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Independence free graphs and vertex connectivity
augmentation

Bill Jackson? and Tibor Jordán??

Abstract

Given an undirected graph G and a positive integer k, the k-vertex-connecti-
vity augmentation problem is to find a smallest set F of new edges for which
G+F is k-vertex-connected. Polynomial algorithms for this problem have been
found only for k ≤ 4 and a major open question in graph connectivity is whether
this problem is solvable in polynomial time in general.

In this paper we develop an algorithm which delivers an optimal solution
in polynomial time for every fixed k. In the case when the size of an optimal
solution is large compared to k, we also give a min-max formula for the size of a
smallest augmenting set. A key step in our proofs is a complete solution of the
augmentation problem for a new family of graphs which we call k-independence
free graphs. We also prove new splitting off theorems for vertex connectivity.

1 Introduction

An undirected graph G = (V,E) is k-vertex-connected if |V | ≥ k+1 and the deletion of
any k− 1 or fewer vertices leaves a connected graph. Given a graph G = (V,E) and a
positive integer k, the k-vertex-connectivity augmentation problem is to find a smallest
set F of new edges for which G′ = (V,E ∪ F ) is k-connected. This problem (and a
number of versions with different connectivity requirements and/or edge weights) is an
important and well-studied optimization problem in network design. The complexity
of the vertex-connectivity augmentation problem is one of the most challenging open
questions of this area. It is open even if the graph G to be augmented is (k − 1)-
vertex-connected. Polynomial algorithms have been developed only for k = 2, 3, 4
by Eswaran and Tarjan [4], Watanabe and Nakamura [21] and Hsu [10], respectively.
Near optimal solutions can be found in polynomial time for every k, see [12], [11].

In this paper we give an algorithm which delivers an optimal solution in polynomial
time for any fixed k ≥ 2. Its running time is bounded by O(n5) + O(f(k)n3), where
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n is the size of the input graph and f(k) is an exponential function of k. We also
obtain a min-max formula which determines the size of an optimal solution when it is
large compared to k. In this case the running time of the algorithm is simply O(n5).
A key step in our proofs is a complete solution of the augmentation problem for a
new family of graphs which we call k-independence free graphs. We follow some of
the ideas of the approach of [14], which used, among others, the splitting off method.
We further develop this method for k-vertex-connectivity.

We remark that the other three basic augmentation problems (where one wants to
make G k-edge-connected or wants to make a digraph k-edge- or k-vertex-connected)
have been shown to be polynomially solvable. These results are due to Watanabe and
Nakamura [20], Frank [5], and Frank and Jordán [7], respectively. For more results on
connectivity augmentation and its algorithmic aspects, see the survey papers by Frank
[6] and Nagamochi [19], respectively. In the rest of the introduction we introduce some
definitions and our new lower bounds for the size of an augmenting set which makes
G k-vertex-connected. We also state our main min-max results.

In what follows we deal with simple undirected graphs and k-connected refers to
k-vertex-connected. For two disjoint sets of vertices X, Y in a graph G = (V,E) we
denote the number of edges from X to Y by dG(X,Y ) (or simply d(X, Y )). We use
d(X) = d(X,V −X) to denote the degree of X. For a single vertex v we write d(v).
Let G = (V,E) be a graph with |V | ≥ k + 1. For X ⊆ V let N(X) denote the set
of neighbours of X, that is, N(X) = {v ∈ V − X : uv ∈ E for some u ∈ X}. Let
n(X) denote |N(X)|. We use X∗ to denote V −X −N(X). We call X a fragment if
X,X∗ 6= ∅. For two vertices x, y of G we shall use κ(x, y,H) to denote the maximum
number of openly disjoint paths from x to y in G. We use κ(G) to denote the minimum
of κ(x, y,G) over all pairs of vertices of G. By Menger’s theorem κ(G) equals the size
of a minimum vertex cut in G, unless G is complete. Equivalently, κ(G) is the largest
integer k for which G is k-connected.

Let ak(G) denote the size of a smallest augmenting set of G with respect to k. It is
easy to see that every set of new edges F which makes G k-connected must contain at
least k− n(X) edges from X to X∗ for every fragment X. By summing up these ‘de-
ficiencies’ over pairwise disjoint fragments, we obtain a useful lower bound on ak(G),
similar to the one used in the corresponding edge-connectivity augmentation problem.
Let t(G) = max{

∑r
i=1 k − n(Xi) : X1, ..., Xr are pairwise disjoint fragments in V }.

Then

ak(G) ≥ dt(G)/2e. (1)

Another lower bound for ak(G) comes from ‘shredders’. For K ⊂ V let bG(K), or
simply b(K) when it is clear to which graph we are referring to, denote the number
of components in G −K. Let b(G) = max{bG(K) : K ⊂ V, |K| = k − 1}. We call a
set K ⊂ V with |K| = k − 1 and bG(K) = q a q-shredder. Since G − K has to be
connected in the augmented graph, we have the second lower bound:

ak(G) ≥ b(G)− 1. (2)

These lower bounds extend the two natural lower bounds used for example in [4,
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10, 14]. Although these bounds suffice to characterize ak(G) for k ≤ 3, there are
examples showing that ak(G) can be strictly larger than the maximum of these lower
bounds, consider for example the complete bipartite graph K3,3 with target k =
4. We shall show in Section 3 that ak(G) = max{b(G) − 1, dt(G)/2e} when G is
a ‘k-independence free graph’. We use this result in Subsection 4.3 to show that
if G is (k − 1)-connected and ak(G) is large compared to k, then again we have
ak(G) = max{b(G) − 1, dt(G)/2e}. The same result is not valid if we remove the
hypothesis that G is (k − 1)-connected. To see this consider the graph G obtained
from Km,k−2 by adding a new vertex x and joining x to j vertices in the m set
of the Km,k−2, where j < k < m. Then b(G) = m, t(G) = 2m + k − 2j and
ak(G) = m − 1 + k − j. We shall see in Subsection 4.4, however, that if we modify
the definition of b(G) slightly, then we may obtain an analogous min-max theorem
for augmenting graphs of arbitrary connectivity. For a set K ⊂ V with |K| = k − 1
we define δ(K) = max{0,max{k − d(x) : x ∈ K}} and b∗(K) = b(K) + δ(K). We let
b∗(G) = max{b∗(K) : K ⊂ V, |K| = k − 1}. It is easy to see that ak(G) ≥ b∗(G)− 1.
We shall prove in Subsection 4.4 that if G is a graph of arbitrary connectivity and
ak(G) is large compared to k, then ak(G) = max{b∗(G)− 1, dt(G)/2e}.

2 Preliminaries

In this section we first introduce some submodular inequalities for the function n and
then describe the ‘splitting off’ method. We also prove some preliminary results on
edge splittings and shredders.

2.1 Submodular inequalities

Each of the following three inequalitites can be verified easily by counting the contri-
bution of every vertex to the two sides. Inequality (3) is well-known, see for example
[14]. Inequality (4) is similar.

Proposition 2.1. In a graph H = (V,E) every pair X, Y ⊆ V satisfies

n(X) + n(Y ) ≥ n(X ∩ Y ) + n(X ∪ Y ) + | (N(X) ∩N(Y ))−N(X ∩ Y )|
+ | (N(X) ∩ Y ))−N(X ∩ Y )|+ | (N(Y ) ∩X))−N(X ∩ Y )|, (3)

n(X) + n(Y ) ≥ n(X ∩ Y ∗) + n(Y ∩X∗). (4)

The following new inequality is crucial in the proof of one of our main lemmas. It
may be applicable in other vertex-connectivity problems as well.

Proposition 2.2. In a graph H = (V,E) every triple X,Y, Z ⊆ V satisfies

n(X) + n(Y ) + n(Z) ≥ n(X ∩ Y ∩ Z) + n(X ∩ Y ∗ ∩ Z∗) + n(X∗ ∩ Y ∗ ∩ Z) +

n(X∗ ∩ Y ∩ Z∗)− |N(X) ∩N(Y ) ∩N(Z)|. (5)
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Proof. Readers may find it helpful to follow the proof given below if they imagine
V (G) represented by a 3 × 3 × 3 cube, in which the three pairs of opposite faces
represent (X,X∗), (Y, Y ∗), and (Z,Z∗), respectively, and the 27 subcubes represent
the corresponding partition of V (G) into 27 subsets. We have

n(X) = |N(X) ∩ Y ∩ Z|+ |N(X) ∩N(Y ) ∩ Z|+ |N(X) ∩ Y ∗ ∩ Z|+
+|N(X) ∩ Y ∩N(Z)|+ |N(X) ∩N(Y ) ∩N(Z)|+ |N(X) ∩ Y ∗ ∩N(Z)|+
+|N(X) ∩ Y ∩ Z∗|+ |N(X) ∩N(Y ) ∩ Z∗|+ |N(X) ∩ Y ∗ ∩ Z∗|,

and

n(X ∩ Y ∩ Z) ≤ |X ∩ Y ∩N(Z)|+ |X ∩N(Y ) ∩ Z|+ |X ∩N(Y ) ∩N(Z)|+
+|N(X) ∩ Y ∩ Z|+ |N(X) ∩ Y ∩N(Z)|+ |N(X) ∩N(Y ) ∩ Z|+
+|N(X) ∩N(Y ) ∩N(Z)|.

The lemma follows from the above (in)-equalities and similar (in)-equalities for n(Y ),
n(Z), n(X ∩ Y ∗ ∩ Z∗), n(X∗ ∩ Y ∗ ∩ Z) and n(X∗ ∩ Y ∩ Z∗).

2.2 Extensions and Splittings

In the so-called ‘splitting off method’ one extends the input graph G by a new vertex
s and a set of appropriately chosen edges incident to s and then obtains an opti-
mal augmenting set by splitting off pairs of edges incident to s. This approach was
initiated by Cai and Sun [1] for the k-edge-connectivity augmentation problem and
further developed and generalized by Frank [5]. Here we adapt the method to vertex-
connectivity and prove several basic properties of the extended graph as well as the
splittable pairs.

Given the input graph G = (V,E), an extension G + s = (V + s, E + F ) of G is
obtained by adding a new vertex s and a set F of new edges from s to V . In G+ s we
define d̄(X) = nG(X)+d(s,X) for every X ⊆ V . We say that G+s is (k, s)-connected
if

d̄(X) ≥ k for every fragment X ⊂ V, (6)

and that it is a k-critical extension if F is an inclusionwise minimal set with respect
to (6). The minimality of F implies that every edge su in a k-critical extension is
k-critical, that is, deleting su from G+ s destroys (6). (Thus an edge su is k-critical
if and only if there exists a fragment X in V with u ∈ X and d̄(X) = k.) A fragment
X with d(s,X) ≥ 1 and d̄(X) = k is called tight. A fragment X with d(s,X) ≥ 2
and d̄(X) ≤ k+ 1 is called dangerous. Observe that if G is l-connected then for every
v ∈ V we have d(s, v) ≤ k − l in any k-critical extension of G.

Since the function d(s,X) is modular on the subsets of V in G + s, Propositions
2.1 and 2.2 yield the following inequalities.

Proposition 2.3. In a graph G+ s every pair X,Y ⊆ V satisfies
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d̄(X) + d̄(Y ) ≥ d̄(X ∩ Y ) + d̄(X ∪ Y ) + | (N(X) ∩N(Y ))−N(X ∩ Y )|
+ | (N(X) ∩ Y )−N(X ∩ Y )|+ | (N(Y ) ∩X)−N(X ∩ Y )|, (7)

d̄(X) + d̄(Y ) ≥ d̄(X ∩ Y ∗) + d̄(Y ∩X∗) + d(s,X − Y ∗) + d(s, Y −X∗). (8)

Proposition 2.4. In a graph G+ s every triple X, Y, Z ⊆ V satisfies

d̄(X) + d̄(Y ) + d̄(Z) ≥ d̄(X ∩ Y ∩ Z) + d̄(X ∩ Y ∗ ∩ Z∗) + d̄(X∗ ∩ Y ∗ ∩ Z) +

+d̄(X∗ ∩ Y ∩ Z∗)− |N(X) ∩N(Y ) ∩N(Z)|+
+2d(s,X ∩ Y ∩ Z). (9)

Lemma 2.5. Let G + s be a (k, s)-connected extension of G. Then there exists an
augmenting set F of G with respect to k with V (F ) ⊆ N(s).

Proof. This follows from the fact that N(s) covers all k-deficient fragments of G.

We can use Lemma 2.5 to obtain good bounds on ak(G). The following result is an
easy consequence of a theorem of Mader [17]. It was used in [14] in the special case
when G is (k − 1)-connected.

Theorem 2.6. [14][17] Let F be a minimal augmenting set of G = (V,E) with respect
to k and let B be the set of those vertices of G which have degree at least k + 1 in
G+ F . Then F induces a forest on B.

Lemma 2.7. Let G+ s be a (k, s)-connected extension of G and let A be a minimal
augmenting set of G for which every edge in A connects two vertices of N(s) in G+s.
Then |A| ≤ d(s)− 1.

Proof. Let B = {v ∈ N(s) : dG+A(v) ≥ k + 1} and let C = N(s) − B. We have
dA(x) ≤ d(s, x) for each x ∈ C and, by Theorem 2.6, B induces a forest in A. Let
eA(B) and eA(C) denote the number of those edges of A which connect two vertices
of B and of C, respectively. The previous observations imply the following inequality.

|A| = eA(C) + dA(B,C) + eA(B) ≤
∑
x∈C

dA(x) + |B| − 1 ≤

≤ (d(s)− |B|) + |B| − 1 = d(s)− 1.

This proves the lemma.

Lemma 2.8. Let G + s be a k-critical extension of a graph G. Then dd(s)/2e ≤
ak(G) ≤ d(s)− 1.
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Proof. The last inequality follows immediately from Lemma 2.7. To verify the first
inequality we introduce a new lower bound on ak(G). Let us say that a fragment X
separates a pair of vertices u, v ∈ V if {u, v} ∩X 6= ∅ 6= {u, v} ∩X∗. A family F of
fragments of G is half-disjoint if every pair of vertices of G is separated by at most
two fragments in F . Let t′(G) = max{

∑
X∈F k−n(Xi)} where the maximum is taken

over all half-disjoint families F of fragments in G. Note that every family of pairwise
disjoint fragments is half-disjoint and hence t′(G) ≥ t(G). Since every augmenting
set with respect to k must contain at least k − n(X) edges from X to X∗ for any
fragment X of G, we obtain the following lower bound:

ak(G) ≥ dt′(G)/2e. (10)

We shall prove that d(s) ≤ t′(G). This will imply the lemma by (10).
Let X = {X1, ..., Xm} be a family of tight sets such that N(s) ⊆ ∪mi=1Xi and such

that m is minimum and
∑m

i=1 |Xi| is minimum. Such a family exists since the edges
incident to s in G + s are k-critical. We claim that for every 1 ≤ i < j ≤ m either
Xi ∩Xj = ∅ or at least one of X∗i ⊆ N(Xj) or X∗j ⊆ N(Xi) holds. Note that in the
latter case no pair of vertices can simultaneously be separated by Xi and Xj.

To verify the claim, suppose that Xi ∩Xj 6= ∅. Then by the minimality of m the
set Xi ∪ Xj cannot be tight. Thus (7) implies that X∗i ∩ X∗j = ∅. Hence either one
of X∗i ⊆ N(Xj) or X∗j ⊆ N(Xi) holds or Xi ∩X∗j and Xj ∩X∗i are both non-empty.
In the former case we are done. In the latter case we apply (8) to Xi and Xj and
conclude that Xi∩X∗j and Xj ∩X∗i are both tight and all the edges from s to Xi∪Xj

enter (Xi ∩X∗j ) ∪ (Xj ∩X∗i ). Thus we could replace Xi and Xj in X by two strictly
smaller sets Xi ∩ X∗j and Xj ∩ X∗i , contradicting the choice of X . This proves the
claim.

To finish the proof of the lemma observe that
∑m

i=1 k − n(Xi) =
∑m

i=1 d(s,Xi) ≥
d(s). In other words, the sum of ‘deficiencies’ of X is at least d(s). Furthermore, our
claim implies that X is a half-disjoint family of fragments. (Otherwise we must have,
without loss of generality, X1, X2, X3 ∈ X such that some pair u, v ∈ V is separated
by Xi for all 1 ≤ i ≤ 3. This implies, by the claim above, that X1, X2, X3 are pairwise
disjoint, contradicting the fact that they each separate u, v.) Hence d(s) ≤ t′(G), as
required.

Let G + s be a (k, s)-connected extension of G. Splitting off two edges su, sv in
G + s means deleting su, sv and adding a new edge uv. Such a split is admissible
if the graph obtained by the splitting also satisfies (6). Notice that if G + s has no
edges incident to s then (6) is equivalent to the k-connectivity of G. Hence it would
be desirable to know, when G+ s is a k-critical extension and d(s) is even, that there
is a sequence of admissible splittings which isolates s. In this case, using the fact
that ak(G) ≥ d(s)/2 by Lemma 2.8, the resulting graph on V would be an optimal
augmentation of G with respect to k. This approach works for the k-edge-connectivity
augmentation problem [5] but does not always work in the vertex connectivity case.
The reason is that such ‘complete splittings’ do not necessarily exist. On the other
hand, we shall prove results which are ‘close enough’ to yield an optimal algorithm
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2.3 Local separators and shredders 7

for k-connectivity augmentation, using the splitting off method, which is polynomial
for k fixed.

Non-admissible pairs sx, sy can be characterized by tight and dangerous ‘certifi-
cates’ as follows. The proof of the following simple lemma is omitted.

