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Combined connectivity augmentation and
orientation problems

András Frank? and Tamás Király??

Abstract

Two important branches of graph connectivity problems are connectivity
augmentation, which consists of augmenting a graph by adding new edges so
as to meet a specified target connectivity, and connectivity orientation, where
the goal is to find an orientation of an undirected or mixed graph that satis-
fies some specified edge-connection property. In the present work an attempt
is made to link the above two branches, by considering degree-specified and
minimum cardinality augmentation of graphs so that the resulting graph ad-
mits an orientation satisfying a prescribed edge-connection requirement, such
as (k, l)-edge-connectivity. The results are obtained by combining the super-
modular polyhedral methods used in connectivity orientation with the splitting
off operation, which is a standard tool in solving augmentation problems.

Keywords: Graph orientation; Connectivity augmentation; Supermodularity

1 Introduction

In a connectivity augmentation problem the goal is to augment a graph or digraph by
adding a cardinality- or degree-constrained new graph so as to meet a specified target
connectivity. Initial deep results of the area are due to Lovász [9] and to Watanabe
and Nakamura [14] on augmenting a graph to make it k-edge-connected. Since then,
augmentation results for many different connectivity properties of graphs and digraphs
have been proved, employing various versions of the splitting off technique, which was
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originally introduced by Lovász [9] and subsequently developed further by Mader [10]
and others.

In a connectivity orientation problem one is interested in the existence of an orien-
tation of an undirected graph that satisfies some specified edge-connection properties.
For example, classical results of Nash-Williams [11] and of Tutte [13] characterize
graphs having k-edge-connected and rooted k-edge-connected orientations, respec-
tively. To formulate a common generalization of their results, we call a digraph
D = (V,A) (k, l)-edge-connected for non-negative integers k ≥ l if there is a node
s ∈ V such that there are k edge-disjoint paths from s to any other node, and there
are l edge-disjoint paths to s from any other node. Then (k, k)-edge-connectivity is
equivalent to k-edge-connectivity, and (k, 0)-edge-connectivity is equivalent to rooted
k-edge-connectivity from some node s. Good characterizations of undirected and
mixed graphs having a (k, l)-edge-connected orientation were given in [3] and in [5]
using submodular flows and related polyhedral methods (the characterizations for
undirected graphs are significantly less complicated than those for the more general
case of mixed graphs).

In this paper an attempt is made to link these two branches of connectivity prob-
lems by studying combined augmentation and orientation problems. For example we
characterize undirected and mixed graphs that can be augmented by adding an appro-
priate degree-specified undirected graph so as to have a (k, l)-edge-connected orienta-
tion. Another new result concerns the minimum number of new edges whose addition
to an initial undirected graph results in a graph admitting a (k, l)-edge-connected
orientation. Our proof methods for these characterizations combine the splitting off
technique used in connectivity augmentation with extensions of the supermodular
polyhedral techniques used in [5] to solve connectivity orientation problems. Since
these methods are constructive from an algorithmic point of view, the proofs give rise
to polynomial algorithms for finding a feasible augmentation.

The results are presented in the customary framework for connectivity orientations.
We consider graphs that can have loops and multiple edges. Given a graph G = (V,E)

and a set function h : 2V → Z (called the requirement function), an orientation ~G
of G is said to cover h if % ~G(X) ≥ h(X) for every set X ⊆ V , where % ~G(X) denotes

the number of edges of the digraph ~G entering the set X. Throughout the paper we
assume that h(∅) = h(V ) = 0. The h-orientation problem is to find an orientation of G
that covers h. For general h this includes NP-complete problems, so special classes of
set functions must be considered. A set function h is called crossing G–supermodular
with respect to a given graph G = (V,E) if

h(X) + h(Y ) ≤ h(X ∩ Y ) + h(X ∪ Y ) + dG(X,Y ) (1)

for every crossing pair (X, Y ), where the sets X,Y ⊆ V are crossing if none of X−Y ,
Y − X, X ∩ Y and V − (X ∪ Y ) are empty, and dG(X,Y ) is the number of edges
in E connecting X − Y and Y − X (for dG(X,X) we will also use dG(X)). Note
that for any graph G this condition is weaker than crossing supermodularity (it is
equivalent if G is the empty graph). For a set X ⊆ V , let iG(X) denote the number
of edges uv ∈ E with u, v ∈ X; then the set function h+ iG is crossing supermodular
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if and only if h is crossing G–supermodular. As in [5], we restrict our attention to
crossing G–supermodular set functions. The augmentation problem corresponding to
h-orientation is the following: given an undirected graph G, find an undirected graph
H (either with specified degrees, or with minimum number of edges), so that G+H
has an orientation covering h.

It was shown in [3] that for a graph G and a non-negative crossing G–supermodular
requirement function h the h-orientation problem can be solved in polynomial time. In
Sections 3 and 4 we solve the corresponding degree-specified and minimum cardinality
augmentation problems, respectively. Our methods also provide a solution for the
minimum cost augmentation problem for node-induced cost functions.

In Section 5 these results are applied to the augmentation problem where the aim is
to obtain a graph admitting a (k, l)-edge-connected orientation; in this case the char-
acterizations can be simplified. The theorems can also be interpreted without referring
to orientations. A graph G is called (k, l)-tree-connected if each graph obtained by
deleting any l edges from G contains k edge-disjoint spanning trees. It is known that
if k ≥ l, then (k, l)-tree-connected graphs are exactly those that have a (k, l)-edge-
connected orientation; thus the results imply a solution for the (k, l)-tree-connectivity
augmentation problem.

In [5], submodular flows were used in the solution to the h-orientation problem when
h is a crossing G–supermodular set function that can have negative values; this implies
for example a characterization for (k, l)-edge-connected orientability of a mixed graph
M . In Section 6 we generalize this result by considering the h-orientation problem
for set functions which are positively crossing G–supermodular: (1) holds for every
crossing pair (X,Y ) for which h(X), h(Y ) > 0. The main result is a characterization
for the corresponding degree-specified augmentation problem. The proof exploits the
TDI-ness of a system closely related to the intersection of two base polyhedra.

