of |Yv|, Lemma 2.7 implies that GY is 3-connected. Hence
by Theorem 3.7 either GY has four admissible nodes or GY has three pairwise non-
adjacent admissible nodes. Therefore, since xy ∈ E(GY ), we can choose an admissible
node t in GY for which

t /∈ {x, y} and either t /∈ NG(v), or there is a u ∈ V (GY ) with NG(v) ∩ Yv = {t, u},
tu ∈ E(GY ), and t, u are nodes in GY as well as in G.

To see that such a node t exists in GY note that if NG(v) ∩ Yv = {r, s} then Gv

arises from G by splitting off v on the pair vr, vs, hence rs ∈ E(GY ), and r (resp. s)
is a node in GY if and only if r (s) is a node in G.

Claim 4.6. t is an admissible node in G.

Proof. First suppose that t /∈ NG(v). Let G′
t be the graph obtained from GY by an

admissible splitting at t on the pair tg, th for some g, h ∈ NGY
(t). By the choice

of t and since t /∈ NG(v), we have that t is a node in G and NG(t) = NGY
(t).

Hence splitting off t on the pair tg, th is possible in G as well. Let Gt denote the
graph obtained from G by splitting off t on the edges tg, th. Observe that Gt can be
obtained from the generic cycle G′

t by a 2-sum operation at {x, y} and by an extension
(which adds v). Thus Gt is a generic cycle by Lemma 3.8 and Lemma 3.10.

Next suppose that t ∈ NG(v). By the choice of t this implies that v has two
neighbours t, u in Yv in G and Gv is obtained from G by splitting off v on the pair vt, vu,
hence tu ∈ E(GY ), and t and u are nodes in GY as well as in G. Let NGY

(t) = {u, z, p}.
Note that since u is a node in GY , it follows that splitting off t in GY on the pair tz, tp
is not admissible. Hence, since t is admissible in GY , we can assume that splitting off
t on the edges tu, tz is admissible in GY . Let G′

t be the generic cycle obtained from
GY by splitting off t on the pair tu, tz. Let Gt denote the graph obtained from G by
splitting off t on the edges tv, tz. Observe that Gt can be obtained from G′

t by a 2-sum
at {x, y} and by an extension (which adds v). Hence by Lemma 3.8 and Lemma 3.10
it follows that Gt is a generic cycle. Thus t is an admissible node in G.

By Claim 4.6 t is an admissible node in G. Let Gt be the graph obtained from G
by an admissible splitting at t.

Claim 4.7. |Yt| < |Yv|.
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Proof. Since NGv(Yv) = {x, y} is a cutpair in Gv, it follows that S := {x, y, v} is
a separating set in G, NG(Yv) = S, and Z := G − S − Yv is non-empty. By our
assumption Gt has at least one cutpair and hence, by Lemma 2.5, there exist two
ends A, B in Gt with A ⊆ Gt − B − NGt(B) and B ⊆ Gt − A − NGt(A). Note that
|A|, |B| ≥ 2, since Gt is a generic cycle and hence it has minimum degree 3. Since
t ∈ Yv and |Yv| ≥ 2, the set S is a separating set in Gt as well.

First consider the case when either A∩S = ∅ or B∩S = ∅ holds. By symmetry we
can assume A ∩ S = ∅. Since A induces a connected graph in Gt by Lemma 2.5, and
since S is a separating set in Gt, either A ⊆ Z or A ⊆ Yv − t holds. If A ⊆ Z then we
have t /∈ NG(A), since t ∈ Yv. Thus |NG(A)| = |NGt(A)| = 2 follows, contradicting
the fact that G is 3-connected. If A ⊆ Yv − t then, since c /∈ A, |Yt| ≤ |A| < |Yv|
follows.

Now consider the case when A ∩ S 6= ∅ 6= B ∩ S. Since A ∩ B = ∅, we can assume
without loss of generality that |A ∩ S| = 1. Let A ∩ S = {q}, where q ∈ {v, x, y}.
The first subcase we deal with is when A1 := A ∩ Yv and A2 := A ∩ Z are both non-
empty. In this case q is a cutvertex in Gt[A]. By Lemma 2.6 this implies NGt(A) ⊂
NGt(A1) ∩NGt(A2). Since S separates A1 and A2, we have NGt(A1) ∩NGt(A2) ⊆ S.
Moreover, we have |NGt(A)| = 2 and q ∈ A. This gives NGt(A) = S − q. Since
B∩ (A∪NGt(A)) = ∅, this implies that B∩S = ∅, which contradicts our assumption.

The second subcase is when either A ∩ (Yv − t) = ∅ or A ∩ Z = ∅. First suppose
that A ∩ (Yv − t) = ∅. If q /∈ NGt(Yv − t) then NGt(Yv − t) = S − q and hence
Yv − t is a fragment of Gt not containing c. Thus |Yt| ≤ |Yv − t| < |Yv|. If there
exists an edge from q to Yv − t in Gt then, since dGt(Yv − t, A − q) = 0, we have
|NGt(A− q)| ≤ |NGt(A)| = 2. Thus A− q is a fragment of Gt, which contradicts the
minimality of A. Now suppose that A ∩ Z = ∅. Since G is 3-connected, each vertex
q′ ∈ S has a neighbour in Z in G. Since t /∈ S, each q′ ∈ S has a neighbour in Z
in Gt as well. This implies that |NGt(A − q)| ≤ |NGt(A)| = 2, and hence A − q is a
fragment in Gt, contradicting the minimality of A. This proves the claim.

Claim 4.7 contradicts the choice of v. This shows that there exists a feasible node
v′ 6= c in G, and hence the proof of the theorem is complete.

Theorem 4.4 implies the following constructive characterization of 3-connected
generic cycles (which was conjectured by Connelly).

Theorem 4.8. G = (V,E) is a 3-connected generic cycle if and only if G can be built
up from K4 by a sequence of extensions.

5 Generically globally rigid graphs

In this section we apply Theorem 4.8 to solve a special case of a conjecture of Hen-
drickson on generically globally rigid (or uniquely realizable) graphs in two dimensions.
Suppose we choose generic coordinates for the vertices of graph G = (V,E) in the
plane. Let us call this a realization of G. These coordinates determine the length of
every edge of G. If G has no other realization with these edge lengths, up to congru-
ence of the whole plane, then this realization is unique. A graph G is called generically
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globally rigid (or uniquely realizable) if any realization of G is unique. Hendrickson [5]
proved that if G is generically globally rigid in the plane then G is redundantly rigid
(i.e. G− e is rigid for every e ∈ E) and 3-connected. He conjectured that these two
conditions are sufficient as well.

By Laman’s theorem [7] it can be seen that a redundantly rigid graph G = (V,E)
has |E| ≥ 2|V | − 2, and |E| = 2|V | − 2 holds if and only if G is a generic cycle. Thus
to prove Hendrickson’s conjecture in the special case when the graph has the least
possible number of edges is equivalent to proving that 3-connected generic cycles are
generically globally rigid. Furthermore, a result of Connelly [2] implies that if G can
be obtained from K4 by a sequence of extensions then G is globally generically rigid.
By Theorem 4.8 every 3-connected generic cycle can be obtained this way. This leads
to the following characterization.

Theorem 5.1. Let G = (V,E) be a graph with |E| = 2|V |−2. Then G is generically
globally rigid in the plane if and only if G is redundantly rigid and 3-connected.

Note that the property of being redundantly rigid and 3-connected can be checked
in polynomial time by purely combinatorial methods.
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