Lemma 2.9. Let G+ s be a (k, s)-connected extension of G. Then the pair sx, sy is
not admissible for splitting in G+s with respect to k if and only if one of the following
holds:
(i) there exists a tight set T with x ∈ T , y ∈ N(T ),
(ii) there exists a tight set U with y ∈ U , x ∈ N(U),
(iii) there exists a dangerous set W with x, y ∈W .

2.3 Local separators and shredders

For two vertices u, v ∈ V a uv-cut is a set K ⊆ V − {u, v} for which there is no
uv-path in G −K. A set S ⊂ V is a local separator if there exist u, v ∈ V − S such
that S is an inclusionwise minimal uv-cut. We also say S is a local uv-separator and
we call the components of G− S containing u and v essential components of S (with
respect to the pair u, v). Note that S may be a local separator with respect to several
pairs of vertices and hence it may have more than two essential components. Clearly,
N(C) = S for every essential component C of S. If S is a local uv-separator and
T is a local xy-separator then we say T meshes S if T intersects the two essential
components of S containing u and v, respectively.

Lemma 2.10. If T meshes S then S intersects every essential component of T (and
hence S meshes T ).

Proof. Suppose S is a uv-separator and let Cu, Cv be the two essential components of
S containing u and v respectively. Let C be an essential component of T . We need to
show S meets C. Choose w ∈ V (C). Without loss of generality w /∈ V (Cv). Choose
t ∈ T ∩ Cv. Let P be a path in the subgraph of C ∪ T from w to t. Then P contains
a vertex of S since S separates w from t. Hence C ∩ S 6= ∅.

Lemma 2.10 extends [3, Lemma 4.3(1)]. The next lemma extends one of the key
observations of Cheriyan and Thurimella [3]. The proof is similar to that of [3, Propo-
sition 3.1]. We shall use Lemma 2.11 in Section 5.

Lemma 2.11. Let K be a local uv-separator of size k−1 and suppose that there exist
k − 1 vertex-disjoint paths P1, ..., Pk−1 from u to v in G. Let Q = ∪k−1

i=1 V (Pi). Then:
(a) for each component C of G − K either C ∩ {u, v} 6= ∅ or C is a component of
G−Q;
(b) if K has at least three essential components then K = N(C) for some component
C of G−Q.

Proof. Since K is a local uv-separator of size k − 1, K contains exactly one vertex
from each path P1, . . . , Pk−1. Let Cu, Cv, C be distinct components of K with u ∈ Cu
and v ∈ Cv. Then Q −K ⊆ Cu ∪ Cv. Thus C ∩ Q = ∅. Hence C is a component of
G−Q. If C is an essential component of K then K = N(C) holds.
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Let K be a shredder of G and G + s be a (k, s)-connected extension of G. A
component C of G−K is called a leaf component of K (in G+ s) if d(s, C) = 1 holds.
Note that d(s, C ′) ≥ 1 for each component C ′ of G −K by (6). The next lemma is
easy to verify by (6).

Lemma 2.12. Let K be a shredder in G and let C1, C2 be leaf components of K in
G + s. Then there exist k − 1 vertex-disjoint paths in the subgraph of G induced by
C1 ∪ C2 ∪K from every vertex of C1 to every vertex of C2.

If d(s) ≤ 2b(G)− 2 then every shredder K satisfying b(K) = b(G) has at least two
leaf components. Hence K is a local separator and every leaf component of K is an
essential component of K in G.

3 Independence Free Graphs

Let G = (V,E) be a graph and k be an integer. Let X1, X2 be disjoint subsets of V .
We say (X1, X2) is a k-deficient pair if d(X1, X2) = 0 and |V −(X1∪X2)| ≤ k−1. We
say two deficient pairs (X1, X2) and (Y1, Y2) are independent if for some i ∈ {1, 2} we
have either Xi ⊆ V − (Y1 ∪ Y2) or Yi ⊆ V − (X1 ∪X2), since in this case no edge can
simultaneously connect X1 to X2 and Y1 to Y2. We say G is k-independence free if G
does not have two independent k-deficient pairs. (Note that if G is (k− 1)-connected
and (X1, X2) is a k-deficient pair thenX2 = X∗1 and V −(X1∪X2) = N(X1) = N(X2).)
Thus:

• (k−1)-connected chordal graphs and graphs with minimum degree at least 2k−2
are k-independence free;

• all graphs are 1-independence free and all connected graphs are 2-independence
free;

• a graph with no edges and at least k + 1 vertices is not k-independence free for
any k ≥ 2;

• if G is k-independence free and H is obtained by adding edges to G then H is
also k-independence free;

• a k-independence free graph is l-independence free for all l ≤ k.

In general, a main difficulty in vertex-connectivity problems is that vertex cuts (and
hence tight and dangerous sets) can cross each other in many different ways. In the
case of an independence free graph G we can overcome these difficulties and prove
the following results, including a complete characterisation of the case when there is
no admissible split containing a specified edge in an extension of G.

Lemma 3.1. Let G+s be a (k, s)-connected extension of a k-independence free graph
G and X, Y be fragments of G.
(a) If X and Y are tight then either: X ∪ Y is tight, X ∩ Y 6= ∅ and d̄(X ∩ Y ) = k;
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or X ∩ Y ∗ and Y ∩X∗ are both tight and d(s,X − Y ∗) = 0 = d(s, Y −X∗).
(b) If X is a minimal tight set and Y is tight then either: X∪Y is tight, d(s,X∩Y ) = 0
and nG(X ∩ Y ) = k; or X ⊆ Y ; or X ⊆ Y ∗.
(c) If X is a tight set and Y is a maximal dangerous set then either X ⊆ Y or
d(s,X ∩ Y ) = 0.
(d) If X is a tight set, Y is a dangerous set and d(s, Y −X∗) + d(s,X −Y ∗) ≥ 2 then
X ∩ Y 6= ∅ and d̄(X ∩ Y ) ≤ k + 1.

Proof. (a) Suppose X ∩ Y ∗, Y ∩ X∗ 6= ∅. Then (8) implies that d̄(X ∩ Y ∗) = k =
d̄(Y ∩ X∗) and d(s,X − Y ∗) = 0 = d(s, Y − X∗). Thus X ∩ Y ∗ and Y ∩ X∗ are
both tight. Hence we may assume that either X ∩ Y ∗ or Y ∩ X∗ is empty. Since
G is k-independence free, it follows that X∗ ∩ Y ∗ 6= ∅ 6= X ∩ Y (for example if
X ∩ Y ∗ = ∅ = X∗ ∩ Y ∗ then Y ∗ ⊆ V − (X ∪ X∗), and (X,X∗) and (Y, Y ∗) are
independent k-deficient pairs). Thus X ∪ Y is a fragment in G. Using (7) we deduce
that X ∪ Y is tight and d̄(X ∩ Y ) = k.

(b) This follows from (a) using the minimality of X.

(c) Suppose X 6⊆ Y and d(s,X ∩ Y ) ≥ 1. If X ∩ Y ∗ 6= ∅ 6= Y ∩X∗ then we can use
(8) to obtain the contradiction

2k + 1 ≥ d̄(X) + d̄(Y ) ≥ d̄(X ∩ Y ∗) + d̄(Y ∩X∗) + 2 ≥ 2k + 2.

Thus eitherX∩Y ∗ or Y ∩X∗ is empty and, sinceG is k-independence free, X∗∩Y ∗ 6= ∅.
Thus X ∪ Y is a fragment in G. Using (7) we deduce that X ∪ Y is dangerous
contradicting the maximality of Y .

(d) Using (8), we deduce that either X ∩ Y ∗ or Y ∩ X∗ is empty and, since G is
k-independence free, X ∩ Y 6= ∅ 6= X∗ ∩ Y ∗. We can now use (7) to deduce that
d̄(X ∩ Y ) ≤ k + 1.

Using Lemma 3.1 we deduce

Corollary 3.2. If G + s is a k-critical extension of a k-independence free graph G
then d(s) = t(G). Furthermore there exists a unique minimal tight set in G + s
containing x for each x ∈ N(s).

Proof. Let F be a family of tight sets which cover N(s) such that
∑

X∈F |X| is as
small as possible. Since every edge incident to s is k-critical, such a family exists. We
show that the members of F are pairwise disjoint. Choose X, Y ∈ F and suppose
that X ∩ Y 6= ∅. By Lemma 3.1(a) we may replace X and Y in F either by X ∪ Y ,
or by X ∩ Y ∗ and Y ∩X∗. Both alternatives contradict the minimality of

∑
X∈F |X|.

Since the members of F are pairwise disjoint, tight, and cover N(s), we have d(s) =∑
X∈F (k − nG(X)) ≤ t(G). The inequality d(s) ≥ t(G) follows easily from (6). Thus

d(s) = t(G), as required.
The second assertion of the corollary follows immediately from criticality and Lemma

3.1(b).
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Lemma 3.3. Let G + s be a k-critical extension of a k-independence free graph G
and x1, x2 ∈ N(s). Then the pair sx1, sx2 is not admissible for splitting in G+ s with
respect to k if and only if there exists a dangerous set W in G+ s with x1, x2 ∈W .

Proof. Suppose the lemma is false. Using Lemma 2.9 we may assume without loss of
generality that there exists a tight set X1 in G+s such that x1 ∈ X1 and x2 ∈ NG(X1).
Let X2 be the minimal tight set in G+ s containing x2. Since x2 ∈ N(s)∩ (X2−X∗1 ),
it follows from Lemma 3.1(a) that X1 ∪ X2 is a tight, and hence dangerous, set in
G+ s containing x1, x2.

Theorem 3.4. Let G + s be a k-critical extension of a k-independence free graph G
and x0 ∈ N(s).

(a) There is no admissible split in G + s containing sx0 if and only if either: d(s) =
b(G); or d(s) is odd and there exist maximal dangerous sets W1,W2 in G+s such that
N(s) ⊆W1 ∪W2, x0 ∈W1 ∩W2, d(s,W1 ∩W2) = 1, d(s,W1 ∩W ∗

2 ) = (d(s)− 1)/2 =
d(s,W ∗

1 ∩W2), and W1 ∩W ∗
2 and W2 ∩W ∗

1 are tight.

(b) Furthermore if there is no admissible split containing sx0 and 3 6= d(s) 6= b(G)
then there is an admissible split containing sx1 for all x1 ∈ N(s)− x0.

Proof. Note that since G+ s is a k-critical extension, d(s) ≥ 2.
(a) Using Lemma 3.3, we may choose a family of dangerous setsW = {W1,W2, . . . ,Wr}
in G + s such that x0 ∈ ∩ri=1Wi, N(s) ⊆ ∪ri=1Wi and r is as small as possible. We
may assume that each set in W is a maximal dangerous set in G + s. If r = 1 then
N(s) ⊆W1 and

d̄(W ∗
1 ) = nG(W ∗

1 ) ≤ nG(W1) ≤ k + 1− d(s,W1) ≤ k − 1,

since W1 is dangerous. This contradicts the fact that G+ s is (k, s)-connected. Hence
r ≥ 2.

Claim 3.5. Let Wi,Wj ∈ W. Then Wi ∩W ∗
j 6= ∅ 6= Wj ∩W ∗

i and d(s,Wi −W ∗
j ) =

1 = d(s,Wj −W ∗
i ).

Proof. Suppose Wi ∩W ∗
j = ∅. Since G is k-independence free, it follows that W ∗

i ∩
W ∗
j 6= ∅ and hence Wi ∪Wj is a fragment of G. The minimality of r now implies that

Wi ∪Wj is not dangerous, and hence d̄(Wi ∪Wj) ≥ k + 2. Applying (7) we obtain

2k + 2 ≥ d̄(Wi) + d̄(Wj) ≥ d̄(Wi ∩Wj) + d̄(Wi ∪Wj) ≥ 2k + 2.

Hence equality holds throughout. Thus d̄(Wi ∩Wj) = k and, since x0 ∈ Wi ∩Wj,
Wi ∩Wj is tight.

Choose xi ∈ N(s)∩(Wi−Wj) and let Xi be the minimal tight set in G+s containing
xi. Since xi ∈ N(s) ∩ Xi ∩Wi, it follows from Lemma 3.1(c) that Xi ⊆ Wi. Since
G is k-independence free, Xi 6⊆ N(Wj). Thus Xi ∩Wi ∩Wj 6= ∅. Applying Lemma
3.1(b), we deduce that Xi∪ (Wi∩Wj) is tight. Now Xi∪ (Wi∩Wj) and Wj contradict
Lemma 3.1(c) since x0 ∈ Wi∩Wj and Wj is a maximal dangerous set. Hence we must
have Wi ∩W ∗

j 6= ∅ 6= Wj ∩W ∗
i . The second part of the claim follows from (8) and the

fact that x0 ∈Wi ∩Wj.
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Suppose r = 2. Using Claim 3.5, we have d(s) = 1+d(s,W1∩W ∗
2 )+d(s,W2∩W ∗

1 ).
Without loss of generality we may suppose that d(s,W1∩W ∗

2 ) ≤ d(s,W2∩W ∗
1 ). Then

d̄(W ∗
2 ) = d(s,W1 ∩W ∗

2 ) + nG(W ∗
2 ) ≤ d(s,W2 ∩W ∗

1 ) + nG(W2) = d̄(W2)− 1 ≤ k.

Thus equality must hold throughout. Hence d(s,W1∩W ∗
2 ) = d(s,W2∩W ∗

1 ) = (d(s)−
1)/2, d(s) is odd, W1 ∩W ∗

2 and W2 ∩W ∗
1 are tight and the second alternative in (a)

holds.
Finally we suppose that r ≥ 3. Choose Wi,Wj,Wh ∈ W, xi ∈ (N(s)∩Wi)− (Wj ∪

Wh), xj ∈ (N(s)∩Wj)− (Wi ∪Wh), and xh ∈ (N(s)∩Wh)− (Wi ∪Wj). Then Claim
3.5 implies that xi ∈Wi∩W ∗

j ∩W ∗
h . Applying (9), and using d(s,Wi∩Wj ∩Wh) ≥ 1,

we get

3k + 3 ≥ d̄(Wi) + d̄(Wj) + d̄(Wh) ≥ d̄(Wi ∩Wj ∩Wh) + d̄(Wi ∩W ∗
j ∩W ∗

h ) +

+d̄(Wj ∩W ∗
i ∩W ∗

h ) + d̄(Wh ∩W ∗
i ∩W ∗

j )− |N(Wi) ∩N(Wj) ∩N(Wh)|+
+2d(s,Wi ∩Wj ∩Wh) ≥ 4k − |N(Wi) ∩N(Wj) ∩N(Wh)|+ 2 ≥ 3k + 3.(11)

Thus equality must hold throughout. Hence d(s,Wi∩Wj∩Wh) = 1, and Wi∩W ∗
j ∩W ∗

h

is tight. Furthermore, putting S = N(Wi) ∩ N(Wj) ∩ N(Wh), we have |S| = k − 1
by (11). Since n(Wi) ≤ k − 1 we must have N(Wi) = S and hence N(Wi) ∩Wj =
∅. Thus N(Wi ∩ Wj ∩ Wk) ⊆ S. Since d(s,Wi ∩ Wj ∩ Wh) = 1, we must have
N(Wi ∩Wj ∩Wk) = S. Since Wi is dangerous and N(Wi) = S, d(s,Wi) = 2 follows.
Thus d(s,Wi ∩W ∗

j ∩W ∗
h ) = 1 and G− S has r + 1 = d(s) components C0, C1, ..., Cr

where C0 = Wi ∩Wj ∩Wh and Ci = Wi − C0 for 1 ≤ i ≤ r. Thus S is a shredder in
G with bG(S) = d(s). Since the (k, s)-connectivity of G+ s implies that b(G) ≤ d(s),
we have b(G) = d(s).

(b) Using (a) we have d(s) is odd and there exist maximal dangerous sets W1,W2

in G + s such that N(s) ⊆ W1 ∪W2, x0 ∈ W1 ∩W2, d(s,W1 ∩W2) = 1, d(s,W1 ∩
W ∗

2 ) = d(s,W ∗
1 ∩ W2) = (d(s) − 1)/2 ≥ 2, and W1 ∩ W ∗

2 and W ∗
1 ∩ W2 are tight.

Suppose x1 ∈ N(s) ∩W1 ∩W ∗
2 and there is no admissible split containing sx1. Then

applying (a) to x1 we find maximal dangerous sets W3,W4 with x1 ∈ W3 ∩W4 and
d(s,W3 ∩W4) = 1. Using Lemma 3.1(c) we have W1 ∩W ∗

2 ⊆W3 and W1 ∩W ∗
2 ⊆W4.

Thus W1 ∩W ∗
2 ⊆ W3 ∩W4 and d(s,W3 ∩W4) ≥ 2. This contradicts the fact that

d(s,W3 ∩W4) = 1.

We can use this result to determine ak(G) when G is k-independence free. We first
solve the case when b(G) is large compared to d(s).

Lemma 3.6. Let G + s be a k-critical extension of a k-independence free graph G
and K be a shredder in G. If d(s) ≤ 2b(K)− 2 then d(s,K) = 0.