2 Preliminaries

A family of sets is a collection of subsets of the ground set V , with possible repetition.
The union of two families F1 and F2, denoted by F1 + F2, is the family where the
multiplicity of every subset is the sum of its multiplicities in F1 and F2. If every
member of a family F is replaced by its complement, the resulting family is denoted by
co(F). For an element v ∈ V , dF(v) denotes the number of members of F containing
v; F is regular if dF(v) is the same for every v ∈ V . A family F is a composition of
X for X ⊆ V if F + {V −X} is regular. The covering number of F is minv∈V dF(v);
for example, a partition of a set X ⊂ V is a composition of X with covering number
0. If F is a composition of X ⊂ V for which co(F) is a partition of X, then F is
called a co-partition of X. A co-partition of V (or simply a co-partition) is a family
F for which co(F) is a partition. A family F is cross-free if it has no two crossing
members. Simple examples are partitions and co-partitions; in fact, it is easily seen
that these are the only minimal regular cross-free families:

Proposition 2.1. Every regular cross-free family decomposes into partitions and co-
partitions.
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For a vector x : V → R and a set Y ⊆ V , we use the notation x(Y ) =
∑

v∈Y x(v).
For ν ∈ R, (ν)+ denotes max{ν, 0}. The upper truncation of a set function p : 2V →
Z ∪ {−∞} is

p∧(X) := max

{∑
Z∈F

p(Z) | F a partition of X

}
. (2)

If p is intersecting supermodular, then p∧ is fully supermodular (see [1]). If p is crossing
supermodular, then so is p∧. With the set function p we associate the polyhedra

C(p) := {x : V → R | x(Y ) ≥ p(Y ) ∀Y ⊆ V } , (3)

B(p) := {x : V → R | x(V ) = p(V ); x(Y ) ≥ p(Y ) ∀Y ⊆ V } . (4)

Clearly, C(p) = C(p∧). A polyhedron is a contra-polymatroid if it equals C(p) for
some monotone increasing fully supermodular function p; it is a base polyhedron if it
corresponds to B(p) for some fully supermodular function p.

The following two theorems are important tools in the upcoming proofs. The first
one deals with base polyhedra given by crossing supermodular functions, while the
second is a generalization of Mader’s directed splitting off theorem.

Theorem 2.2 (S. Fujishige [7]). Let p : 2V → Z ∪ {−∞} be a crossing supermod-
ular function. Then B(p) is non-empty if and only if

t∑
i=1

p(Xi) ≤ p(V ) ,
t∑

i=1

p(Xi) ≤ (t− 1)p(V )

both hold for every partition {X1, . . . , Xt} of V . Furthermore, if B(p) is non-empty,
then it is a base polyhedron, thus its vertices are integral.

Theorem 2.3 ([4]). Let p be a positively crossing supermodular set function on V ;
let mi, mo be non-negative integer-valued functions on V for which mi(V ) = mo(V ).
There exists a digraph D = (V,A) such that %D(v) = mi(v), ρD(V − v) = mo(v)
∀v ∈ V , and %D(X) ≥ p(X) ∀X ⊆ V if and only if

mi(X) ≥ p(X) for every X ⊆ V ,

mo(V −X) ≥ p(X) for every X ⊆ V .

Let G = (V,E) be a graph. For a family F of sets and u, v ∈ V , let Fuv := {X ∈
F | u /∈ X, v ∈ X}. We define

eG(F) :=
∑

e=uv∈E

max{|Fuv|, |Fvu|}.

Note that eG(F) is the maximum of
∑

X∈F % ~G(X), taken over all possible orientations
~G of G (for regular families this sum is the same for any orientation). For partitions it
equals the number of cross-edges (edges whose two endpoints are in different members
of the partition). More generally, if F is a regular family with covering number α,
then eG(F) = 1

2

∑
X∈F dG(X), hence

eG(F) = α|E| −
∑
X∈F

iG(X) . (5)
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3 Degree-specified augmentation

The main result of this section is a theorem on the degree-specified augmentation
problem concerning h-orientation for nonnegative crossing supermodular requirement
functions. The special case when m ≡ 0, that is, the degree specification is 0 on every
node, corresponds to the orientation theorem in [3], while a 2k-edge-connectivity
augmentation theorem (otherwise a simple consequence of the splitting off theorem of
Lovász) is obtained if the value of the requirement function is k on every proper subset
of V . The characterizations given by the theorem are good in the sense that they
provide an easily verifiable certificate if the augmentation is impossible. Moreover,
the proof is constructive and gives rise to a polynomial algorithm, since it involves
polyhedral and splitting off problems that can be solved in polynomial time.

Theorem 3.1. Let G = (V,E) be a graph, h : 2V → Z+ a non-negative crossing
G–supermodular set function on V , and m : V → Z+ a degree specification with m(V )
even. There exists an undirected graph H = (V, F ) such that G+H has an orientation
covering h and dH(v) = m(v) for all v ∈ V if and only if the following hold for every
partition F of V :

m(V )

2
≥

∑
X∈F

h(X)− eG(F) , (6)

min
X∈F

m(X) ≥
∑
X∈F

h(X)− eG(F) , (7)

m(V )

2
≥

∑
X∈co(F)

h(X)− eG(co(F)) , (8)

min
X∈F

m(X) ≥
∑

X∈co(F)

h(X)− eG(co(F)) . (9)

Proof. To see the necessity of these conditions, observe that m(V )/2 is the number
of new edges, while

∑
X∈F h(X) − eG(F) measures the deficiency of a partition F ,

i.e. the difference between the total requirement of the partition and the portion
of this requirement that is satisfied by an arbitrary orientation of G. Hence (6)
simply requires that the deficiency of a partition should not exceed the number of
new edges. The necessity of (7) is also straightforward since each new cross-edge
must have an endnode in X, so the number of new cross-edges, which should be at
least the deficiency of F , is at most m(X). (Note that if m ≡ 0, then (6) and (7) are
equivalent.) The necessity of (8) and (9) can be seen analogously.