Proof. Let b(K) = b. Suppose x ∈ N(s) ∩ K and let X be a minimal tight set in
G + s containing x. Let L = {X1, X2, . . . , Xr} be the leaf components of K. Since
d(s) ≤ 2b − 2 we have r ≥ 2. Choose Xi ∈ L and xi ∈ N(s) ∩Xi. Then Xi is tight.
Since x ∈ K = NG(Xi) we have X 6⊆ X∗i . Using Lemma 3.1(b), we deduce that X∪Xi
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is tight, nG(X ∩Xi) = k and d(s,X ∩Xi) = 0. Hence xi 6∈ X and N(X) ∩Xi 6= ∅.
Since this holds for all Xi ∈ L and x ∈ X ∩K, we have

|N(X) ∩ (X1 ∪X2 . . . Xr)| ≥ r. (12)

Furthermore, since X ∩X2 6= ∅ and X ∩X2 ⊆ X ∩X∗1 we have X ∩X∗1 6= ∅. Using (8)
and the fact that d(s,X−X∗1 ) ≥ 1 since x ∈ X∩NG(X1), it follows that X∗∩X1 = ∅.
Using symmetry we deduce that X∗ ∩Xi = ∅ for all Xi ∈ L.

Since X1 ∪X2 is dangerous and x1, x2 6∈ X∗, we can use Lemma 3.1(d) to deduce
that d̄(X ∩ (X1 ∪ X2) ≤ k + 1. Since nG(X ∩ X1) = k = nG(X ∩ X2), we have
K = NG(X ∩ X1) ∩ NG(X ∩ X2). Thus x ∈ NG(X ∩ X1), K ⊆ X ∪ NG(X) and
X∗∩K = ∅. Since X∗∩Xi = ∅ for all Xi ∈ L, X∗∩Y 6= ∅ for some non-leaf component
Y of G−K. Using (12) and the facts that NG(X∗∩Y ) ⊆ (NG(X)∩Y )∪(NG(X)∩K)
and nG(X) ≤ k − 1, we deduce that nG(X∗ ∩ Y ) ≤ k − 1 − r. Since G + s is (k, s)-
connected we have d(s, Y ) ≥ d(s,X∗ ∩ Y ) ≥ r + 1. Thus

d(s) = d(s, Y ) + d(s,X1 ∪X2 . . . Xr) + d(s, (Y1 ∪ Y2 . . . Yb−r)− Y ) + d(s,K)

≥ (r + 1) + r + 2(b− r − 1) + 1 ≥ 2b.

This contradicts the hypothesis that d(s) ≤ 2b− 2.

Lemma 3.7. Let G + s be a k-critical extension of a k-independence free graph G
such that b(G) + 1 ≤ d(s) ≤ 2b(G)− 2. Then there exists an admissible split at s such
that, for the resulting graph G′ + s, we have b(G′) = b(G)− 1.

Proof. Let b(G) = b and let K be a shredder in G with bG(K) = b and, subject to this
condition, with the maximum number r of leaves in G+ s. Let C1, C2, . . . , Cr be the
leaf components of K and let N(s)∩Ci = {xi} for 1 ≤ i ≤ r. Since d(s) ≤ 2b(G)− 2
we have r ≥ 2. Since d(s) ≥ b(G) + 1 and r ≥ 2, we may use Theorem 3.4 to deduce
without loss of generality that there is an admissible split in G + s containing sx1.
Choose sw such that sx1, sw is an admissible split in G + s. Splitting sx1, sw we
obtain G′+ s where dG′+s(s) = dG+s(s)− 2. Adding the edge x1w to G we obtain G′.

Suppose b(G′) = b(G). Then G has a shredder K ′ with b(K ′, G) = b(G) such that
x1, w belong to the same component C ′ of G −K ′. (Note that {x1, w} ∩K ′ = ∅ by
Lemma 3.6.) We shall prove that such a K ′ cannot exist in G.

Suppose x1, x2, . . . , xr ∈ V (C ′). Since w is also contained in C ′ we have d(s, C ′) ≥
r + 1. Since d(s) ≤ 2b − 2 it follows that K ′ has at least r + 1 leaf components,
contradicting the maximality of r. Hence we may assume without loss of generality
that

x2 6∈ C ′. (13)

Thus K ′ separates x1 and x2. Since, by Lemma 2.12, the subgraph of G induced by
C1 ∪ C2 ∪K contains k − 1 openly disjoint x1x2-paths, we have

K ′ ⊆ C1 ∪ C2 ∪K. (14)
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Claim 3.8. K and K ′ are meshing local separators.

Proof. Let C ′2 be the component of G − K ′ containing x2. Since every x1w-path in
G contains a vertex of K we have C ′ ∩K 6= ∅. Also since G has (k − 1) x1x2-paths
by Lemma 2.12, both C ′ and C ′2 are essential K ′-components. Hence we may assume
C ′2 ∩K = ∅. Hence C ′2 ⊆ C2 and K ′ ∩ C2 6= ∅ (since K 6= K ′). If K ′ does not mesh
K we have C1 ∩K ′ = ∅, so C1 ⊆ C ′. Since N(C1) = K we have K −C ′ ⊆ K ′. Let C ′1
be a leaf component of K ′ distinct from C ′2. Since C ′1 is an essential K ′-component,
we have N(C ′1) = K ′. Since K ∩C ′ 6= ∅ and K ⊆ K ′ ∪C ′ we have C ′1 ⊆ C2−C ′2. But
x2 is the only s-neighbour in C2 so d(s, C ′1) = 0, a contradiction.

Claim 3.9. r = 2.

Proof. Suppose r ≥ 3. By Lemma 3.6, x1, x2 6∈ K ′. By Lemma 2.12, the subgraph of
G induced by C1 ∪C2 ∪K contains k− 1 openly disjoint x1x2-paths. Since K and K ′

mesh by Claim 3.8, K ′ ∩C3 6= ∅, so |K ′ ∩ (C1 ∪C2 ∪K)| ≤ k− 2. Hence at least one
of the above k − 1 openly disjoint x1x2-paths avoid K ′. This contradicts (13).

We can now complete the proof of the lemma. Let Cw be the component of G−K
containing w. Since sx1, sw is an admissible split and C1 is a leaf component of K,
it follows that Cw is not a leaf component of K. Using (14), we deduce that Cw
is a connected subgraph of G − K ′ and hence Cw ⊆ C ′. Since d(s, Cw) ≥ 2 and
x1 ∈ N(s) ∩ (C ′ − Cw) we have d(s, C ′) ≥ 3. Since d(s) ≤ 2b − 2, it follows that K ′

has at least 3 leaf components. This contradicts the maximality of r by Claim 3.9.
Thus K ′ does not exist and we have b(G′) = b(G)− 1.

Lemma 3.10. Let G + s be a k-critical extension of a k-independence free graph G
and p be an integer such that 0 ≤ p ≤ 1

2
d(s) − 1. Then there exists a sequence of p

admissible splits at s if and only if p ≤ d(s)− b(G).

Proof. We first suppose that there exists a sequence of p admissible splits at s inG. Let
the resulting graph be G1+s. Then dG1+s(s) = dG(s)−2p and b(G1) ≥ b(G)−p. Since
G1 + s is (k, s)-connected we must have dG1+s(s) ≥ b(G1) and hence p ≤ d(s)− b(G).

We next suppose that p ≤ d(s) − b(G). We shall show by induction on p that
G + s has a sequence of p admissible splits at s. If p = 0 then there is nothing to
prove. Hence we may assume p ≥ 1. Since p ≤ 1

2
d(s) − 1 we have d(s) ≥ 4. By

Theorem 3.4 there is an admissible split at s. Let the resulting graph be G2 + s.
If p − 1 ≤ dG2+s(s) − b(G2) then we are done by induction. Hence we may assume
that p ≥ dG2+s(s) − b(G2) + 2 ≥ dG(s) − b(G). Hence p = dG(s) − b(G). Since
p ≤ 1

2
dG(s)− 1, we have dG(s) ≤ 2b(G)− 2. By Lemma 3.7 there exists an admissible

split at s such that the resulting graph G3 + s satisfies b(G3) = b(G) − 1. It now
follows by induction that G3 + s has a sequence of p− 1 admissible splits at s.

Lemma 3.11. Let G+ s be a k-critical extension of a k-independence free graph G.
If d(s) ≤ 2b(G)− 2 then ak(G) = b(G)− 1.
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Proof. Suppose d(s) = b(G). Then all components of G − K are leaf components.
Let F be the edge set of a tree T on the vertices of N(s). We shall show that G+ F
is k-connected. If not, then we can partition V into three sets {X, Y, Z} such that
|Z| = k − 1 and no edge of G + F joins X to Y . Since each pair of vertices of N(s)
are joined by k vertex-disjoint paths in G+F , (k−1) paths in G by Lemma 2.12 and
one path in T , either X or Y is disjoint from N(s). Assuming X ∩N(s) = ∅, we have
d̄(X) = n(X) ≤ k− 1, contradicting the fact that G+ s satisfies (6). Hence G+ F is
a k-connected augmentation of G with b(G)− 1 edges.

Henceforth we may assume that d(s) > b(G). By Lemma 3.7, there exists an
admissible split at s such that, for the resulting graph G′ + s, we have b(G′) =
b(G)− 1. Since G′ + s is a k-critical extension of G′, the lemma follows by induction
on dG+s(s)− b(G).

Theorem 3.12. If G is k-independence free then ak(G) = max {dt(G)/2e, b(G)− 1} .

Proof. Let G + s be a k-critical extension of G. By Corollary 3.2, d(s) = t(G). If
d(s) ≤ 3 then ak(G) = dt(G)/2e by Lemma 2.8. Hence we may suppose that d(s) ≥ 4.
If d(s) ≤ 2b(G) − 2 then ak(G) = b(G) − 1 by Lemma 3.11. Hence we may suppose
that d(s) ≥ 2b(G)− 1.

By Lemma 3.10, there exists a sequence of bd(s)/2c − 1 admissible splits at s. Let
the resulting graph be G′+s. Then G′+s is a k-critical extension of G′, dG′+s(s) ≤ 3,
and ak(G

′) = ddG′+s(s)/2e by Lemma 2.8. This gives the required augmenting set F
for G with |F | = ddG+s(s)/2e = dt(G)/2e.

4 Graphs with Large Augmentation Number

Throughout this section we will be concerned with augmenting an l-connected graph
G on at least k + 1 vertices for which ak(G) is large compared to k.

4.1 Unsplittable Extensions

In this subsection we consider a k-critical extension G+s of G for which d(s) is large,
and characterise when there is no admissible split containing a given edge at s.

Lemma 4.1. Let X, Y ⊂ V be two sets with X ∩ Y 6= ∅. Suppose d(s) ≥ (k − l)(k −
1) + 4.
(a) If X and Y are tight then X ∪ Y is tight.
(b) If X is tight and Y is dangerous then X ∪ Y is dangerous.
(c) If d(s) ≥ (k − l + 1)(k − 1) + 4 and X and Y are dangerous then X∗ ∩ Y ∗ 6= ∅.

Proof. We prove (a). Let X,Y be tight sets with X ∩ Y 6= ∅. By (7) we have

2k = d̄(X) + d̄(Y ) ≥ d̄(X ∩ Y ) + d̄(X ∪ Y ). (15)

Clearly, X ∩ Y is a fragment and hence d̄(X ∩ Y ) ≥ k by (6). Using (15) we have
d̄(X ∪Y ) ≤ k. Thus if X∗ ∩Y ∗ 6= ∅ then X ∪Y is also a fragment and hence is tight.
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Suppose X∗ ∩ Y ∗ = ∅. Since d̄(X ∪ Y ) ≤ k, we have n(X ∪ Y ) ≤ k − d(s,X ∪ Y ).
Thus

d(s) ≤ d(s,X ∪ Y ) + d(s,N(X ∪ Y )) ≤ d(s,X ∪ Y ) + (k − l)n(X ∪ Y ) ≤
≤ d(s,X ∪ Y ) + (k − l)(k − d(s,X ∪ Y )) = (k − l)k − (k − l − 1)d(s,X ∪ Y ).

Since k−l−1 ≥ 0 and d(s,X∪Y ) ≥ 1, this gives d(s) ≤ (k−l)(k−1)+1, contradicting
the hypothesis on d(s).

The proofs of (b) and (c) are similar, using the fact that d(s,X ∪Y ) ≥ 2 in (b) and
(c).

Lemma 4.2. Let sx0 be a designated edge of a k-critical extension G + s of G and
suppose that there are q ≥ (k − l + 1)(k − 1) + 4 edges sy (y 6= x0) incident to s for
which the pair sx0, sy is not admissible. Then there exists a shredder K in G such that
K has q+ 1 leaves in G+ s, and one of the leaves is the maximal tight set containing
x0.

Proof. Let X0 be the maximal tight set in G + s containing x0. Note that the set
X0 is uniquely determined by Lemma 4.1(a). Let T = {X1, ..., Xm} be the set of all
maximal tight sets which intersect N(X0). Note that Xi ∩Xj = ∅ for 0 ≤ i < j ≤ m
by Lemma 4.1(a). Thus we have d(s,∪mi=0Xi) = d(s,X0) + d(s,∪mi=1Xi).

Since each Xi ∈ T contains a neighbour of X0 and X0 is tight, we have m ≤
n(X0) = k − d(s,X0). Since each Xi ∈ T is tight and G is l-connected, we have
d(s,Xi) ≤ k − l. So

d(s,∪mi=0Xi) ≤ d(s,X0) + (k− l)(k− d(s,X0)) = k(k− l)− d(s,X0)(k− l− 1). (16)

Let M := {y ∈ N(s) : sx0, sy is not admissible}. Since there exist q ≥ (k − l +
1)(k − 1) + 4 edges incident to s which are not admissible with sx0, we can use
(16) to deduce that R := M − ∪mi=0Xi 6= ∅. By Lemma 2.9 and by the choice
of T there exists a family of maximal dangerous sets W = {W1, ...,Wr} such that
x0 ∈ Wi for all 1 ≤ i ≤ r and R ⊆ ∪rj=1Wi. By Lemma 4.1(b), X0 ⊆ Wi for all
1 ≤ i ≤ r. Since d(s,Wi −X0) ≤ k + 1 − l − d(s,X0), we can use (16) and the fact
that q ≥ (k − l + 1)(k − 1) + 4 − l to deduce that r ≥ 2. For Wi,Wj ∈ W we have
W ∗
i ∩W ∗

j 6= ∅ by Lemma 4.1(c). Since Wi ∪Wj is not dangerous by the maximality
of Wi, we may apply (7) to obtain

k + 1 + k + 1 ≥ d̄(Wi) + d̄(Wj) ≥ d̄(Wi ∩Wj) + d̄(Wi ∪Wj) ≥ k + k + 2. (17)

Thus equality holds throughout and Wi∩Wj is tight. Since X0 is a maximal tight set
and X0 ⊆Wi∩Wj we have X0 = Wi∩Wj. Furthermore, since we have equality in (17),
we can use (7) to deduce that Wj ∩N(Wi) ⊆ N(Wi ∩Wj). So Wj ∩N(Wi) ⊆ N(X0)
and Wi ∩ N(Wj) ⊆ N(X0). Hence N(s) ∩Wi ∩ N(Wj) ⊆ ∪mi=0Xi. (Note that every
z ∈ N(s) ∩N(X0) is contained in one of the Xi’s by the criticality of G + s.) So by
the choice of W, R ∩Wi ∩W ∗

j 6= ∅ and R ∩Wj ∩W ∗
i 6= ∅ follows.
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By (8),

2k + 2 = d̄(Wi) + d̄(Wj) ≥
≥ d̄(Wi ∩W ∗

j ) + d̄(Wi ∩W ∗
j ) + d(s,Wi −W ∗

j ) + d(s,Wj −W ∗
i ) ≥ 2k + 2,

and so we have equality throughout. Thus all edges from s to Wi, other than the single
edge sx0, end in Wi ∩W ∗

j and d(s,X0) = 1. Hence R ∩Wj ∩W ∗
i = (R ∩Wj) − x0.

Since d(s, (Wi ∪Wj)−X0) ≤ k + 2− l − d(s,X0), we can use (16) and the fact that
q ≥ (k−l+1)(k−1)+4 to deduce that r ≥ 3. Thus ∅ 6= (R∩Wj)−x0 ⊆Wj∩W ∗

i ∩W ∗
k

holds for every triple. Applying (9), and using d(s,Wi ∩Wj ∩Wk) ≥ 1, we get

3k + 3 ≥ d̄(Wi) + d̄(Wj) + d̄(Wk) ≥ d̄(Wi ∩Wj ∩Wk) + d̄(Wi ∩W ∗
j ∩W ∗

k ) +

+ d̄(Wj ∩W ∗
i ∩W ∗

k ) + d̄(Wk ∩W ∗
i ∩W ∗

j )−
− |N(Wi) ∩N(Wj) ∩N(Wk)|+ 2 ≥
≥ 4k − |N(Wi) ∩N(Wj) ∩N(Wk)|+ 2 ≥ 3k + 3. (18)

For S = N(Wi)∩N(Wj)∩N(Wk) we have |S| = k−1 by (18). Since n(Wi) ≤ k−1 we
must have N(Wi) = S and hence N(Wi)∩Wj = ∅. Thus N(Wi∩Wj∩Wk) ⊆ S. Since
Wi ∩Wj ∩Wk = X0 and n(X0) = k− 1 we have N(Wi ∩Wj ∩Wk) = N(X0) = S. We
may also deduce from (18) that Wi∩W ∗

j ∩W ∗
k is tight and d(s,Wi∩Wj∩Wk) = 1. Since

n(Wi) = k−1 and Wi is dangerous, d(s,Wi) = 2 follows. Thus d(s,Wi∩W ∗
j ∩W ∗

k ) = 1
and G− S has r + 1 components C0, C1, ..., Cr, where C0 = Wi ∩Wj ∩Wk = X0 and
Ci = Wi −X0 for 1 ≤ i ≤ r.

If {x0}∪R = M then we are done. Hence suppose {x0}∪R 6= M . Choose Xi ∈ T .
Since Xi ∩ N(X0) 6= ∅, we have Xi ∩ S 6= ∅. Since Xi ∩ R = ∅, N(Xi) ∩ Ci 6= ∅ for
0 ≤ i ≤ r. Using r = |R| ≥ q − d(s,∪mi=0Xi) ≥ k + 2 by (16) and the facts that
d(s,X0) = 1, and q ≥ (k− l+1)(k−1)+4, we deduce that d̄(Xi) ≥ r+1+d(s,Xi) ≥
k + 4 (since d(s,Xi) ≥ 1). This contradicts the fact that Xi is tight.

4.2 Graphs with Large Shredders

We show in this subsection that if b∗(G) is large compared to k and b∗(G) − 1 ≥
dt(G)/2e then ak(G) = b∗(G) − 1. We need several new observations on shredders.
We assume throughout this subsection that G + s is a k-critical extension of G, and
that, for some shredder K of G, we have d(s) ≤ 2b∗(K)− 2.

Lemma 4.3. Suppose b∗(K) ≥ 4k + 3(k − l)− 1. Then

(a) the number of components C of G−K with d(s, C) ≥ 3 is at most b(K)−2k−1,

(b) |N(s) ∩K| ≤ 1, and

(c) if d(s, x) = j ≥ 1 for some x ∈ K then k − dG(x) = j.

Proof. Let w be the number of components C of G − K with d(s, C) ≥ 3. Then
d(s) ≥ 3w + (b(K)− w). Thus

2w ≤ d(s)− b(K) ≤ 2b∗(K)− 2− b(K) (19)

= 2b(K) + 2δ(K)− 2− b(K) = 2b(K) + 3δ(K)− 2− b∗(K). (20)
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4.2 Graphs with Large Shredders 17

Since δ(K) ≤ k − l and b∗(K) ≥ 4k + 3(k − l)− 1, we have w ≤ b(K)− 2k − 1. This
proves (a).

Since G+ s is a critical extension of G, each vertex in N(s) is contained in a tight
set of G+ s. Thus (b) will follow from the next claim.

Claim 4.4. There is at most one vertex x ∈ K for which x ∈ Y holds for some tight
set Y .

Proof. Suppose that there exist two distinct vertices x1, x2 ∈ K and tight sets Y1, Y2

in G + s such that x1 ∈ Y1, x2 ∈ Y2. Let Y = Y1 ∪ Y2 and let D = {C :
C is a component of G−K,C ∩ (Y ∪N(Y )) 6= ∅}. We have |D| ≤ 2k, since d̄(Y ) ≤
d̄(Y1)+ d̄(Y2) ≤ 2k and for every C ∈ D either C−Y 6= ∅, in which case N(Y )∩C 6= ∅
holds, or C ⊂ Y , in which case d(s, C ∩ Y ) ≥ 1 holds by (6).

Since x1, x2 ∈ Y , and by the definition of D, every component C ′ of G − K with
C ′ /∈ D satisfies n(C ′) ≤ k − 3, and hence d(s, C ′) ≥ 3 by (6). This contradicts
(a).

To see (c) focus on a tight set X with X∩K 6= ∅. By Claim 4.4 we have X∩K = {x}
for some x ∈ V . If X−K = ∅ then {x} is tight and hence we have d(s, x) = k−dG(x),
as required. Suppose now that X −K 6= ∅ and let M := X ∩ C for some component
C of G−K for which X ∩ C 6= ∅. Clearly, N(M) ⊆ C ∪K. Thus by (6) we obtain

k = d̄(X) ≥ d̄(M)− 1 + d(s, x) + |N(x)−M −N(M)|
≥ k − 1 + d(s, x) + |N(x)−M −N(M)|.

This implies d(s, x) = 1 and N(x) ⊆ M ∪ N(M). Therefore b∗(K) ≤ b(K) + 1,
x /∈ N(C ′) for every component C ′ 6= C of G−K and hence d(s, C ′) ≥ k−n(C ′) ≥ 2.
For C we have d(s, C) ≥ 1 by (6). This gives d(s) ≥ 2(b(K) − 1) + 1 + d(s, x) =
2b(K) ≥ 2b∗(K) − 2. Thus equality must hold throughout and δ(K) = 1. Since
N(s) ∩K = {x} by (b), we have k − dG(x) = δ(K) = 1 = d(s, x).

We shall use the following construction to augment G with b∗(G)− 1 edges in the
case when d(s,K) = 0 and b(K) = b∗(G) =: b. Let C1, ..., Cb be the components
of G − K and let wi = dG+s(s, Ci), 1 ≤ i ≤ b. Note that wi ≥ 1 by (6). Since
d(s) ≤ 2b− 2, there exists a tree F ′ on b vertices with degree sequence d1, ..., db such
that di ≥ wi, for 1 ≤ i ≤ b. Let F be a forest on NG+s(s) with dF (v) = dG+s(s, v) for
every v ∈ V (G) and such that the graph obtained from (V −K,E(F )) by contracting
C1, C2, . . . , Cb to single vertices is F ′. Thus |E(F )| = |E(F ′)| = b − 1. We shall say
that G+F is a forest augmentation of G with respect to K and G+s, and prove that
G+F is k-connected. A set X ⊆ V is said to be deficient in G if nG(X) ≤ k− 1 and
X∗ 6= ∅. Note that since dG+s(s,K) = 0, there are no sets X contained in K which
are deficient in G, by (6).

Lemma 4.5. Suppose d(s,K) = 0 and let G+ F be a forest augmentation of G with
respect to K and G+ s. If X is deficient in G+ F then X ∩K 6= ∅.
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Proof. LetX be a deficient set inG withX∩K = ∅. We shall show that nG+F (X) ≥ k.

Case 1. X ∩ L = ∅ for every leaf L of K in G.

Let D = {Ci : X ∩ Ci 6= ∅}. Choose Ci ∈ D arbitrarily and let r := d(s,X ∩ Ci).
(Observe that dG+s(s,X∩Cj) ≥ 1 for every Cj ∈ D, otherwise nG(X) ≥ nG(X∩Cj) ≥
k − dG+s(s,X ∩ Cj) = k would follow.)

The tree F ′ has a vertex ci of degree at least dG+s(s, Ci) corresponding to Ci. Let
e1, ..., er be r edges incident to ci corresponding to r edges in F leaving X∩Ci. Choose
r longest paths P1, ..., Pr in F ′ starting at ci and containing the corresponding edges
e1, ..., er, such that each vertex on each Pi, other than the end vertex of Pi, corresponds
to a component in D. Such paths exist since no leaf of F ′ corresponds to a component
in D.

Let α be the number of paths whose last edge corresponds to an edge uv in F with
u ∈ X. For every such path we have v ∈ NG+F (X)−NG(X). Let β be the number of
paths whose last edge cpcq corresponds to an edge uv in F with u 6∈ X. Since every
inner vertex of each Pi corresponds to a component in D, we have X ∩ Cp 6= ∅ and
u ∈ Cp − X. Note also that Cp 6= Ci since the first edge of each Pi corresponds to
an edge in F which is incident to X ∩ Ci. Since NG(X ∩ Ci) ⊆ Ci ∪K, there exists
a vertex w ∈ (N(X) ∩ Cp) −N(X ∩ Ci). Clearly, α + β = r. Therefore we have the
following inequalities.

nG(X) ≥ nG(X ∩ Ci) + β, (21)

nG+F (X) ≥ nG(X) + α ≥ nG(X ∩ Ci) + α + β = nG(X ∩ Ci) + r. (22)

Since G + s is (k, s)-connected, r ≥ k − nG(X ∩ Ci), and hence X is not deficient
in G+ F . This solves Case 1.

Case 2. X ∩ L 6= ∅ for some leaf L of K.

We consider two subcases. In the first subcase there exists a leaf L with L ⊆ X.
Then K ⊆ NG(X) by Lemma 2.12 and hence if X properly intersects some component
Ci 6= L of G−K then nG(X) ≥ k follows, contradicting the fact that X is deficient.
Thus (since X∗ 6= ∅) there exists a component C of G−K for which C ∩X = ∅. Now
take a path P from L to C in F ′. Let C ′ be the first component for which the edge on
P which enters C ′ corresponds to an edge in F ′ which connects X to V −X. For this
component we have |NG+F (X) ∩ C ′| ≥ 1, so NG+F (X) ≥ |K|+ 1 = k, as required.

In the second subcase X properly intersects every leaf that it intersects. Let a ∈
X ∩L1 for some leaf L1. By Lemma 2.12 there exist k− 1 disjoint paths from a to K
and hence, since X ∩K = ∅, |NG(X) ∩ (K ∪ L1)| ≥ k − 1. If X ∩ L2 6= ∅ for another
leaf L2 then NG(X) ∩ L2 6= ∅ and hence nG(X) ≥ k follows. Hence X ∩ L2 = ∅ for
every leaf L2 distinct from L1. Let P be a path in F ′ from L1 to L2. Let C ′ be the
first component for which the edge on P which enters C ′ connects X to V −X. (Note
that the first edge of P corresponds to an edge uv of F ′ with u ∈ NG+s(s)∩L1. Since
L1 is a leaf component and dG+s(s,X ∩ L1) ≥ 1 we have u ∈ X.) For the component
C ′ we have (|NG+F (X) ∩ C ′| ≥ 1, so NG+F (X) ≥ |K|+ 1 = k, as required.

This completes the proof of Lemma 4.5.
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Lemma 4.6. Suppose b∗(K) ≥ 4k + 3(k − l) − 1 and d(s,K) = 0. Let G + F be a
forest augmentation of G with respect to K and G+ s. Then G+ F is k-connected.

Proof. We proceed by contradiction. Let X be a deficient set in G + F . Then X∗ is
also deficient so by Lemma 4.5, X ∩ K 6= ∅ 6= X∗ ∩ K. Suppose that |X ∩ K| ≥ 2
and |X∗ ∩K| ≥ 2. Since |(G−K)−X −X∗| ≤ |V −X −X∗| ≤ k − 1, there are at
least b(K)− (k− 1) components C of G−K which are contained in X ∪X∗. There is
no edge from X to X∗, so for each such component either C ⊆ X or C ⊆ X∗ holds.
Thus we have NG(C) ⊆ K −X∗ or NG(C) ⊆ K −X, and so nG(C) ≤ k − 3. Hence
dG(s, C) ≥ 3 by (6). This contradicts Lemma 4.3(a).

Thus we may assume without loss of generality that |X∩K| = 1. Let X∩K = {x}.
Since there is no edge from s to K in G, X−K 6= ∅. Let C be a component of G−K
such that M := X ∩ C 6= ∅. We have NG+F (M) − {x} ⊆ NG+F (X). By Lemma
4.5, M is not deficient in G + F . Hence, if X remains deficient in G + F , then
we have NG+F (X) ⊆ NG+F (M), nG+F (M) = k, NG+F (x) − X ⊆ NG+F (M) and
nG+F (X) = k − 1.

Therefore, since x has a neighbour in each leaf, we can deduce that X ∩ L1 6=
∅ 6= X ∩ L2 for (at least) two leaves L1, L2. If L1 ⊂ X then, since K = N(L1), we
have X∗ ∩ K = ∅, contradicting Lemma 4.5. Hence L1 − X and L2 − X are both
non-empty and |NG(X)∩L2| ≥ 1. Furthermore, since L1 and L2 are leaf components
NG+F (X ∩ L1) ∩ L2 = ∅. Letting C = L1, we have nG+F (X) ≥ nG+F (L1 ∩X)− 1 +
|NG(X) ∩ L2| ≥ k, contradicting the fact that X is deficient in G+ F .

Our final step is to show how to augment G with b∗(K)−1 edges when d(s,K) 6= 0.
In this case, Lemma 4.3(b) implies that there is exactly one vertex x ∈ K which is
adjacent to s. We use the next lemma to split off all edges from s to x and hence
reduce to the case when d(s,K) = 0.

Lemma 4.7. Suppose d(s, x) ≥ 1 for some x ∈ K and d(s) ≥ k(k− l+ 1) + 2. Then
there exists a sequence of d(s, x) admissible splits at s which split off all edges from s
to x.

Proof. We have at most k− l copies of sx. Suppose we get stuck after splitting some
copies of sx, i.e. we obtain a graph H + s where some edge sx cannot be split off.
Since dH(s) ≥ dG(s)− (k − l − 1) ≥ (k − l + 1)(k − 1) + 4, we can use Lemma 4.2 to
deduce that there is a shredder K ′ in H with b(K ′, H) = dH(s) and x in one of the
components of H −K ′. Let u, v be two neighbours of s in H distinct from x and let
Cu and Cv be the components of H −K ′ containing u and v respectively. By Lemma
2.12, there exist k − 1 openly disjoint paths between u and v in H containing only
verticies of Cu, Cv and K ′, and hence avoiding x. Since all edges of E(H)−E(G) are
incident with x, these paths exist in G as well.

Since b(K) ≥ b∗(K)− (k− l) ≥ (d(s) + 2)/2− (k− l) ≥ k+ 1, and each component
of G−K has an s-neighbour in G, we can choose the two neighbours u, v of s in H+s
to belong to different components in G − K. But for such a choice of u, v there do
not exist k− 1 disjoint paths from u to v in G−x, contradicting the above claim.
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We need one more lemma saying that if d(s) is large enough compared to l and k,
then d(s) is equal to t(G). Part (b) of the lemma, which gives a slight improvement
of part (a) when l = k − 1, is from [14].

Lemma 4.8. (a) If d(s) ≥ (k − l)(k − 1) + 4 then d(s) = t(G).
(b) If l = k − 1 and d(s) ≥ k + 1 then d(s) = t(G), [14].

Proof. We prove (a). Let F be a family of tight sets which cover N(s) such that |F|
is as small as possible. Since every edge incident to s is critical, such a family exists.
We show that the members of F are pairwise disjoint. Choose X, Y ∈ F and suppose
that X ∩ Y 6= ∅. By Lemma 4.1(a) X ∪ Y is also tight. So replacing X and Y in F
by X ∪ Y we contradict the minimality of |F|.

Since the members of F are pairwise disjoint, tight, and cover N(s), we have d(s) =∑
X∈F k − n(X) ≤ t(G). The inequality d(s) ≥ t(G) follows easily from (6). Thus

d(s) = t(G), as required.

We can now prove our augmentation result for graphs with large shredders.

Theorem 4.9. Suppose that G is l-connected, b∗(G) ≥ 4k + 4(k − l) − 1, t(G) ≥
k(k − l + 1) + 2 and b∗(G)− 1 ≥ dt(G)/2e. Then ak(G) = b∗(G)− 1.

Proof. Let G+ s be a k-critical extension of G. Then d(s) = t(G) by Lemma 4.8(a).
Let K be a shredder in G with b∗(K) = b∗(G). Then 2b∗(K) − 2 ≥ t(G) = d(s).
Suppose d(s,K) = 0. Then b∗(G) = b(K). Let G+ F be a forest augmentation of G
with respect to K and G+ s. Then |F | = b(G)− 1 and by Lemma 4.6, G+ F is the
required k-connected augmentation of G. Hence we may assume that d(s,K) ≥ 1.

Applying Lemma 4.3(c), we deduce that δG(K) = dG+s(s,K) = dG(s, x) for some
x ∈ K. By Lemma 4.7, we can construct a graph H + s by performing a sequence of
dG(s, x) admissible splits at s which split off all edges from s to x in G+ s. Since we
only split edges incident to x ∈ K to form H + s, we have G −K = H −K and so
bG(K) = bH(K). Hence

dH+s(s) = dG+s(s)− 2dG+s(s, x) = dG+s(s)− 2δG(K) ≤ 2b∗G(K)− 2− 2δG(K) =

= 2bG(K) + 2δG(K)− 2− 2δG(K) = 2bG(K)− 2 = 2bH(K)− 2.

Thus we have dH+s(s) ≤ 2bH(K) − 2, and dH+s(s,K) = 0. Also note that the
splittings add a set F0 of δG(K) new edges to G to form H, and that bH(K) =
b(K) ≥ b∗G(K)− (k − l) ≥ 4k + 3(k − l)− 1. Let H + F1 be a forest augmentation of
H with respect to K and H + s. Then |F1| = bH(K)− 1 = bG(K)− 1, and H + F1 is
k-connected by Lemma 4.6. Thus G+ F0 + F1 = H + F1 is the required k-connected
augmentation of G with δG(K) + bG(K)− 1 = b∗G(K)− 1 edges.

We will apply Theorem 4.9 to graphs which do not satisfy b∗(G) − 1 ≥ dt(G)/2e
using the following concept. A set F of new edges is saturating for G if t(G + F ) =
t(G)− 2|F |. Thus an edge e = uv is saturating if t(G+ e) = t(G)− 2.

Lemma 4.10. If F is a saturating set of edges for an l-connected graph G with b∗(G+
F ) ≥ 4k+4(k− l)−1, t(G+F ) ≥ k(k− l+1)+2, and b∗(G+F )−1 = dt(G+F )/2e,
then ak(G) = dt(G)/2e.
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Proof. By Theorem 4.9 the graph G+F can be made k-connected by adding a set F ′ of
dt(G+F )/2e edges. Since F is saturating, we have t(G) = t(G+F )+2|F |. Therefore
the set F ∪ F ′ is an augmenting set for G of size dt(G)/2e. Since ak(G) ≥ dt(G)/2e,
the lemma follows.

We close this section by noting that Theorem 4.9 can be strengthened when l = k−1.