To prove sufficiency, we add a new node z to the set of nodes, and for every v ∈ V
we add m(v) parallel edges between v and z; the resulting graph is denoted by G′ =
(V ′, E ′). The following extension of the set function h is considered:

h′(z) = h′(V ) :=
m(V )

2
,

h′(X + z) = h′(X) := h(X) if ∅ 6= X ⊂ V .
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The proof consists of finding first an orientation of G′ that covers h′, and splitting
then off the directed edges at z so that the resulting digraph on the ground set V
covers h. To find an orientation covering h′, we resort to a well-known lemma on the
in-degrees of orientations (see e.g. [8]):

Lemma 3.2. For a given vector x′ : V ′ → Z+, there is an orientation ~G′ of G′ such
that % ~G′(v) = x′(v) for every v ∈ V ′ if and only if x′(V ′) = |E ′| and x′(Y ) ≥ iG′(Y )
for every Y ⊆ V ′.

Lemma 3.2 and the non-negativity of h imply that if we can find a vector x′ : V ′ →
Z+ that satisfies x′(V ′) = |E ′| and

x′(Y ) ≥ h′(Y ) + iG′(Y ) for every Y ⊆ V ′, (10)

then there is an orientation ~G′ of G′ such that % ~G′(v) = x′(v) for every v ∈ V ′, and

such that ~G′ covers h′, since % ~G′(Y ) = x′(Y )− iG′(Y ) ≥ h′(Y ). A vector x′ satisfying
(10) is called feasible. By definition h′(z) = h′(V ) = m(V )/2, hence x′(z) must be
equal to m(V )/2; let x : V → Z+ denote the restriction of x′ to V . It easily follows
from the definition of h′ that the vector x′ is feasible if and only if x is an element of
the polyhedron B(pm) (defined in (4)) associated with the set function

pm(X) := h(X) + iG(X) +

(
m(X)− m(V )

2

)+

(X ⊆ V ) .

Claim 3.3. The set function pm is crossing supermodular.

Proof. The G–supermodularity of h implies that h+ iG is crossing supermodular. Let
m∗(X) := (m(X)−m(V )/2)+; we show that this set function is fully supermodular.
Indeed, if m∗(Y ) = 0, then m∗(X) +m∗(Y ) = m∗(X) ≤ m∗(X ∪ Y ) = m∗(X ∩ Y ) +
m∗(X ∪ Y ). If m∗(X),m∗(Y ) > 0, then m∗(X) +m∗(Y ) = m(X ∩ Y ) +m(X ∪ Y )−
m(V ) ≤ m∗(X ∩ Y ) + m∗(X ∪ Y ). The sum of a crossing supermodular and a fully
supermodular function is crossing supermodular.

Claim 3.4. Suppose that (6)–(9) are true. Then B(pm) is non-empty.

Proof. By Theorem 2.2 it suffices to show that
∑

X∈F pm(X) ≤ |E| + m(V )/2 and∑
X∈co(F) pm(X) ≤ (t− 1)(|E|+m(V )/2) for every partition F with t members. Ob-

serve that a partition has at most one member X with m(X) > m(V )/2. If there is no
such member, then (6) and the identity (5) imply that

∑
X∈F pm(X) ≤ |E|+m(V )/2;

if there is one such member, then (7) and (5) imply the same. Similarly, a co-
partition has at most one member X with m(X) < m(V )/2, so (8) or (9) (depend-
ing on the existence of such a member) and (5) for the co-partition co(F) imply∑

X∈co(F) pm(X) ≤ (t− 1)(|E|+m(V )/2).

By Theorem 2.2, B(pm) is a base polyhedron with integral vertices, and for such
a vertex x the corresponding vector x′ : V ′ → Z+ is feasible. By Lemma 3.2, G′ has
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Section 4. Minimum cardinality augmentation 7

an orientation ~G′ = (V ′, ~E ′) with in-degree vector x′, and the feasibility of x′ implies

that ~G′ covers h′.
Let mi(v) be the multiplicity of the edge zv in ~G′, mo(v) be the multiplicity of

the edge vz in ~G′, and let ~G denote the digraph obtained from ~G′ by deleting the
node z. Then mi(X) ≥ h(X) − % ~G(X) and mo(V − X) ≥ h(X) − % ~G(X) for every

X ⊆ V , since ~G′ covers h′. By the crossing G–supermodularity of h, the set function
p(X) := h(X)− % ~G(X) is crossing supermodular. Applied on these values, Theorem
2.3 asserts that there exists a digraph D with underlying undirected graph H, such
that H satisfies the degree specifications, and ~G + D covers h. Since ~G + D is an
orientation of G+H, this proves Theorem 3.1.

If the requirement function is monotone decreasing (that is, h(X) ≥ h(Y ) if X ⊆
Y ), or symmetric, then the conditions of Theorem 3.1 can be simplified.

Corollary 3.5. Let G = (V,E) be a graph, h : 2V → Z+ a non-negative, monotone
decreasing crossing G–supermodular set function on V , and m : V → Z+ a degree
specification with m(V ) even. There exists an undirected graph H = (V, F ) such that
G + H has an orientation covering h and dH(v) = m(v) for all v ∈ V if and only if
(6) and (7) hold for every partition F of V .

Proof. The co-partition type constraints (8) and (9) are unnecessary in this case, since∑
X∈F h(X) ≥

∑
X∈co(F) h(X) and eG(F) = eG(co(F)) for every partition F .