Theorem 4.11. Suppose G is a (k − 1)-connected graph such that b(G) ≥ k and
b(G)− 1 ≥ dt(G)/2e. Then ak(G) = b(G)− 1, [14].

Using the proof technique of Lemma 4.10 we deduce

Lemma 4.12. If F is a saturating set of edges for a (k − 1)-connected graph G with
b(G+ F )− 1 = dt(G+ F )/2e ≥ k − 1 then ak(G) = dt(G)/2e.

4.3 Augmenting Connectivity by One

Throughout this subsection we assume that G = (V,E) is a (k − 1)-connected graph
on at least k + 1 vertices. We shall show that if ak(G) is large compared to k, then
ak(G) = max{b(G)− 1, dt(G)/2e}. Our proof uses Theorems 3.12 and 4.11. We shall
show that if ak(G) is large, then we can add a saturating set of new edges F so that
we have t(G+ F ) = t(G)− 2|F | and G+ F is k-independence free.

In order to do this we need to measure how close G is to being k-independence
free. We use the following concepts. Recall that a set X ⊂ V is deficient in G if
n(X) = k − 1 and V − X − N(X) 6= ∅. Following [14], we call the (inclusionwise)
minimal deficient sets in G the cores of G. A core B is active in G if there exists a
(k− 1)-cut K with B ⊆ K. Otherwise B is called passive. Let α(G) and π(G) denote
the numbers of active, respectively passive, cores of G. Since G is (k − 1)-connected,
the definition of k-independence implies that G is k-independence free if and only if
α(G) = 0. The following characterisation of active cores also follows easily from the
above definitions.

Lemma 4.13. Let B be a core in G. Then B is active if and only if κ(G − B) =
k − |B| − 1.

A set S ⊆ V is a deficient set cover (or D-cover for short) if S ∩ T 6= ∅ for every
deficient set T . Clearly, S covers every deficient set if and only if S covers every core.
Note that S is a minimal D-cover for G if and only if the extension G + s obtained
by joining s to each vertex of S is k-critical.

Lemma 4.14. [14, p 16, Lemma 3.2] (a) Every minimal augmenting set for G in-
duces a forest.
(b) For every D-cover S for G, there exists a minimal augmenting set F for G with
V (F ) ⊆ S.
(c) If F is a minimal augmenting set for G, e = xy ∈ F , and H = G+F − e, then H
has precisely two cores X, Y . Furthermore X ∩ Y = ∅; x ∈ X, y ∈ Y ; for any edge
e′ = x′y′ with x′ ∈ X, y′ ∈ Y , the graph H + e′ is k-connected; and, for every deficient
set Z on H, we have X ⊆ Z or Y ⊆ Z.
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Proof. (a) is given in [14, p 16].
(b) Since S covers all deficient sets, G becomes k connected when we add all edges
between the vertices of S.
(c) follows from [14, Lemma 3.2].

Based on these facts we can prove the following lemma.

Lemma 4.15. Let S be a minimal D-cover in G and let F be a minimal augmenting
set with V (F ) ⊆ S. Let dF (v) = 1 and let e = uv be the leaf of F incident with v.
Let X and Y be the cores of G+F − e and suppose that for a set F ′ of edges we have
κ(x, y,G + F ′) ≥ k for some vertices x ∈ X, y ∈ Y . Then S − {v} is a D-cover of
G+ F ′.

Proof. Without loss of generality we may assume that u ∈ X and v ∈ Y . By the
minimality of S, there exists a core Z of G such that Z ∩ S = {v}. Since Z is also
deficient in G + F − e, it must contain a core of G + F − e, so Y ⊆ Z by Lemma
4.14(c). Now, since Y is also deficient in G and Z is a core in G, we must have Z = Y
and Y ∩S = {v}. For a contradiction suppose that there is a deficient set P in G+F ′

which is not covered by S − {v}. Then P ∩ S = {v} and so P is also deficient in
G+ F ′ + F − e and in G+ F − e. Thus, by Lemma 4.14(c), Y ⊆ P and y ∈ P hold.
Furthermore, since G + F ′ + F − e + xy is k-connected by Lemma 4.14(c), we must
have x /∈ P ∪N(P ) in G+ F ′ + F − e. Thus x /∈ P ∪N(P ) holds in G+ F ′ as well.
This contradicts the fact that κ(x, y,G+ F ′) ≥ k.

We need some further concepts and results from [14].

Lemma 4.16. [14, Lemma 2.1, Claim I(a)] Suppose t(G) ≥ k. Then the cores of G
are pairwise disjoint and the number of cores of G is equal to t(G). Furthermore, if
t(G) ≥ k + 1, then for each core X, there is a unique maximal deficient set SX ⊆ V
with X ⊆ SX and SX ∩ Y = ∅ for every core Y of G with X 6= Y . In addition, for
two different cores X, Y we have SX ∩ SY = ∅.

Lemma 4.17. [14, Lemma 2.2] Let K and L be distinct (k − 1)-cuts in G with
b(K) ≥ k. Then L intersects precisely one component D of G−K.

(The proof of Lemma 4.17 in [14] is similar to our proof of Lemma 4.1.)

Lemma 4.18. Let K be a shredder in G with b(K) ≥ k. Then
(a) if C = SX for some component C of G − K and for some core X then X is
passive,
(b) if some component D of G−K contains precisely two cores X,Y and no edge of
G joins SX to SY then both X and Y are passive.

Proof. (a) Suppose that X is active and let L be a (k − 1)-cut with X ⊆ L. Since
b(K) ≥ k, we have L ⊂ K ∪ C by Lemma 4.17. Since G is (k − 1)-connected and
L 6= K, G − L − C is connected. Hence G − L has a component C ′′ with C ′′ ⊂ C.
Therefore C contains a (minimal) deficient set X ′ with X ∩ X ′ = ∅, contradicting
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C = SX .
(b) Notice that b(K) ≥ k and the existence of X,Y implies t(G) ≥ k+ 1. Suppose X
is active and let L be a (k − 1)-cut with X ⊆ L. As in the proof of (a), this implies
that G − L has a component C with C ⊆ D − L. Since D contains precisely two
cores, Y ⊂ C and hence, since SY is the unique maximal deficient set containing Y
which is disjoint from every core, C ⊆ SY must hold. On the other hand, since C is
a component of G− L, we have X ⊆ N(C) and so X ∩N(SY ) 6= ∅. This contradicts
our assumption that no edge of G joins SX to SY .

Recall that an edge e = uv is saturating if t(G+e) = t(G)−2. We say that two cores
X,Y form a saturating pair if there is a saturating edge e = xy with x ∈ X, y ∈ Y .
For a core X let ν(X) be the number of cores Y (Y 6= X) for which X,Y is not a
saturating pair. The following lemma implies that an active core cannot belong to
many non-saturating pairs.

Lemma 4.19. Suppose t(G) ≥ k and let X be an active core in G. Then ν(X) ≤
2k + 1.

Proof. Suppose that ν(X) ≥ 2k + 2. Let G + s be a k-critical extension of G. By
Lemma 4.16, the cores of G are pairwise disjoint. Hence d(s) = t(G) ≥ ν(X) + 1 ≥
2k + 3, and there is exactly one edge from s to each core of G. Let Y be a core of
G distinct from X and let x and y be neighbours of s in X and Y , respectively. Let
G′ + s be the graph obtained by splitting sx, sy from s in G. Suppose that this split
is admissible. Then G′ + s is a k-critical extension of G′. Applying Lemma 4.8(b) to
G′ + s we deduce that t(G′) = dG′+s(s) = t(G) − 2. Thus X,Y is a saturating pair.
Since ν(X) ≥ 2k + 2, it follows that there are at least 2k + 2 edges sy in G for which
the pair sx, sy is not admissible. Then Lemma 4.2 implies that there exists a shredder
K in G with at least 2k components and such that SX = C for some component C of
G−K. By Lemma 4.18(a) this contradicts the fact that X is active.

We shall also need the following characterisation of saturating pairs.

Lemma 4.20. [14, p.13-14] Let t(G) ≥ k + 2 and suppose that two cores X,Y do
not form a saturating pair. Then one of the following holds: (a) X ⊆ N(SY ), (b)
Y ⊆ N(SX), (c) there exists a deficient set M with SX , SY ⊂ M , which is disjoint
from every core other than X, Y .

For every passive core Bi (1 ≤ i ≤ π(G)) let Fi = {X ⊂ V : X is deficient in G,
Bi ⊆ X, the subgraph G[X] is connected, and X contains at most 4k − 8 active

cores}. Let Mi = ∪X∈Fi
X and let T (G) = ∪π(G)

i=1 Mi ∪N(Mi).

Lemma 4.21. Let Bi be a passive core for some 1 ≤ i ≤ π(G) and let X =
{X1, ..., Xt} be a minimal family of members of Fi for which ∪tj=1Xj = Mi. Then
t ≤ k and n(Mi) ≤ k(k− 1). Moreover, if α(G) ≥ 5k− 8, then Mi intersects at most
k(4k − 8) active cores.
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Proof. First we prove that t ≤ k. For a contradiction suppose that t ≥ k + 1. By
the minimality of the family X we have that X̂j := Xj − ∪r 6=jXr is non-empty for

all 1 ≤ j ≤ t. Note that the sets X̂j are pairwise disjoint. By applying (3) to a
pair Xr, Xj ∈ X , and using the facts that Xr ∩ Xj 6= ∅, t ≥ k + 1, and that G is
(k − 1)-connected, we deduce that Xr ∩Xj is deficient in G. Since Bi ⊆ Xr for each
Xr ∈ X , a similar argument shows that P := ∪1≤i<j≤tXr ∩Xj is also deficient. Note

that Mi−P = ∪tj=1X̂j. Since Xr = X̂r∪(P ∩Xr) and G[Xr] is connected, there exists

a neighbour of P in X̂r, and since the sets Xr are pairwise disjoint, these neighbours
are distinct. Hence n(P ) ≥ t ≥ k+ 1, contradicting the fact that P is deficient. Thus
t ≤ k. Hence, since each neighbour of Mi is a neighbour of some set in X , and X
consists of deficient sets, we have n(Mi) ≤ k(k − 1).

To see the second part of the statement suppose that for some Xr ∈ X and for some
active core A we have Xr∩A 6= ∅ and Xr−A 6= ∅ 6= A−Xr. Since α(G) ≥ 5k−8, Xr

contains at most 4k − 8 active cores, and the (active) cores are pairwise disjoint, we
have |V − (Xr∪A)| ≥ k−1. Now (3) implies that Xr∩A is deficient, a contradiction.
Thus every active core A for which A ∩Mi 6= ∅ satisfies A ⊂ Xr for some Xr ∈ X .
Hence the definition of Fi implies that Mi intersects at most k(4k−8) active cores.

We shall use the following lemmas to find a saturating set F for G such that G+F
has many passive cores. Informally, the idea is to pick a properly chosen active core B
and, by adding a set F of at most 2k− 2 saturating edges between the active cores of
G other than B, make κ(G+ F −B) ≥ k− |B| =: r. By Lemma 4.13, this will make
B passive, and will not eliminate any of the passive cores of G. We shall increase the
connectivity of G−B by choosing a minimal r-deficient set cover S for G−B of size
at most k − 1 and then iteratively add one or two edges so that the new graph has
an r-deficient set cover properly contained in S. Thus after at most k − 1 such steps
(and adding at most 2k − 2 edges) we shall make B passive. The first lemma tells us
how to choose the active core B.

Lemma 4.22. Suppose π(G) ≤ 4(k − 1) and α(G) ≥ 20k(k − 1)2. Then there exists
an active core B with B ∩ T (G) = ∅.

Proof. Since α(G) ≥ 20k(k − 1)2 ≥ 5k − 8, Lemma 4.21 implies that for any passive
core Bi we have Mi intersects at most k(4k − 8) active cores, and N(Mi) intersects
at most k(k − 1) active cores. Thus T (G) intersects at most π(G)(k(5k − 9)) <
4(k − 1)k(5k − 5) = 20k(k − 1)2 active cores. Since α(G) ≥ 20k(k − 1)2, the lemma
follows.

Lemma 4.23. Suppose π(G) ≤ 4(k− 1) and α(G) ≥ 8k3 + 6k2− 23k− 16. Let B be
an active core in G, H = G−B, and r = k−|B|. Suppose that every r-deficient set Z
of H contains an active core of G. Let S be a minimal r-deficient set cover of H with
S ⊆ NG(B). Then there exists a saturating set of edges F for G such that |F | ≤ 2,
F is not incident with B, and either π(G + F ) > π(G); or π(G + F ) = π(G), B is
an active core in G+ F , and H + F has an r-deficient set cover S ′ which is properly
contained in S.
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Proof. Since B is active, κ(H) = k − 1 − |B| = r − 1. Since B is deficient in G, we
have |S| ≤ nG(B) = k − 1. By Lemma 4.14 there exists a minimal r-augmenting set
F ∗ for H such that F ∗ is a forest and V (F ∗) ⊆ S. Let dF ∗(v) = 1 and let e = uv be
a leaf of F ∗. By Lemma 4.14(c), there exist precisely two r-cores Z,W in H +F ∗− e
with u ∈ Z, v ∈W . Then Z,W are r-deficient in H. By an hypothesis of the lemma,
there exist active k-cores X,Y of G with X ⊆ Z and Y ⊆W .

Suppose X and Y form a saturating pair in G. We may choose a saturating edge
xy with x ∈ X and y ∈ Y . Then xy /∈ E and hence κ(x, y,G + xy) ≥ k and
κ(x, y,H + xy) ≥ r holds. Hence either π(G + xy) > π(G); or every active k-core of
G other than X, Y remains active in G + xy. If the second alternative holds then B
remains active in G + F and, by Lemma 4.15, S ′ = S − v is an r-deficient set cover
in H + xy.

Hence we may assume that X, Y is not a saturating pair in G. By Lemma 4.20
either

(i) there exists a k-deficient set M in G with SX ∪ SY ⊆ M which is disjoint from
every k-core other than X,Y , or

(ii) Y ⊆ N(SX) or X ⊆ N(SY ).

Choose x ∈ X and y ∈ Y arbitrarily and let P1, P2, ..., Pk−1 be k−1 openly disjoint
xy-paths in G. Let Q = ∪k−1

i=1 V (Pi). It is easy to see that if some edge of G joins SX
to SY , then one of the paths, say P1, satisfies V (P1) ⊆ SX ∪ SY . On the other hand,
if no edge of G joins SX to SY , then (ii) cannot hold. Hence (i) holds and, either one
of the paths, say P1, satisfies V (P1) ⊆M , or each of the k−1 paths intersects N(M).
In the latter case, since n(M) = k−1, we have N(M) ⊂ Q and Q ⊂M ∪N(M) hold.
We shall handle these two cases separately.

Case 1. No edge of G joins SX to SY , (i) holds, and we have N(M) ⊂ Q ⊂M∪N(M).

Let C1, C2, ..., Cp be the components of G−N(M). Using the properties of M (M
intersects exactly two cores, M is the union of one or more components of G−N(M),
and n(M) = k−1) we can see that either, one component Ci contains SX and SY and
is disjoint from every core of G other than X, Y , or each of SX and SY corresponds
to a component of G−N(M).

Since X and Y are active cores, Lemma 4.18, with K = N(U), implies that p ≤
k− 1. Since α(G) ≥ (k− 2)(2k+ 2) + k+ 3, G has at least (k− 2)(2k+ 2) + 1 active
cores disjoint from B, X, Y , and N(M). Thus some component Cj of G −N(M) is
disjoint from M and contains at least 2k+3 active cores distinct from B. By Lemmma
4.19, there exists a saturating edge xa1 with a1 ∈ A1 for some active core A1 ⊂ Cj,
A1 6= B. If π(G + xa1) ≥ π(G) + 1 then we are done. Otherwise all the active cores
in G other than X,A1 remain active in G + xa1. Applying Lemma 4.19 again, we
may pick a saturating edge ya2 with a2 ∈ A2 for some active core A2 of G+xa1, with
A2 ⊂ Cj, A2 6= B.

We have κ(x, y,G + xa1 + ya2) ≥ k, since there is a path from x to y, using the
edges xa1, ya2, and vertices of Cj only, and thus this path is openly disjoint from Q
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(since Q ⊆ M ∪ N(M)). Hence κ(x, y,H + xa1 + ya2) ≥ r. Thus by Lemma 4.15,
S ′ = S − v is an r-deficient set cover in H + xa1 + ya2.

Case 2. Either V (P1) ⊆ SX ∪ SY or (i) holds and V (P1) ⊆M .

Let us call a component D of G − Q essential if D intersects an active core other
than X, Y or B. Let D1, D2, ..., Dp be the essential components of G − Q. We say
that a component Di is attached to the path Pj if N(Di) ∩ V (Pj) 6= ∅ holds. Let
R = SX ∪ SY if V (P1) ⊆ SX ∪ SY holds and let R = M if V (P1) ⊆ M . Then, R is
disjoint from every active core other than X, Y .

Claim 4.24. At most 2k − 2 essential components are attached to P1.

Proof. Focus on an essential component D which is attached to P1 and let w ∈W ∩D
for some active core W 6= X,Y,B which has a vertex in D. There exists a path PD
from w to a vertex of P1 whose inner vertices are in D. Since w /∈ R and V (P1) ⊆ R,
we have D∩N(R) 6= ∅. The claim follows since the essential components are pairwise
disjoint and n(R) ≤ 2k − 2.

Suppose that one of the paths Pi intersects at least 4k + 4 active cores in G other
than X , Y or B. For every such active core A intersecting Pi choose a representative
vertex a ∈ A ∩ Pi. Since the cores are pairwise disjoint, the representatives are
pairwise distinct. Order the active cores intersecting Pi following the ordering of their
representatives along the path Pi from x to y. By Lemma 4.19, we may choose a
saturating edge xa1 in G, where a1 is among the 2k + 2 rightmost representatives
and a1 belongs to an active core A1. If π(G + xa1) ≥ π(G) + 1 then we are done.
Otherwise all the active cores of G other than X,A1 remain active in G+ xa1. Again
using Lemma 4.19, we may choose a saturating edge ya2 in G + xa1, where a2 is
among the 2k+ 2 leftmost representatives. By the choice of a1 and a2 there exist two
openly disjoint paths from x to y in G+ xa1 + ya2 using vertices of V (Pi) only. Thus
κ(x, y,G + xa1 + ya2) ≥ k. Hence, by Lemma 4.15, S ′ = S − v is an r-deficient set
cover in H + xa1 + ya2.

Thus we may assume that each path Pi intersects at most 4k + 3 active cores in G
other than X , Y or B. Hence there are at least

α(G)−3−(k−1)(4k+3) ≥ (8k3+6k2−23k−19)−(k−1)(4k+3) = (2k+2)(4k2−3k−8)

active cores other than B contained in G − Q. Note that since cores are minimal
deficient sets, they induce connected subgraphs in G. Hence each core contained in
G−Q is contained in a component of G−Q. If some component of G−Q contains
at least 2k + 3 active cores of G other than B then the lemma follows as in Case 1.
Hence we may assume that there are at least 4k2 − 3k − 8 essential components in
G−Q and each such component contains an active core distinct from X, Y , and B.

Using Claim 4.24 we deduce that there are at least 4k2− 3k− 8− (2k− 2) = (4k+
3)(k − 2) + 1 essential components Di with all their attachments on P2, P3, . . . , Pk−1.
Since G is (k−1)-connected, n(Di) ≥ k−1 and hence Di has at least two attachments
on at least one of the paths P2, P3, . . . , Pk−1. Relabelling the components D1, . . . , Dp
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and the paths P2, . . . , Pk−1 if necessary, we may assume that Di has at least two
attachments on Pk−1 for 1 ≤ i ≤ 4k + 4.

Let zi be the leftmost attachment of Di on Pk−1. Without loss of generality we
may assume that z1, z2, . . . , z4k−2 occur in this order on Pk−1 as we pass from x to y.
By Lemma 4.19, there exists a saturating edge yai where ai ∈ Ai for some active core
Ai ⊆ Di, where Ai 6= B and 1 ≤ i ≤ 2k + 2. If π(G + yai) ≥ π(G) + 1 then we are
done. Otherwise every active core in G other than Y,Ai remains active in G + yai.
Using Lemma 4.19 again, there exists a saturating edge xaj where aj ∈ Aj for some
active core Aj ⊆ Dj, where Aj 6= B and 2k+ 3 ≤ j ≤ 4k+ 4. Note that zi is either to
the left of zj or zi = zj. Hence, using the fact that Dj has at least two attachments on
Pk−1 and by the choice of zi, zj, there exist two openly disjoint paths in G+xaj +yai,
using vertices from V (Pk−1)∪Di ∪Dj only. Therefore κ(x, y,G+xaj + yai) ≥ k, and
we are done as above. This completes the proof of the lemma.

Lemma 4.25. Suppose π(G) ≤ 4(k − 1) and α(G) ≥ 20k(k − 1)2. Then there exists
a saturating set of edges F for G such that |F | ≤ 2k − 2 and π(G+ F ) ≥ π(G) + 1.

Proof. Let B be an active core in G with B ∩ T (G) = ∅. Such a set exists by
Lemma 4.22. Let H = G − B, and r = k − |B|. Since B is active, κ(H) = r − 1.
Every r-deficient set X in H is k-deficient in G and NG(B) ∩ X 6= ∅. Hence the
set of vertices in H corresponding to NG(B) is an r-deficient set cover of H. Let
S ⊆ NG(B) be a minimal r-deficient set cover of H. Since B is k-deficient in G, we
have |S| ≤ n(B) = k − 1.

We shall prove by induction on i that, for 0 ≤ i ≤ k − 1, there exists a saturating
set of edges Fi for G such that |Fi| ≤ 2i, Fi is not incident with B, and either
π(G+Fi) ≥ π(G) + 1; or π(G+Fi) = π(G), B is an active core of G+Fi, and H+Fi
has an r-deficient set cover Si ⊆ S with |Si| ≤ |S| − i. The lemma will follow since
the second alternative cannot hold with |Si| = 0 (since this would imply that H + Fi
is r-connected and hence that B is passive in G+ Fi).

The statement is trivially true for i = 0 taking Fi = ∅. Hence suppose that
there exists a set Fi satisfying the above statement for some 0 ≤ i ≤ k − 2. If
π(G + Fi) ≥ π(G) + 1 then we can put Fi+1 = Fi. Hence we may suppose that
π(G+Fi) = π(G), B is an active core of G+Fi, and H+Fi has an r-deficient set cover
Si ⊆ S with |Si| ≤ |S| − i. We would like to apply Lemma 4.23 to B and G+ Fi. To
do this we must show that G+Fi, B and Si satisfy the hypotheses of this lemma. We
have π(G+Fi) = π(G) ≤ 4(k−1) and α(G+Fi) = α(G)−2|Fi| ≥ 8k3+6k2−23k−16.
Clearly, Si ⊆ S ⊆ NG+Fi

(B) holds. Thus the last property we need to verify is that
every r-deficient set Z in G+Fi−B contains at least one active core of G+Fi. Note
that, since Fi is a saturating set for G, each core of G+Fi is a core of G. Furthermore,
since π(G + Fi) = π(G), if A is an active core of G and A is a core of G + Fi then
A is an active core of G + Fi. Since Z is r-deficient in G + Fi − B, it is k-deficient
in G + Fi. Thus Z contains at least one core in G + Fi. If Z contains an active core
in G + Fi, then we are done, so suppose that every core of G + Fi in Z is passive.
Let Bj be such a core. Then Bj is passive in G. Let Z ′ be a maximal subset of Z
for which G[Z ′] is connected and Bj ⊆ Z ′. Since Z is deficient in G, it can be seen
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that such a Z ′ exists, Z ′ is deficient in G, and B ⊆ NG(Z ′). Since B ∩ T (G) = ∅, it
follows that Z ′ /∈ F̄j and hence Z ′ contains at least 4k − 7 active cores in G. Since
|Fi| ≤ 2(k − 2) = 2k − 4 and each edge of Fi is incident to at most two cores of G, it
follows that there exists an active core A in G with A ⊂ Z ′ which is still an (active)
core in G+Fi, contradicting the assumption that every core of G+Fi in Z is passive.
Hence G + Fi, B and Si satisfy the hypotheses of Lemma 4.23. Thus there exists a
saturating set of edges F for G+ Fi such that |F | ≤ 2, F is not incident with B, and
either π(G+Fi +F ) > π(G+Fi) = π(G); or π(G+Fi +F ) = π(G+Fi) = π(G) and
G + Fi + F − B has an r-deficient set cover Si+1 which is properly contained in Si.
Hence the inductive statement holds with Fi+1 = Fi ∪ F .

Lemma 4.26. Suppose t(G) ≥ 20k(k − 1)2 + (4k − 3)(4k − 4). Then there exists a
saturating set of edges F for G such that G+F is k-independence free and t(G+F ) ≥
2k − 4.

Proof. Since every graph is 1-independence free and every connected graph is 2-
independence free, we may suppose that k ≥ 3. If π(G) ≤ 4(k − 1) then we may
apply Lemma 4.25 recursively 4k − 3 − π(G) times to G to find a saturating set of
edges F1 for G such that π(G+F1) ≥ 4k−3. If π(G) ≥ 4k−3 we set F1 = ∅. Applying
Lemma 4.19 to G+F1, we can add saturating edges joining pairs of active cores until
the number of active cores is at most 2k + 1. Thus there exists a saturating set of
edges F2 for G+F1 such that α(G+F1 +F2) ≤ 2k+ 1 and π(G+F1 +F2) ≥ 4k− 3.
Applying Lemma 4.19 to G+F1 +F2, we can add saturating edges joining pairs con-
sisting of one active and one passive core until the number of active cores decreases
to zero. Thus there exists a saturating set of edges F3 for G + F1 + F2 such that
α(G+ F1 + F2 + F3) = 0 and π(G+ F1 + F2 + F3) ≥ 2k − 4.

The main theorem of this subsection is the following.

Theorem 4.27. If ak(G) ≥ 20k3 then

ak(G) = max{dt(G)/2e, b(G)− 1}.

Proof. Since every graph is 1-independence free and every connected graph is 2-
independence free, the result follows from Theorem 3.12 if k ≤ 2. Hence we may
suppose that k ≥ 3. We have t(G) ≥ ak(G) + 1 ≥ 20k3 by Lemmas 2.8 and
4.8. If b(G) − 1 ≥ dt(G)/2e then ak(G) = b(G) − 1 by Theorem 4.11 and we are
done. Thus we may assume that dt(G)/2e > b(G) − 1 holds. We shall show that
ak(G) = dt(G)/2e. By Lemma 4.26, there exists a saturating set of edges F for G
such that G + F is k-independence free and t(G + F ) ≥ 2k − 4. Note that adding
a saturating edge to a graph H reduces dt(H)/2e by exactly one and b(H) by at
most one. Thus, if dt(G+ F )/2e ≤ b(G+ F )− 1, then there exists F ′ ⊆ F such that
dt(G+F ′)/2e = b(G+F ′)−1 and the theorem follows by applying Lemma 4.12. Hence
we may assume that dt(G + F )/2e > b(G + F ) − 1. Since G + F is k-independence
free, we can apply Theorem 3.12 to deduce that ak(G+F ) = dt(G+F )/2e. Using (1)
and the fact that t(G) = t(G+F ) + 2|F | we have ak(G) = dt(G)/2e, as required.

Theorem 4.27 gives an affirmative answer to a conjecture from [15, p.300].
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4.4 Augmenting Connectivity by at least Two

Throughout this subsection we assume that G = (V,E) is an l-connected graph on at
least k+ 1 vertices and that l ≤ k− 2. We shall show that if ak(G) is large compared
to k, then ak(G) = max{b∗(G)−1, dt(G)/2e}. Our proof uses Theorems 4.9 and 4.27.
We shall show that if ak(G) is large then either we can add a saturating set of edges F
so that G+F is (k−1)-connected, or else G has a large shredder K with |K| = k−2.
If the latter occurs then we show directly that we can make G k-connected by adding
dt(G)/2e edges.

Let G+s be a k-critical extension of G. Construct a (k−1)-critical extension H+s
of G from G+ s by deleting edges incident to s. Let f = (k− l+ 1)(k− 1) + 4 be the
upper bound on the number of non-admissible pairs containing a fixed edge given by
Lemma 4.2.

Lemma 4.28. If dG+s(s) ≥ f(k−l+1)/(k−l) then dG+s(s)−dH+s(s) ≥ dG+s(s)/(k−
l + 1).

Proof. If dH+s(s) ≤ f then the lemma is trivial. Otherwise by Lemma 4.8(a) there
exists a family F of pairwise disjoint (k − 1)-tight sets in H such that dH+s(s) =∑
F(k−1−n(X)). Since G+ s is (k, s)-connected we have dG+s(s) ≥

∑
F(k−n(X)).

Hence dG+s(s) ≥ dH+s(s) + |F|. Since dH+s(s,X) ≤ k − l for each X ∈ F , we
have |F| ≥ dH+s(s)/(k − l). Thus dG+s(s) ≥ dH+s(s) + dH+s(s)/(k − l) = (k − l +
1)dH+s(s)/(k − l). Hence dG+s(s)− dH+s(s) ≥ dG+s(s)/(k − l + 1).

We next perform a sequence of (k−1)-admissible splits in H+s and obtain H∗+s.
We do this according to the following rules. If dH+s(s) ≤ f + 2 then we put H∗+ s =
H + s. If dH+s(s) ≥ f + 3 then we perform (k − 1)-admissible splits until either
dH∗+s(s) ≤ f + 2, or dH∗+s(s) ≥ f + 3 and there is no (k − 1)-admissible split at s in
H∗ + s. We then add all the edges of (G+ s)− (H + s) to H∗ + s and obtain G∗ + s.
We shall refer to the edges of (G+ s)− (H + s) as new edges of G∗ + s.

Lemma 4.29. If dG+s(s) ≥ f(k + l − 1) then G∗ + s is a critical (k, s)-connected
extension of G∗.

Proof. Suppose G∗ + s is not (k, s)-connected. If dH∗+s(s) ≤ f then H∗ + s = H + s
and G∗ + s = G + s, contradicting the assumption that G + s is (k, s)-connected.
Hence dH∗+s(s) ≥ f + 1. Choose a minimal k-deficient set X in G∗ + s. Since
d̄H∗+s(X) ≥ k − 1 we have d̄G∗+s(X) = k − 1 = d̄H∗+s(X) and no new edge of G∗ + s
is incident with X. Since X is not k-deficient in G + s, there exists an edge sx in
G + s with x ∈ X. Then sx ∈ E(H + s), since no new edge is incident with X.
Hence sx is (k− 1)-critical in H + s so there exists a minimal tight set Y with x ∈ Y
and d̄H+s(Y ) = k − 1. Hence d̄H∗+s(Y ) = k − 1. Working in H∗ + s we may use
the facts that dH∗+s(s) ≥ f + 1 and H∗ + s is (k − 1)-critical to deduce that X ∪ Y
is a fragment. Submodularity of d̄ now implies that d̄H∗+s(X ∩ Y ) = k − 1. Since
there are no new edges incident to X, this gives d̄G∗+s(X ∩ Y ) = k − 1. Now the
minimality of X implies that X ⊆ Y . Since d̄H+s(Y ) = d̄H∗+s(Y ), we now deduce
that d̄H+s(X) = d̄H∗+s(X). Thus d̄H+s(X) = k − 1 and the minimality of Y gives
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X = Y . Since no new edge is incident with X this gives d̄G+s(Y ) = d̄H+s(Y ) = k− 1.
Thus Y is k-deficient in G+ s, contradicting the fact that G+ s is (k, s)-connected.

Criticality of G∗ + s follows from the criticality of G + s, since splitting cannot
increase d̄.

Using Lemma 4.2, we can either construct H∗ + s such that dH∗+s(s) is small or
else there exists K ⊆ V such that |K| = k− 2 and H∗−K has dH∗+s(s) components.
In the first case, we perform a sequence of admissible splits in G∗+s such that, in the
resulting graph G′+s, G′ is (k−1)-connected and then apply Theorems 4.9 and 4.27.
We accomplish this by ensuring that κ(x, y,G′) ≥ k − 1 for every x, y ∈ NH∗+s(s).
Since there are many new edges, this is feasible. In detail, we proceed incrementally
using the lemmas below. In the second case, we show directly that we can make G
k-connected by adding dt(G)/2e edges.

Henceforth we shall assume that G′ + s is obtained from G∗ + s by performing a
sequence of k-admissible splits and that T ⊆ V (G) is a cover of all fragments X in
G′ with nG′(X) ≤ k − 2. (In proving the theorem we will take T = NH∗+s(s).) Let
|T | = τ .

Lemma 4.30. If κ(u, v,G′) ≥ k − 1 for all u, v ∈ T then G′ is (k − 1)-connected.

Proof. Suppose G′ has a fragment X with n(X) ≤ k − 2. Then we may choose
u ∈ X ∩ T and v ∈ X∗ ∩ T , contradicting the fact that κ(u, v) ≥ k − 1.

Lemma 4.31. Let sz, sw ∈ E(G′ + s) and suppose that the pair sz, sw is not k-
admissible. If κ(z, w,G′) ≤ k − 2 then sz belongs to at most f non-admissible pairs
in G′ + s.

Proof. Suppose that sz has r > f non-admissible partners. Then by Lemma 4.2,
there is a shredder K in G′ with r + 1 leaf components in G′ + s such that z as well
as each non-admissible partner x of z is in one of these components. By Lemma 2.12,
κ(z, x) ≥ k − 1 for every such x. Taking x = w gives a contradiction.

Lemma 4.32. Suppose that dG′+s(s) ≥ (f + 1)(2(k− 2)(f + 2) + τ). Choose u, v ∈ T
and suppose that κ(u, v,G′) = m ≤ k − 2. Then there exists a sequence of at most
two k-admissible splits such that, for the resulting graph G′′+s, we have κ(u, v,G′′) =
m+ 1.

Proof. Let Tu (Tv) be the smallest set which contains u (v, respectively), separates u
and v, and has precisely m neighbours. It is well-known that these unique smallest
separators exist. Since nG′(Tu) = nG′(Tv) = m ≤ k − 2, there exist vertices x ∈
Tu ∩NG′(s) and y ∈ Tv ∩NG′(s). It is also known that there exist m paths P1, ..., Pm
from u to v, and two paths P0 and Pm+1, one from u to x and the other from v
to y such that all these m + 2 paths are vertex-disjoint apart from u and v. (Note
that u = x or v = y is possible.) We may assume, without loss of generality, that
NG′(s)∩ (V (P0)−x) = ∅ and NG′(s)∩ (V (Pm+1)−y) = ∅. Let Q = ∪m1 V (Pi)−{u, v}.
If the pair sx, sy is admissible, we have κ(u, v,G′ + xy) ≥ m + 1, as required. If
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not, we need to choose splittable pairs in a more complicated way, as in the proof of
Lemma 4.23.