Corollary 3.6. Let G = (V,E) be a graph, h : 2V → Z+ a non-negative, symmetric
crossing G–supermodular set function on V , and m : V → Z+ a degree specification
with m(V ) even. There exists an undirected graph H = (V, F ) such that G + H has
an orientation covering h and dH(v) = m(v) for all v ∈ V if and only if m(X) ≥
2h(X)− dG(X) for every X ⊆ V .

Proof. The co-partition type constraints are redundant for the same reason as in
Corollary 3.5. Let {X1, . . . , Xt} be a partition such that m(X1) ≥ m(Xi) (i =
2, . . . , t). If m(Xi) ≥ 2h(Xi)−dG(Xi) for every i, then by adding up these inequalities
we obtain (6); by adding m(X1) ≥ 2h(X1)− dG(X1) to the inequalities featuring the
rest of the partition members, we obtain (7).

4 Minimum cardinality augmentation

Theorem 3.1 characterized degree specifications that are ‘good’ in the sense that
a corresponding feasible augmentation exists. In this section we derive a min-max
theorem for minimum cardinality augmentation, by analyzing the properties of these
good degree specifications. We show that they are the integral vectors (with even
co-ordinate sum) of a contra-polymatroid.
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Theorem 4.1. Let G = (V,E) be a graph, and h : 2V → Z+ a non-negative crossing
G–supermodular set function. There is an undirected graph H = (V, F ) with γ edges
such that G+H has an orientation covering h if and only if

γ ≥
∑
X∈F

h(X)− eG(F) (11)

holds for every partition and co-partition F of V , and

2γ ≥
∑
Z∈F

h(Z)− eG(F) (12)

holds for every cross-free regular family F that for some X ⊂ V decomposes into a
partition of X and a co-partition of X.

Proof. In both types of conditions,
∑

X∈F h(X)− eG(F) measures the difference be-
tween the total requirement of the family F and the sum of the in-degrees of its
members for an arbitrary orientation of G. Now necessity follows easily by observing
that each of the γ oriented new edges can cover at most one member of a (sub)partition
or a (sub)-copartition.

Sufficiency will be proved by showing that if (11) and (12) hold, then there exists a
vector m : V → Z+ with m(V ) = 2γ satisfying (6)–(9); thus by Theorem 3.1 we can
find a feasible augmentation with degree-specification m. The essential result in the
proof is that the polyhedron

C := {m : V → Z+ | m satisfies (6)–(9)}

is a contra-polymatroid. In order to show this, we first transform (6)–(9), which are
conditions on partitions and co-partitions, into requirements for the subsets of V .
Define the set functions

p1(X) := h(X) + iG(X) ,

p2(X) := h(X) + iG(X)− |E| .
By the crossing G–supermodularity of h, the set functions p1 and p2 are crossing

supermodular, therefore the set functions p∧1 and p∧2 (as defined in (2)) are also crossing
supermodular. By the identity (5), a non-negative vector m satisfies (6)–(9) if and
only if the following hold:

m(V ) ≥ 2 max
X⊂V

(p∧1 (X) + p2(X)) ,

m(X) ≥ p∧1 (X) + p2(X) for every X ⊂ V ,

m(V ) ≥ 2 max
X⊂V

(p1(X) + p∧2 (X)) ,

m(X) ≥ p1(X) + p∧2 (X) for every X ⊂ V .

We define a new set function

p(X) := max {p∧1 (X) + p2(X), p1(X) + p∧2 (X), 0} (X ⊂ V ) , (13)

p(V ) := 2 max
X⊂V

p(X) . (14)
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Thus the conditions (6)–(9) are ‘coded into’ p, i.e. the polyhedron C can be charac-
terized as

C = {m : V → Z | m(X) ≥ p(X) ∀X ⊆ V } .

To prove that C is a contra-polymatroid, we will show that the set function p∧ is fully
supermodular. First we establish some other properties of p∧:

Proposition 4.2. For every proper subset X of V , the value of p∧(X) is

p∧(X) = max
X′⊆X

(p∧1 (X ′) + p∧2 (X ′)) . (15)

Proof. By the definitions of p and the upper truncation, the value of p∧(X) is attained
by taking two appropriate partitions of some X ′ ⊆ X, and adding up p1 on the
members of the first one, plus p2 on the members of the second one. Thus p∧ is less
than or equal to the maximum on the right side of (15). For the other inequality,
suppose indirectly that there exists X ′ ⊆ X and partitions F1 and F2 of X ′ such that

p∧(X) <
∑
Z∈F1

p1(Z) +
∑
Z∈F2

p2(Z) .

Repeat the following step as many times as possible:

• If Z1 ∈ F1 and Z2 ∈ F2 are crossing, then replace Z1 in F1 by Z1 − Z2, and
replace Z2 in F2 by Z2 − Z1.

Observe that the resulting families are partitions of a decreasing sequence of proper
subsets of X ′, so the procedure terminates after a finite number of steps. Furthermore,
Z1 and Z2 are crossing, so h(Z1) + h(Z2) ≤ h(Z1 ∩ Z2) + h(Z1 ∪ Z2) + dG(Z1, Z2),
which implies that p1(Z1)+p2(Z2) ≤ p1(Z1−Z2)+p2(Z2−Z1). Let F ′1 and F ′2 denote
the families obtained at the end of the procedure; then F ′1 and F ′2 are partitions of
some X ′′ ⊆ X ′, and p∧(X) <

∑
Z∈F ′

1
p1(Z) +

∑
Z∈F ′

2
p2(Z). Moreover, F ′1 + F ′2 is

cross-free, which means that there is a partition X1, . . . , Xt of X ′′, such that for every
i either F ′1 contains Xi and F ′2 contains a partition of Xi, or vice versa. But then∑

Z∈F ′
1
p1(Z) +

∑
Z∈F ′

2
p2(Z) ≤ p∧(X ′′) ≤ p∧(X), a contradiction.