Suppose there exists a path Pi (1 ≤ i ≤ m) with dG′(s, V (Pi)) ≥ 2f + 2. By
Lemma 4.31, there is an admissible pair sx, sa in G′ + s, where a is one of the f + 1
neighbours of s on Pi closest to v. If κ(u, v,G′ + xa) ≥ m + 1 then we are done.
Otherwise we may split sy, sb in G′ + s + xa, where b is one of the f + 1 neighbours
of s on Pi closest to u. The vertices x, b, a, y appear on Pi in this order. Hence there
exist two vertex-disjoint uv-paths on vertex set V (Pi) ∪ V (P0) ∪ V (Pm+1), showing
κ(u, v,G′ + xa + yb) ≥ m + 1, as required. Thus we may assume that no such path
exists and hence dG′(s, V −Q) > d(s)−m(2f + 2) ≥ (f + 1)(2(k − 2)(f + 1) + τ).

Let F be the graph obtained from G′−Q by deleting any edges joining u and v. Let
C0, C1, ..., Cp+1 be the components of F which each contain at least one neighbour of s,
where u, x ∈ V (C0) and v, y ∈ V (Cp+1. Suppose d(s, Cj) ≥ f + 2 for some 1 ≤ j ≤ p.
We may split sx, sa for some a ∈ Cj which is admissible with sx and we split sy, sb
for some b ∈ Cj which is admissible with sy in G′ + s + sa. These admissible pairs
exist by Lemma 4.31. It is easy to see that κ(u, v,G′+ xa+ yb) ≥ m+ 1, as required.
Thus we may assume that no such component exists. Similarly, if d(s, C0) ≥ f + 1,
then we may split sy, sc for some c ∈ C0 which is admissible with sy in G′ + s, and
we again have κ(u, v,G′ + yc) ≥ m + 1, as required. A similar construction holds if
d(s, Cp+1) ≥ f + 1. Hence we have at least d(s, V −Q)/(f + 1) ≥ 2(k− 2)(f + 1) + τ
components in F , each containing at least one neighbour of s.

Since each component Ci with nG′(C) ≤ k − 2 must contain a vertex from T , and
u, v ∈ T , there are at least 2(k − 2)(f + 1) components Ci, 1 ≤ i ≤ p, with at least
k − 1 attachments on Q. Since m ≤ k − 2, we have at least 2f + 2 components
D1, ..., Dr which have two attachments on the same path, P1 say. Now we proceed as
in the final part of the proof of Lemma 4.23. Let aj be the attachment of Dj on P1

closest to u for 1 ≤ j ≤ r. We first pick a Di where ai is among the f + 1 attachment
vertices aj closest to u on P1 and we choose an admissible pair sy, sb with b ∈ Di.
This edge exists by Lemma 4.31. Then we pick a Dh where ah is among the f + 1
attachment vertices aj closest to v on Pi and we choose an admissible pair sx, sa with
a ∈ Dh. The edge xa exists by Lemma 4.31. Note that ai either occurs before ah
on P1 or ai = ah. Hence, using the fact that the components Dj have at least two
attachments on P1 and by the choice of ai, ah, there exist two openly disjoint uv-paths
in G′+xa+yb, using vertices from V (P1)∪V (P0)∪V (Pm+1)∪Di∪Dh only. Therefore
κ(u, v,G′ + xa+ yb) ≥ m+ 1, as required.

Applying this lemma iteratively to all pairs of vertices in T , starting with G′+ s =
G∗ + s and using the fact that f is a decreasing function of l, we obtain:

Corollary 4.33. Suppose that dG∗+s(s) ≥ (f+1)(2(k−2)(f+2)+τ)+2τ 2(k− l−1).
Then there exists a sequence of at most τ 2(k− l− 1) k-admissible splits such that, for
the resulting graph G′ + s, we have κ(G′) ≥ k − 1.

Theorem 4.34. If G is l-connected and ak(G) ≥ 10(k− l+ 2)3(k+ 1)3 then ak(G) =
max{b∗(G)− 1, dt(G)/2e}.
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Proof. We have dG+s(s) = t(G) ≥ ak(G) + 1 ≥ 10(k − l + 2)3(k + 1)3 by Lemmas
2.8 and 4.8. If b∗(G) − 1 ≥ dt(G)/2e then ak(G) = b∗(G) − 1 by Theorem 4.9 and
we are done. Thus we may assume that dt(G)/2e ≥ b∗(G) holds. We shall show that
ak(G) = dt(G)/2e. We construct H + s, H∗ + s, and G∗ + s as above. By Lemma
4.29, G∗ is obtained from G by adding a saturating set F of edges. Note that adding
a saturating edge to a graph G0 reduces dt(G0)/2e by exactly one and b∗(G0) by at
most one. Thus, if dt(G+F )/2e ≤ b∗(G+F )− 1, then there exists F ′ ⊆ F such that
dt(G + F ′)/2e = b∗(G + F ′) − 1 and the theorem follows by applying Lemma 4.10.
Hence we may assume that dt(G∗)/2e ≥ b∗(G∗)− 1. We have

t(G∗) = dG∗+s(s) ≥ dG+s(s)− dH+s(s) ≥ 10(k − l + 2)2(k + 1)3

by Lemma 4.28. Using Lemma 4.2, we either have dH∗+s(s) ≤ 2f or else there exists
K ⊆ V such that |K| = k − 2 and H∗ −K has dH∗+s(s) components.

Case 1: dH∗+s(s) ≤ 2f .

Let T = NH∗+s(s). Then |T | = τ ≤ 2f . By Corollary 4.33, there exists a sequence of
at most 4(k− l+ 2)3(k+ 1)2 k-admissible splits in G∗ + s such that, for the resulting
graph G′ + s, we have κ(G′) ≥ k − 1. Note that dG′+s(s) ≥ 2(k − l + 2)2(k + 1)3.
Thus there exists a saturating set of edges F for G such that G′ = G+ F is (k − 1)-
connected and t(G + F ) ≥ 2(k − l + 2)2(k + 1)3. As above, we may assume that
dt(G + F )/2e ≥ b∗(G + F ) − 1 ≥ b(G + F ) − 1 (otherwise we are done by Lemma
4.10). Since G + F is (k − 1)-connected, we can apply Theorem 4.27 to deduce that
ak(G + F ) = dt(G + F )/2e. Using (1) and the fact that t(G) = t(G + F ) + 2|F | we
have ak(G) = dt(G)/2e, as required.

Case 2: dH∗+s(s) ≥ 2f + 1 and there is no (k − 1)-admissible split at s in H∗ + s.

By Lemma 4.2, there exists K ⊆ V such that |K| = k − 2 and H∗ −K has dH∗+s(s)
components each of which is a leaf component. Using Lemma 2.12, and the fact that
NH∗+s(s) covers all fragments X in H∗ with nH∗(X) ≤ k − 2 we deduce

Claim 4.35. H∗ is (k − 2)-connected.

Since G∗+s is k-critical, it follows from Caim 4.35 that dG∗+s(s, v) ≤ 2 for all v ∈ V .
For each vertex v ∈ V such that dG∗+s(s, v) = 2, let Xv ⊆ V be the minimal set such
that v ∈ Xv and d̄G∗+s(Xv) = k. (The existence of Xv follows from the k-criticality
of G∗+ s, uniqueness follows from submodularity and the fact that dG∗+s(s) is large.)
If |Xv| ≥ 2 then we modify G∗ + s by choosing a vertex v′ ∈ Xv and replacing one of
the edges from s to v by a new edge sv′. It can be seen that this operation preserves
(k, s)-connectivity and criticality. Repeating this procedure for each such vertex v,
the resulting graph G0 + s satisfies:

Claim 4.36. For all v ∈ V we have dG0+s(s, v) ≤ 2. Furthermore dG0+s(s, v) = 2 if
and only if dG0(v) = k − 2.
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Let Ĝ+ s be the graph obtained from G0 + s by splitting off as many k-admissible
pairs of edges sx, sy as possible in G0 + s such that x and y belong to the same
component of G0 −K. Then Ĝ + s is a k-critical extension of Ĝ. Let C1, C2, . . . , Cr
be the components of Ĝ−K. Note that these components have the same vertex sets
as the components of H∗−K and hence r = dH∗+s(s) ≥ 2f + 1. Let dĜ+s(s, Ci) = di.
Relabelling if necessary, we have d1 ≥ d2 ≥ . . . ≥ dr.

Claim 4.37. dĜ+s(s,K) = 0.

Proof. Suppose Ĝ + s has an edge sx with x ∈ K. By criticality there exists a
fragment X ⊂ V such that d̄Ĝ+s(X) = k. Since, by Caim 4.35, x ∈ NH∗(Ci) for all
1 ≤ i ≤ r, we have x ∈ NĜ(Ci). Hence either NĜ(X) ∩ Ci 6= ∅, or Ci ⊆ X and
dĜ+s(s,X ∩ Ci) ≥ 1, for all 1 ≤ i ≤ r. Thus d̄Ĝ+s(X) ≥ r > k.

Using Lemma 4.10 we may suppose that

b∗(Ĝ) ≤ dt(Ĝ)/2e = ddĜ+s(s)/2e. (23)

Claim 4.38. d1 ≤ (
∑r

i=2 di)− 1.

Proof. Suppose d1 ≥ (
∑r

i=2 di). Since d1 + (
∑r

i=2 di) = dH∗(s) ≥ 2f + 1, we have

d1 ≥ f + 1. Since there is no k-admissible pair of edges joining s to C1 in Ĝ + s, it
follows from Lemma 4.2 that there is a shredder K in Ĝ with each of the d1 neighbours
of s in C1 in distinct components of Ĝ−K and at least one other component containing
the remaining neighbours of s in Ĝ. Thus b(Ĝ) ≥ d1 +1, and b∗(Ĝ) ≥ b(Ĝ) ≥ d1 +1 ≥
(dĜ+s(s)/2) + 1. This contradicts (23).

Claim 4.39. Suppose X is a fragment in Ĝ with |X ∩K| ≤ |X∗ ∩K|.
(a) If nĜ(X) = k− 2, then either X = Ci1 ∪Ci2 ∪ . . .∪Cip for some {i1, i2, . . . , ip} ⊆
{1, 2, . . . , r}; or X = Zi ⊂ Ci for some 1 ≤ i ≤ r;
(b) If nĜ(X) = k− 1, then either X = Zi1 ∪Ci2 ∪ . . .∪Cip for some {i1, i2, . . . , ip} ⊆
{1, 2, . . . , r} and Zi1 ⊆ Ci1; or X = Zi1 ∪ Zi2 for some 1 ≤ i1 < i2 ≤ r, Zi1 ⊆ Ci1,
Zi2 ⊆ Ci2, and nĜ(Zi1) = k − 2 = nĜ(Zi2).

Proof. Suppose X ∩K 6= ∅. Then X∗ ∩K 6= ∅. Since NĜ(Ci) = K by Claim 4.35, it
follows that Ci 6⊆ X and Ci 6⊆ X∗ for all i, and hence that nĜ(X) = |V − (X ∪X∗)| ≥
r > k. Thus we may suppose that X ∩K = ∅. Let

S = {i : X ∩ Ci is a proper subset of Ci, 1 ≤ i ≤ r}.

Since the claim holds when S = ∅ we may suppose that |S| ≥ 1. Let Zi = X ∩ Ci
for i ∈ S. By Claim 4.35, nĜ(Zi) ≥ k − 2. Hence |NĜ(X) ∩ (K ∪ Ci)| ≥ k − 2 and
|NĜ(X)∩Ci| ≥ 1 for all i ∈ S. The claim now follows using the hypothesis of (a) and
(b) that nĜ(X) = k − 2 and nĜ(X) = k − 1, respectively.

Claim 4.40. For each i, 1 ≤ i ≤ r, there exists a unique minimal subset Yi ⊆ Ci
such that nĜ(Yi) = k − 2.
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Proof. The existence of such a set follows from the fact that nĜ(Ci) = k−2. To prove
uniqueness we suppose to the contrary that X1 and X2 are two minimal subsets of Ci
satisfying nĜ(X1) = k − 2 = nĜ(X2). Then nH∗(X1) = k − 2 = nH∗(X2), since H∗

is (k − 2)-connected by Claim 4.35, and the operations used in going from H∗ to Ĝ
(adding edges incident to s and splitting off pairs of edges from s) cannot decrease
n(Xi). Let sw be the unique edge of H∗ + s from s to Ci. Since H∗ + s is (k − 1, s)-
connected, we must have w ∈ X1 ∩X2. Since X1 ∪X2 ⊆ Ci, X1 ∪X2 is a fragment of
Ĝ, and hence we have nĜ(X1∪X2) ≥ k−2, by Claim 4.35. Submodularity of nĜ, now
implies that nĜ(X1 ∩X2) ≤ k − 2, contradicting the minimality of X1 and X2.

For each i, 1 ≤ i ≤ r, choose two distinct edges syi, sy
′
i in Ĝ+ s with yi, y

′
i ∈ Yi. Note

that these edges exist by the (k, s)-connectivity of Ĝ. Furthermore, by Claim 4.36,
yi = y′i, if and only if Yi = {yi} and dĜ(yi) = k − 2.

We are now ready to construct the required augmentation of G. Let G′ + s be the
graph obtained from Ĝ + s by adding an extra edge from s to C2 if dĜ+s(s) is odd.

Thus dG′+s(s) = 2dt(Ĝ)/2e is even. First we try to define a good augmenting set
by the method we used when we defined a forest augmentation. Since we want to
increase the connectivity of G′ by two, we now look for a loopless 2-connected graph
G3 on r vertices whose degree sequence is d1, d

′
2, ..., dr, where d′2 = dG′+s(s, C2) (so d′2

is either d2 or d2 + 1, depending on whether dĜ+s(s) is even or odd). If such a graph
exists, it leads to a good augmenting set in a natural way, as we shall see in Subcase
2.1. However, such a graph may not exist, as the following example shows: let G be
obtained from Kr,k−2 by replacing some vertex v in the r-set by a copy of Kk−1,4 and
then connecting each vertex of the (k− 2)-set to each vertex of the (k− 1)-set. It can
be seen that the degree sequence defined by the corresponding extension G′+s of G is
4, 2, 2, ..., 2. There is no loopless 2-connected graph with this degree sequence. When
such a graph does not exist, we need a somewhat more involved method to define the
augmenting set. This will be described in Subcase 2.2.

Subcase 2.1 There exists a loopless 2-connected graph G3 on r vertices with degree
sequence d1, d

′
2, ..., dr.

Let F be a set of edges joining the components of G′−K such that dF (v) = dG′+s(s, v)
for all v ∈ V and such that the graph obtained from (V −K,F ) by contracting each
component Ci to a single vertex ci, is G3. Since G3 is 2-connected, each vertex
ci ∈ V (G3) in has at least two distinct neighbours in G3. Let yi, y

′
i be the neighbours

of s in Ci defined after Claim 4.40. Since we may interchange the end vertices of the
edges of F within each component, we may choose F to have the additional property
that, for each 1 ≤ i ≤ r, the two edges of F incident to yi and y′i join Ci to different
components of Ĝ−K. We can now use Claim 4.39 to deduce that Ĝ+F is k-connected.
Suppose to the contrary that Ĝ + F has a fragment X with nĜ+F (X) ≤ k − 1.
Replacing X by X∗ if necesssary we may assume that |X ∩ K| ≤ |X∗ ∩ K|. By
Claim 4.35, nĜ(X) ≥ k − 2 and by Claim 4.39, we have one of the following four
alternatives.
(a1) nĜ(X) = k − 2 and X = Ci1 ∪ Ci2 ∪ . . . ∪ Cip for some p ≤ r − 1. Suppose
p ≤ r − 2. Then the 2-connectivity of G3 implies that there are two edges of F from
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X to distinct components Cj1 , Cj2 disjoint from X. Hence nĜ+F (X) ≥ k. Suppose
p = r−1. There are at least two edges from X to Cir . If Cir has only one vertex then
NĜ+F (X) = V and X is not a fragment. If all edges of F join X to the same vertex
v ∈ Cir , then we have nĜ(Cir − v) ≤ k− 1 and dĜ+s(s, Cir − v) = 0, contradicting the

(k, s)-connectivity of Ĝ + s. Thus at least two edges of F join X to distinct vertices
of Cir and we again have nĜ+F (X) ≥ k.
(a2) nĜ(X) = k− 2 and X = Zi ⊂ Ci for some 1 ≤ i ≤ r. By Claim 4.40, yi, y

′
i ∈ X.

Since yi, y
′
i are joined by F to distinct components Cj1 , Cj2 disjoint from Ci, we again

have nĜ+F (X) ≥ k.
(b1) nĜ(X) = k − 1, and X = Zi1 ∪ Ci2 ∪ . . . ∪ Cip for some p ≤ r and Zi1 ⊆ Ci1 .
Suppose 2 ≤ p ≤ r − 1. Then the 2-connectivity of G3 implies that there is at least
one edge of F from X−Ci1 to a component Cj1 disjoint from X. Hence nĜ+F (X) ≥ k.

Suppose p = r. Since Ĝ + s is (k, s)-connected, it has an edge from s to a vertex
v ∈ X∗ ⊆ Ci1 − Zi1 . Since all edges of F are incident to distinct components v is
joined by an edge of F to some vertex of X − Ci1 , and again we have nĜ+F (X) ≥ k.