Proposition 4.3. The set function p satisfies

p(X) + p(Y ) ≤ p∧(X ∩ Y ) + p∧(X ∪ Y ) (16)

for every pair (X,Y ).

Proof. The inequality is obvious if one of p(X) and p(Y ) is zero, or X and Y are
not intersecting. If X ∪ Y = V , then p(X) + p(Y ) ≤ 2 max{p(X), p(Y )} ≤ p(V ) =
p(X ∪ Y ) ≤ p∧(X ∩ Y ) + p∧(X ∪ Y ).

By Proposition 4.2 it suffices to prove that if p(X), p(Y ) > 0 and X and Y are
crossing, then

p(X) + p(Y ) ≤ p∧1 (X ∩ Y ) + p∧2 (X ∩ Y ) + p∧1 (X ∪ Y ) + p∧2 (X ∪ Y ) .
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Using the definition of p and the crossing supermodularity of p∧1 and p∧2 ,

p(X) + p(Y ) ≤ p∧1 (X) + p∧2 (X) + p∧1 (Y ) + p∧2 (Y )

≤ p∧1 (X ∩ Y ) + p∧2 (X ∩ Y ) + p∧1 (X ∪ Y ) + p∧2 (X ∪ Y ) .

This property turns out to be sufficient for the supermodularity of p∧:

Lemma 4.4. If a set function p (with p(∅) = 0) satisfies (16) for every pair (X,Y ),
then p∧ is fully supermodular.

Proof. For a setX ⊆ V , let FX denote a partition ofX for which p∧(X) =
∑

Z∈FX
p(Z).

Let X, Y ⊆ V be an arbitrary pair. Starting from the family F = FX + FY , repeat
the following operation as many times as possible:

• If there is an intersecting pair Z1 and Z2 in the family, remove both of them,
and add the sets of FZ1∩Z2 and of FZ1∪Z2 to the family.

The operation doesn’t change dF , and doesn’t decrease
∑

Z∈F p(Z), since p has the
property (16). Since the operation either increases the cardinality of the family, or
increases

∑
Z∈F |Z|2 without changing the cardinality, after a finite number of steps

we get a laminar family F ′ for which
∑

Z∈F ′ p(Z) ≥
∑

Z∈F p(Z). Such a family
decomposes into a partition of X∩Y and a partition of X∪Y , hence p∧(X)+p∧(Y ) ≤
p∧(X ∩ Y ) + p∧(X ∪ Y ).

Lemma 4.4 and Proposition 4.3 imply that p∧ is fully supermodular, and it is
obviously monotone increasing, hence C is a contra-polymatroid defined by p∧. It is
known that in this case the minimum cardinality of an integral element of the contra-
polymatroid C is p∧(V ). Thus, for a fixed γ, there exists an integral element m of C
with m(V ) = 2γ if and only if p∧(V ) ≤ 2γ. This inequality follows from conditions
(11) and (12): if p∧(V ) = p(V ), then it corresponds to (11); if the value of p∧(V )
is attained on a partition F∗, then it follows from (12), X being the union of the
members of F∗ where p is positive. This concludes the proof of Theorem 4.1.

Remark. The following example shows that (11) itself is not sufficient in The-
orem 4.1. Let V = {v1, v2, v3, v4}, E = {v1v2, v1v3, v1v4}. Let h = 1 on the sets
{v2}, {v3}, {v4} and on their complement; let h = 0 on all other sets. We need at least
2 new edges for a feasible orientation (two edges suffice, since after adding v2v3 and
v3v4 the graph has a strong orientation) but (11) requires only γ ≥ 1, since the only
deficient partitions are {{vi}, V − vi} (i = 2, 3, 4).

Remark. A cost function c : E → R+ is called node induced if c(uv) = c′(u)+c′(v)
where c′ : V → R+ is a linear cost function on the nodes. To solve the minimum cost
augmentation problem for node induced cost functions, one can find a minimum cost
element with even co-ordinate sum of the contra-polymatroid C according to the cost
function c′, using the greedy algorithm. Then this vector can be used as a degree
specification to find a minimum cost augmentation.
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For general edge costs the problem is NP-complete: let G be the empty graph,
and let c(e) = 1 on the edges of a fixed graph G∗, c(e) = 2 on the other edges. Let
h(X) = 1 if X 6= ∅, V ; thus h is crossing supermodular. Now the minimum cost of
the augmentation is |V | if and only if G∗ contains a Hamiltonian cycle.

5 (k, l)-edge-connected orientations

In the introduction we defined (k, l)-edge-connectivity for non-negative integers k ≥
l, and mentioned that the (k, l)-edge-connectivity orientation problem is a common
generalization of k-edge-connectivity orientation (when l = k) and rooted k-edge-
connectivity orientation (when l = 0). Recently, it was shown in [6] that the case
l = k− 1 plays an important role in orientation problems with both connectivity and
parity constraints. As for the corresponding augmentation problems, both the degree-
specified and the minimum cardinality augmentation of a graph to have a k-edge-
connected orientation are already solved, but the minimum cost augmentation is NP-
complete even for k = 1. On the other hand, for rooted k-edge-connected orientations,
the minimum cost augmentation is known to be solvable by matroid techniques, while
no solution has been proposed so far for degree-specified augmentation.

To show how the results of the previous section can be used to solve degree-specified
and minimum cardinality augmentation of a graph so that the new graph has a (k, l)-
edge-connected orientation, fix a node s ∈ V , and introduce the following family of
set functions:

hkl(X) :=

{
k if s /∈ X ,
l if s ∈ X .

(17)

Menger’s theorem implies that an orientation is (k, l)-edge-connected from root s if
and only if it covers hkl. The set function hkl is crossing G–supermodular for any G.
Note that if a digraph is (k, l)-edge-connected from root s, and for some s′ ∈ V − s
we take k edge-disjoint paths from s to s′ and reverse the orientation of the edges on
k − l of them, then we get a digraph that is (k, l)-edge-connected from root s′. Thus
the root can be selected arbitrarily in orientation problems.

Theorem 5.1. Let G = (V,E) be a graph, m : V → Z+ a degree specification with
m(V ) even, and k ≥ l non-negative integers. There exists an undirected graph H =
(V, F ) such that G+H has a (k, l)-edge-connected orientation and dH(v) = m(v) for
all v ∈ V if and only if the following hold for every partition F = {X1, . . . , Xt} of V :

m(V )

2
≥ (t− 1)k + l − eG(F) , (18)

min
i
m(Xi) ≥ (t− 1)k + l − eG(F) . (19)

Proof. Since the set function hkl defined in (17) is monotone decreasing, the claim
follows from Corollary 3.5.

Theorem 5.2. Let G = (V,E) be a graph, and k ≥ l non-negative integers. There
is a graph H with γ edges such that G + H has a (k, l)-edge-connected orientation if
and only if the following two conditions are met:
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1. γ ≥ (t− 1)k + l − eG(F) for every partition F with t members.

2. 2γ ≥ t1k + t2l− eG(F) for every family F = F1 +F2 where F1 is a partition of
some X with t1 members, F2 is a co-partition of X with t2 members, and every
member of F2 is the complement of the union of some members of F1.

Proof. As in the proof of Theorem 5.1, we demand that G + H should have an ori-
entation covering hkl. Going back to the proof of Theorem 4.1, the set function p
defined in (13) can be defined in this case as

p(X) :=

{
(p∧1 (X) + p2(X))+ if X ⊂ V ,
2 maxY⊂V (p∧1 (Y ) + p2(Y )) if X = V .

(20)

As it was proved in Theorem 4.1, a feasible augmentation with γ edges exists if and
only if p∧(V ) ≤ 2γ; by the above characterization of p, this is equivalent to the
conditions of the theorem.

Remark. The graph on Figure 1 shows that the second condition in Theorem 5.2
cannot be simplified. We need to add at least 2 edges to the graph to have a (3, 1)-
edge-connected orientation from root s, but the simplest evidence for this is the family
indicated on the figure (consisting of the round sets and the complements of the square
sets), whose deficiency is 3, while a new edge can enter at most 2 sets. The figure on
the right shows that the addition of 2 edges is sufficient (to see that the digraph is
(3, 1)-edge-connected, observe that it contains 3 edge-disjoint out-arborescences from
s, and also an in-arborescence to s).

ss

Figure 1

There are other equivalent characterizations of graphs that have a (k, l)-edge-
connected orientation. For given non-negative integers k and l, a graph G = (V,E) is
called (k, l)-tree-connected if any graph obtained by deleting l edges from G contains k
edge-disjoint spanning trees; it is called (k, l)-partition-connected if eG(F) ≥ k(t−1)+l
for every partition F with t members. Tutte [13] proved that a graph is (k, 0)-tree-
connected if and only if it is (k, 0)-partition-connected. This immediately implies that
a graph is (k, l)-tree-connected if and only if it is (k, l)-partition-connected.

Simple calculation shows that for k ≤ l, a graph G is (k, l)-tree-connected if and
only if it is (k + l)-edge-connected. Thus the (k, l)-tree-connectivity augmentation
problem is interesting only for k ≥ l, and, by the following proposition, this is exactly
what was solved in Theorems 5.1 and 5.2:
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Proposition 5.3. For k ≥ l, a graph G = (V,E) is (k, l)-tree-connected if and only
if it has a (k, l)-edge-connected orientation.

Proof. It follows from the orientation theorem in [3] (or Theorem 3.1) that for k ≥ l,
a graph has a (k, l)-edge-connected orientation if and only if it is (k, l)-partition-
connected.

Note that Theorem 5.1 has some interest even in the very special case when G = ∅.
A result of Edmonds [2] states that a degree-sequence m1, . . . ,mn is realizable by a k-
edge-connected graph if and only if

∑n
i=1mi is even, and mi ≥ k for every i. Theorem

5.1 implies the following similar result: a degree-sequence m1, . . . ,mn is realizable by
a (k, l)-tree-connected graph if and only if

∑n
i=1mi is at least 2k(n − 1) + 2l, it is

even, and mi ≥ k + l for every i.
When l = 0, this implies the following tiny result (which is not difficult to prove

directly either): If G = (V,E) is a k-edge-connected graph with at least k(n − 1)
edges, then there is a graph G′ = (V,E ′) containing k edge-disjoint spanning trees
with dG(v) = dG′(v) ∀v ∈ V .

Remark. The problems discussed in this section are in some sense about packing
trees; one may ask whether a similar augmentation result can be obtained related to
covering with trees. This question is not considered here in detail; we remark only that
the most basic problem, i.e. the augmentation of a graph such that the resulting graph
can still be covered by k forests, is solvable rather easily. The maximum cardinality
(or, more generally, maximum weight) augmentation is a standard matroid problem,
while the following is true on degree-specified augmentation:

Theorem 5.4. Let G = (V,E) be a graph, m : V → Z+ a degree specification with
m(V ) even, and k a positive integer. There exists an undirected graph H = (V, F )
such that G+H can be covered by k forests and dH(v) = m(v) for every v ∈ V if and
only if (

m(X)− m(V )

2

)+

≤ k(|X| − 1)− iG(X) for every ∅ 6= X ⊆ V . (21)

Proof. We prove the theorem by induction on m(V ). By a well-known theorem of
Nash-Williams [12], a graph can be covered by k forests if and only if iG(X) ≤
k(|X| − 1) for every non-empty subset X of V ; hence we can assume that m(V ) ≥ 2.
Let v ∈ V be an arbitrary node with m(v) > 0.

A set X is called tight if (21) holds with equality. Let F1 be the family that consists
of the tight sets X for which m(X) ≤ m(V )/2 and v ∈ X, and let F2 be the family
of tight sets X for which m(X) ≥ m(V )/2 and v /∈ X. The union of two members
of F1 is also in F1, since otherwise the intersection would violate (21); similarly, the
intersection of two sets in F2 is in F2, since otherwise their union would violate (21).
Let X1 be the maximal member of F1, and X2 the minimal member of F2. Then
v ∈ X1 −X2 and m(X1) ≤ m(X2), so there is a node u ∈ X2 −X1 with m(u) > 0.

Let m′ be defined by decreasing m(u) and m(v) by 1, and G′ defined by adding an
edge uv to G. The node u was chosen such that no member of F1 contains both u and
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v, and every member of F2 contains u. From this it is easy to see that (21) holds for m′

and G′, therefore G′ can be augmented by adding a graph H ′ with degree-specification
m′ such that G′ + H ′ can be covered by k forests. This means that H ′ + {uv} is a
good augmenting graph for G.

6 Positively crossing G–supermodular set functions

Let M = (V ;E,A) be a mixed graph, where E is the set of undirected edges and A is
the set of directed edges. Then the task of finding a (k, l)-edge-connected orientation of
M for a fixed root s is equivalent to finding an orientation of the edges in E that covers
the set function (hkl−%A)+, where hkl is defined in (17). This requirement function is
not crossing G–supermodular anymore, but it is positively crossing G–supermodular
for any G. This motivates the study of the h-orientation problem for positively cross-
ing G–supermodular set functions, and the corresponding augmentation problems. In
[5], the h-orientation problem was solved for crossing G–supermodular h with possible
negative values, which includes the mixed graph problem mentioned above (for such
an h, (h)+ is positively crossing G–supermodular).

The characterizations in this section involve set families more complicated than
partitions and co-partitions. It is known that every cross-free family F has a tree-
representation (T, ϕ), where T = (W,B) is a directed tree, and ϕ : V → W is a
mapping such that {ϕ−1(We) | e ∈ B} = F , where We is the component of T − e
entered by e. A tree-composition of ∅ 6= X ⊂ V is a cross-free composition of X which
has a tree-representation (T = (W,B), ϕ) such that ϕ−1(w) 6= ∅ for every w ∈ W .
Equivalently, a tree-composition of X is a cross-free composition of X that contains no
partitions and co-partitions of V . For technical reasons, a partition or a co-partition
of V will be regarded as a tree-composition of the empty set.

In this section we give a characterization for the degree-specified augmentation
problem, by mainly the same methods as in Section 3, but instead of relying on the
properties of base polyhedra, we use the following extension of the classical result on
the TDI-ness of the intersection of base polyhedra:

Lemma 6.1. Let q1 : 2V → Z ∪ {−∞} be fully supermodular, and let q2 : 2V →
Z ∪ {−∞} be a set function that is supermodular on the crossing pairs (X, Y ) for
which q1(X) < q2(X) and q1(Y ) < q2(Y ). Then the system{

x ∈ R
V | x(V ) = q1(V ); x(Y ) ≥ q1(Y ), x(Y ) ≥ q2(Y ) ∀Y ⊆ V

}
(22)

is TDI; it has a feasible solution if and only if

q1(X) +
∑
Z∈F

q2(Z) ≤ (α + 1)q1(V ) (23)

for every X ⊂ V (including the empty set) and every tree-composition F of X with
covering number α.
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Proof. To prove TDI-ness, we have to show that the dual system

max {y1q1 + y2q2 − βq1(V ) : (y1 + y2)A− β1 = c, y1, y2, β ≥ 0}

has an integral optimal solution for every integral c, where y1, y2 : 2V → Q+ are dual
variables on the subsets of V , y1 corresponding to the inequalities featuring q1, y2

corresponding to those featuring q2, β ∈ Q+ is the dual variable for the inequality
x(V ) ≤ q1(V ), and A is the incidence matrix of all subsets of V. The main observation
is that we can assume that y1 is positive on a chain and y2 is positive on a cross-free
family in an optimal dual solution: this can be achieved by a slight modification of
the usual uncrossing technique. Consider the following operations:

• If y1(X), y1(Y ) > 0 and neither X ⊆ Y , nor Y ⊆ X, decrease y1 on X and on
Y by min{y1(X), y1(Y )}, and increase y1 by the same amount on X ∩Y and on
X ∪ Y .

• If y2(X), y2(Y ) > 0, q1(X) < q2(X), q1(Y ) < q2(Y ) and X,Y are crossing, then
decrease y2 on X and on Y by min{y2(X), y2(Y )}, and increase y2 by the same
amount on X ∩ Y and on X ∪ Y .

• If y2(X) > 0 and q1(X) ≥ q2(X), then decrease y2 on X to 0 and increase y1 on
X by the same amount.

Because of the properties of q1 and q2, these operations do not decrease y1q1 + y2q2−
βq1(V ), and they maintain (y1 +y2)A−β1 = c. We show that by repeatedly applying
these operations (in any order), in a finite number of steps we get an optimal dual
solution (y′1, y

′
2, β) such that y′1 is positive on a chain and y′2 is positive on a cross-free

family.
Since y1, y2 ∈ Q+, there is a positive integer ν such that νy1 and νy2 are integral.

The sum ν(2
∑

X⊆V y1(X)|X|2 +
∑

X⊆V y2(X)|X|2) increases by at least 1 during any
of the above operations, and it is bounded from above by 2ν|V |2 (β + maxv∈V c(v)).
Thus the procedure terminates after a finite number of steps.

We proved that there is an optimal dual solution (y′1, y
′
2, β) where y′1 is positive on

a chain and y′2 is positive on a cross-free family; but this means that this is also an
optimal solution of the dual of the system we get if we restrict q1 to the sets where
y′1 is positive, and restrict q2 to the sets where y′2 is positive (changing their value to
−∞ on all other sets). This system is the intersection of two base polyhedra, so it has
an integral optimal dual solution, which is in turn optimal for the dual of the system
(22); therefore the system (22) is TDI.

The proof of the non-emptiness condition (23) is similar: the infeasibility of the
system is equivalent to the feasibility of its dual according to the Farkas Lemma. A
feasible dual solution (y1, y2) can be uncrossed in the same way as above, yielding
(y′1, y

′
2) where y′1 is positive on a chain and y′2 is positive on a cross-free family. This

means that dual feasibility implies the emptiness of the intersection of the two base
polyhedra given by p and q restricted to the sets where y′1 and y′2 are positive. Thus
the non-emptiness condition for the intersection of base polyhedra (which is of the
form (23)) is sufficient for the feasibility of the original system.
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Theorem 6.2. Let G = (V,E) be a graph, h : 2V → Z+ a positively crossing G–
supermodular set function on V , and m : V → Z+ a degree specification with m(V )
even; let

hm(X) := h(X) +

(
m(X)− m(V )

2

)+

.

There exists an undirected graph H = (V, F ) such that G + H has an orientation
covering h and dH(v) = m(v) for all v ∈ V if and only if

∑
Z∈F

hm(Z) +

(
m(X)− m(V )

2

)+

≤ eG(F) + (α + 1)
m(V )

2
(24)

for every X ⊂ V and every tree-composition F of X with covering number α.

Proof. The necessity follows from the fact that if F ′ is a regular family with cov-
ering number α + 1, then

∑
Z∈F ′ % ~G(Z) ≤ eG(F ′) for any orientation ~G of G, and∑

Z∈F ′ % ~H(Z) ≤ (α+ 1)m(V )/2−
∑

Z∈F ′ (m(Z)−m(V )/2)+ for any orientation ~H of
a graph H satisfying the degree specification. Note that if we consider (24) only for
partitions and co-partitions (that is, X = ∅), then it corresponds to (6)–(9).

The sufficiency can be proved in essentially the same way as in the proof of Theorem
3.1: define G′ and h′ similarly, and for X ⊆ V , let

q1(X) := iG(X) +

(
m(X)− m(V )

2

)+

,

q2(X) := h(X) + iG(X) +

(
m(X)− m(V )

2

)+

.

In this case Lemma 3.2 implies that an orientation of G′ covering h′ exists if and only
if the polyhedron

{x : V → R | x(V ) = q1(V ); x(Y ) ≥ q2(Y ), x(Y ) ≥ q1(Y ) ∀Y ⊆ V }

has an integral point.

Claim 6.3. The set function q1 is fully supermodular, and the set function q2 is
supermodular on the crossing pairs (X,Y ) for which q1(X) < q2(X) and q1(Y ) <
q2(Y ).

Proof. The set function q1 is the sum of two fully supermodular functions (see the
proof of Claim 3.3), so it is fully supermodular. Since h is positively crossing G–
supermodular, q2 is supermodular on the crossing pairs (X,Y ) for which h(X), h(Y ) >
0, and these are exactly the crossing pairs for which q1(X) < q2(X) and q1(Y ) <
q2(Y ).

Lemma 6.1 implies that an orientation of G′ covering h′ exists if and only if

q1(X) +
∑
Z∈F

q2(Z) ≤ (α + 1)q1(V )
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for every X ⊂ V and every tree-composition F of X with covering number α. Using
(5) and the fact that eG(F) = eG(F + {X}), this is equivalent to the condition of the
theorem.

From here we can follow the line of the proof of Theorem 3.1. Let ~G′ be the
orientation of G′ covering h′, and let ~G denote the digraph obtained from ~G′ by
deleting the node z. Let mi(v) be the multiplicity of the edge zv in ~G′, and mo(v) the

multiplicity of the edge vz in ~G′. Define the set function p(X) = (h(X) − % ~G(X))+;
p is positively crossing supermodular. As in the proof of Theorem 3.1, we can apply
Theorem 2.3 (with the mi, mo and p defined above) to obtain a digraph D whose
underlying undirected graph H is a good augmentation of G. This concludes the
proof of Theorem 6.2.

As it was shown in Section 4, the minimum cardinality augmentation problem is
tractable for the non-negative crossing supermodular case, thanks to the polyma-
troidal structure of good degree specifications. However, we were not able to devise
similar methods for the positively crossing supermodular case; indeed, in this more
general setting, it remains an open question if a good min-max formula can be found
for the minimum cardinality augmentation problem.

Remark. The appearance of tree-compositions in condition (24) may seem un-
friendly, but it is unavoidable, even in the special case when the problem is to find an
orientation of the undirected edges of a mixed graph such that the resulting digraph
is k-edge-connected. This orientation problem was already considered in [5], where
crossing G–supermodular set functions with possible negative values were studied.
The following example shows that the positively G–supermodular case is more gen-
eral, i. e. not every positively crossing G–supermodular set function h can be made
crossing G–supermodular by decreasing the value of h on some of the sets where it is
0.

Let X1, X2, X3 be three subsets of a ground set V , in general situation. Let h(Xi) =
1, h(Xi ∪Xj) = 2 (i 6= j), h(X1 ∪X2 ∪X3) = 4, and h(X) = 0 on the remaining sets;
this is a positively crossing supermodular function. The value of h(X1 ∩X2) cannot
be decreased since

h(X1 ∩X2) ≥ h(X1) + h(X2)− h(X1 ∪X2) = 0 .

Therefore it is impossible to correctly modify h so as to satisfy

h(X1 ∩X2) ≤ h(X1 ∩X2 ∩X3) + h(X1 ∩X2 ∪X3)− h(X3) ≤ −1 .
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