Suppose p = 1. Since Ĝ + s is (k, s)-connected, it has an edge from s to at least one
vertex v ∈ Zi1 . Since all edges of F are incident to distinct components, v is joined by
an edge of F to some component distinct from Ci1 , and again we have nĜ+F (X) ≥ k.
(b2) nĜ(X) = k− 1 and X = Zi1 ∪Zi2 for some Zi1 ⊆ Ci1 , Zi2 ⊆ Ci2 , and nĜ(Zi1) =
k − 2 = nĜ(Zi2). By Claim 4.40, yi1 , y

′
i1
∈ Zi1 . Since yi1 , y

′
i1

are joined by F to two
distinct components Cj1 , Cj2 disjoint from Ci1 , at least one of these components is
also disjoint from Ci2 and we again have nĜ+F (X) ≥ k.

Thus Ĝ+ F is k-connected. Putting F0 = E(Ĝ)−E(G), we deduce that F0 ∪ F is
the required augmenting set of edges for G of size ddG+s(s)/2e = dt(G)/2e.
Subcase 2.2 There is no loopless 2-connected graph on r vertices with degree se-
quence d1, d

′
2, ..., dr.

Hakimi [9] characterised the degree sequences of loopless 2-connected graphs, see also
[13, Corollary 3.2].

Theorem 4.41. There exists a 2-connected loopless graph with degree sequence d1 ≥
d2 ≥ . . . dr if and only if d1 + d2 + . . . dr is even and d1 ≤ d2 + . . .+ dr − 2r + 4.

This characterisation implies that in Subcase 2.2 we have either: d1 ≥ d′2 and
d1 ≥ d′2 + d3 + ... + dr − 2r + 5; or d1 = d′2 − 1 and d′2 ≥ d1 + d3 + ... + dr − 2r + 5.
Since dG′+s(s) = d1 + d′2 + d3 + ...+ dr and dG′+s(s) is even, this implies that

dG′+s(s) ≤ 2d1 + 2r − 4. (24)

We shall use the following concept to find a good augmenting set in this subcase.
Let H + s = (V + s, E) be a graph and m1,m2, . . . ,mq be a partition of dH+s(s).
Then a (m1,m2, . . . ,mq)-detachment of H + s at s is a graph obtained from H + s by
‘splitting’ s into q vertices with degrees m1,m2, . . . ,mq, respectively. In [13, Corollary
3.3] we characterise when a graph H + s has a loopless 2-connected (m1,m2, . . . ,mq)-
detachment at a given vertex s. (This result generalises Hakimi’s above mentioned
result, which corresponds to the special case when the graph consists of a single vertex
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s and some loops incident to s.) For v1, v2, . . . , vm ∈ V (H + s) let b(v1, v2, . . . , vm) be
the number of components of (H + s)− {v1, v2, . . . , vm}.
Lemma 4.42. [13] Let H+s = (V +s, E) be a graph and m1,m2, ...,mq be a partition
of d(s) into at least two positive integers, such that m1 ≥ m2 ≥ ... ≥ mq. Let e(u)
denote the number of loops incident to some vertex u in H + s. Then H + s has a
loopless 2-connected (m1,m2, . . . ,mq)-detachment if and only if
(a) H + s is 2-edge-connected,
(b) b(v) + e(v) = 1 for all v ∈ V ,
(c) m2 +m3 + . . .+mq ≥ b(s) + e(s) + q − 2, and
(d) d(s, V − v) + e(s) ≥ q + b(s, v)− 1 for all v ∈ V .

Let G4 + s be the graph obtained from (G′ + s) − K − ∪ri=2Ci by adding p :=
(dG′+s(s)− 2d1)/2− 1 loops at s. Note that p is a nonnegative integer by Claim 4.38
and the fact that dG′+s(s) is even. Applying Lemma 4.42 to G4 + s we deduce:

Claim 4.43. G4+s has a loopless 2-connected (d∗2, d3, . . . , dr−1)-detachment G5, where
d∗2 = d′2 + dr − 2.

Proof. Since G′+s is (k, s)-connected and G4 is connected and loopless, it follows that
G4 + s satisfies Lemma 4.42(a) and Lemma 4.42(b). Using di ≥ 2 for all 3 ≤ i ≤ r− 1
and (24), we have d′2 + dr ≤ dG′+s(s) − d1 − 2(r − 3) ≤ dG′+s(s) − dG′+s(s)/2 + r −
2 − 2(r − 3) = dG′+s(s)/2 − r + 4. Thus d3 + ... + dr−1 = dG′+s(s) − d1 − d′2 − dr ≥
dG′+s(s)−d1−dG′+s(s)/2+r−4 = 1+e(s)+r−4, proving that Lemma 4.42(c) holds for
G4 + s. To show that Lemma 4.42(d) holds focus on a vertex v ∈ V (C1). Considering
the graph G′ − (K + v) and using Claim 4.36, we have b∗(G′) ≥ bG4(v) + r − 1 + β,
where β = 2 if dG′+s(s, v) = 2 and β = 0, otherwise, since if dG′+s(v) = 2 then
dG′(v) = k − 2. Thus, by (23), b∗(G′) = b∗(Ĝ) ≤ dt(Ĝ)/2e = dG′+s(s)/2, we have
dG′+s(s)/2 ≥ bG4(v) + r − 1 + β. Thus

dG4+s(s, V (C1)− v) + e(s) = d1 − dG′+s(s, v) + e(s)

= dG′+s(s)/2− 1− dG′+s(s, v)

≥ bG4(v) + r − 1 + β − 1− dG′+s(s, v)

≥ (r − 2) + bG4+s(s, v)− 1,

as required.

Label the detached vertices of G5 as c2, c3, c4 . . . , cr−1 where dG5(ci) = di for 3 ≤
i ≤ r−1 and dG5(c2) = d∗2. The edge e = cjy1 is in E(G5) for some 2 ≤ j ≤ r−1. We
next subdivide the edge e with a new vertex cr to form the graph G′5, and then ‘flip’
some edges from c2 to cr in G′5 preserving 2-connectivity and increasing the degree
of cr up to dr while maintaining the property that y1 and y′1 are joined to different
detached vertices. We use the following result [13, Corollary 2.17].

Lemma 4.44. [13] Let t ≥ 3 be an integer. Let H be a loopless 2-connected graph,
x, y ∈ V (H) and xzi ∈ E(H − y) for 1 ≤ i ≤ t. If t ≥ d(y) − d(y, x) + 1, then
H − xzi + yzi is loopless and 2-connected for some i, 1 ≤ i ≤ t.
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We construct a new graph G6 from G′5 as follows. If dr = 2 then we put G6 = G′5.
If dr ≥ 3 then we use Lemma 4.44 to find a set of edges S = {c2zi ∈ E(G′5) : 1 ≤
i ≤ dr − 2} such that c2y

′
1 6∈ S and G6 = G′5 − S + {crzi : 1 ≤ i ≤ dr − 2} is

2-connected and loopless. This is possible since dG′5(cr) = 2, dG′5(cr, c2) ≤ 1, and
dG′5(c2) = d′2 + dr − 2 ≥ dr + dr − 2. In G6 we have y1cr ∈ E(G6), y

′
1cr 6∈ E(G6),

dG6(ci) = di for 3 ≤ i ≤ r, and dG6(c2) = d′2. (Note that we could have used Lemma
4.42 directly to construct a 2-connected loopless detachment with the same degree
sequence as G6 from G4 + s plus one extra loop at s. The reason we go via G5 is to
ensure that y1.y

′
1 are adjacent to distinct detached vertices.)

Let F be a set of edges joining the components of G′ − K such that dF (v) =
dG′+s(s, v) for all v ∈ V −K and such that the graph obtained from (V −K,F ) by
contracting C2, . . . , Cr to c2, c3, . . . , cr, respectively, is G6. Since G6 is 2-connected,
each vertex ci in G6 has at least two distinct neighbours. Let yi, y

′
i be the neighbours

of s in Ci defined after Claim 4.40. Since we may interchange the end vertices of the
edges of F within each component, Ci, for 2 ≤ i ≤ r we may choose F to have the
additional property that, for 2 ≤ i ≤ r, the two edges of F incident to yi and y′i join
Ci to different vertices of G−K −Ci, which either belong to different components of
G−K−Ci, or both belong to C1. Furthermore, since y1 and y′1 are joined to different
detached vertices in G6, the two edges of F incident to y1 and y′1 join C1 to different
components of G′ −K − C1.

We can now use Claim 4.39 to deduce that Ĝ+F is k-connected as in Subcase 2.1.
Putting F0 = E(Ĝ)−E(G) we deduce that F0 ∪ F is the required augmenting set of
edges for G of size ddG+s(s)/2e = dt(G)/2e.

5 Algorithmic aspects and corollaries

In this section we discuss the algorithmic aspects of our results and also show that
our main theorems imply (partial) solutions to a number of conjectures in this area.

The proofs of our min-max theorems (Theorems 4.27 and 4.34) are algorithmic and
lead to a polynomial algorithm which finds an optimal augmenting set with respect
to k for any l-connected input graph G and target k ≥ l + 1, provided ak(G) ≥
10(k− l+2)3(k+1)3 (or ak(G) ≥ 20k3, if k = l+1). As we shall see, the running time
in this case can be bounded by O(n5), even if k is part of the input. Our algorithm
for the general case first decides whether ak(G) is large, compared to k, or not. Since,
by Lemma 2.8, ak(G) is large if and only if d(s) is large in a k-critical extension G+ s
of G, the first step is to create such an extension. If ak(G) is small then our algorithm
performs an exhaustive search on all possible augmenting sets F with V (F ) ⊆ N(s)
and outputs the smallest augmenting set which makes G k-connected. The number
of possibilities depends only on k, since |N(s)| is also small. It follows from the next
lemma that the output is indeed an optimal solution.

Lemma 5.1. Let G + s be a (k, s)-connected extension of G. Then there exists an
optimal augmenting set F of G with respect to k with V (F ) ⊆ N(s).

Proof. Let S := N(s) and let F be an optimal augmenting set with respect to k for
which c(F ) :=

∑
uv∈F |{u, v} − S| is as small as possible. Suppose c(F ) is positive
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and let uv ∈ F be an edge with {u, v} − S 6= ∅. Since F is optimal, we have
κ(G+F −uv) = k−1 and, by Lemma 4.14(c), it follows that G+F −uv has precisely
two cores (i.e. minimal k-deficient sets) X,Y . Clearly, X and Y are k-deficient
fragments in G. Thus, since G+s is (k, s)-connected, we must have S∩X 6= ∅ 6= S∩Y .
Lemma 4.14(c) also implies that by taking F ′ = F −uv+xy for a pair x, y of vertices
with x ∈ S ∩X and y ∈ S ∩ Y we have that G + F ′ is k-connected. Now |F ′| = |F |
and c(F ′) < c(F ), contradicting the choice of F . This proves that c(F ) = 0 must
hold, and hence the required augmentning set exists.

Thus if ak(G) is small then we need to perform ck k-connectivity tests, where ck
depends only on k, to find an optimal solution. If ak(G) is large then our algorithm
has several steps, according to the different subcases in our proofs. In what follows
we give a sketch of the algorithm to verify that it can be run in polynomial time. We
do not attempt to work out the details of an efficient implementation. The input of
the algorithm is a graph G = (V,E) with κ(G) = l, and a positive integer k ≥ l + 1,
satisfying |V | ≥ k + 1.

Algorithm

Step 1. (Extension) Create a k-critical extension G + s of G. If l = k − 1 and
dG+s(s) ≥ 20k3+1 then go to Step 3. If l ≤ k−2 and dG+s(G) ≥ 10(k−l+2)3(k+1)3+1
then go to Step 4. Else go to Step 2.

Step 2. (Exhaustive search) Check all possible augmenting sets F of size at most
dG+s(s) − 1 with V (F ) ⊆ N(s). Output the smallest set F for which G + F is
k-connected.

Step 3. (Augment by one) Check if G is k-independence free. If not, go to Step
3B.

Step 3.A (Independence free case) Make G k-connected by iteratively splitting
off pairs of edges incident to s. (If d(s) = 3 or d(s) = b(G) in the current graph then
add a tree on N(s) and terminate. If d(s) ≥ 2b(G) − 1 then split off an arbitrary
admissible pair. If d(s) ≤ 2b(G)− 2 then split off as desribed in the proof of Lemma
3.7.)

Step 3.B (Make it independence free) Make G k-independence free by splitting
off pairs of edges as described in Lemmas 4.25 and 4.26. (Note that T (G) need not be
computed when we want to increase the number of passive cores by making an active
core passive. If we fail to make an active core B passive, which means B ∩ T (G) 6= ∅,
then we can try another one.) Before performing the next split always check whether
d(s) ≤ 2b(G) − 2 holds. If yes, go to Step 3.C. Otherwise, continue splitting until G
becomes k-independence free, and then go to Step 3.A with the current graph and its
extension.

Step 3.C (Forest augmentation) Make G k-connected by a forest augmentation,
as in Theorem 4.11. (This is a special case of the general forest augmentation defined
after Lemma 4.3.)

Step 4. (Large shredder) If there is a shredder K with d(s) ≤ 2b∗(G) − 2 =
2b∗(K)− 2 then find one and go to Step 4.A. Else go to Step 5.

EGRES Technical Report No. 2001-04



Section 5. Algorithmic aspects and corollaries 39

Step 4.A (Forest augmentation) Make G k-connected by splitting off all edges
from s to K and then adding a forest augmentation, as described in Lemma 4.7 and
after Lemma 4.3.

Step 5. (Augment by at least two) ConstructH+s, H∗+s, andG∗+s as described
before Lemma 4.29. Check whether any subsequence of the splittings, found in H+s,
makes d(s) = 2b∗(G) − 2 if we perform it in G + s. If yes, go to Step 4.A with the
graph in which the equality is first attained. If not, check if dH∗+s(s) ≥ 2f + 1 holds.
If yes, go to Step 5.B. Else go to Step 5.A.

Step 5.A (Make it (k − 1)-connected) Make G (k− 1)-connected by splitting off
pairs of edges, as described in Lemma 4.32. If d(s) = 2b∗(G) − 2 holds after some
iteration, go to Step 4.A. When G becomes (k − 1)-connected, go to Step 3.

Step 5.B (Augment by detachments) Augment G following of the steps of the
proof of Case 2 of Theorem 4.34. (In detail, find a big shredder K of size k − 2,
rearrange edges to make G0 + s, split off edges within components of H∗−K as long
as possible to make Ĝ + s, possibly add an edge to make d(s) even, and then find a
good augmenting set obtained from a loopless 2-connected graph G3 or G5, possibly
after flipping some edges.) If d(s) = 2b∗(G)− 2 occurs after splitting off some edges,
while making Ĝ+ s, go to Step 4.A.

This algorithm is well-defined and outputs an optimal augmenting set of G with
respect to k by the results and proofs of this paper. Most of the steps of this algorithm
are easy to implement in polynomial time by network flow techniques. There are two
exceptions: (a) how to find a shredder K with d(s) ≤ 2b(G)− 2 = 2b(K)− 2 (in Step
3) or with d(s) ≤ 2b∗(G)− 2 = 2b∗(K)− 2 (in Steps 4-5), if it exists; (b) how to find
the required loopless 2-connected graphs (detachments) in Section 6. We shall not
discuss (b) in this paper but remark that there is a simple algorithm which finds G3,
if it exists, and we also have a similarly simple and efficient algorithm which finds G5,
if it exists.

Question (a) was answered in [14], and in more detail in [3], when G is (k − 1)-
connected and we search for a shredder K with d(s) ≤ 2b(G) − 2 = 2b(K) − 2. The
next lemma provides an answer in the general case. Note that we need to answer this
question only if d(s) is large compared to k.

Lemma 5.2. If d(s) ≥ k(k− l+1)+2 then we can decide in polynomial time whether
d(s) ≤ 2b∗(G)− 2 holds, and if yes, a shredder with b∗(K) = b∗(G) can also be found
in polynomial time.

Proof. We show how to find a family K of shredders in such a way, that |K| is poly-
nomial in |V | and if there is a shredder K with d(s) ≤ 2b∗(G)− 2 = 2b∗(K)− 2 then
K ∈ K. Once we have K, we can answer question (a) by computing b∗(K ′) for all
K ′ ∈ K.

To generate the family K we proceed as follows. We choose the neighbours of s
one by one and for each vertex x ∈ N(s) we try to split off all copies of the edge sx
by admissible splittings. If this is not possible, we continue with the next vertex of
N(s). If it is possible, we find k − 1 vertex-disjoint paths P1, P2, ..., Pk−1 between all
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pairs of vertices of N(s) − x for which such paths exist. Let u, v be such a pair, let
Q = ∪k−1

i=1 V (Pi), and let C1, ..., Cl be the components of G−Q. For each component
Ci, 1 ≤ i ≤ l, if nG(Ci) = k − 1 then we put NG(Ci) ∈ K and if nG(Ci) = k − 2
then we put (NG(Ci)∪ q) ∈ K for all q ∈ Q−{u, v}. Family K is complete when this
procedure has been executed for all neighours of s. Clearly, |K| is polynomial in |V |.

Suppose there is a shredder K with d(s) ≤ 2b∗(G) − 2 = 2b∗(K) − 2. Then
Lemma 4.3 and Lemma 4.7 imply that |N(s) ∩ K| ≤ 1 and if x ∈ N(s) ∩ K then
b∗(K) = b(K)+d(s, x) and we can split off all copies of sx (in any order) by admissible
splittings. By splitting off these copies d(s) is reduced by 2d(s, x) and b∗(K) is reduced
by d(s, x). Hence d(s) ≤ 2b(K)− 2 holds in the resulting graph. This implies that K
has at least two leaves C1, C2 and, by Lemma 4.3(a), G−K has at least one component
C 6= C1, C2 with nG(C) ≥ k − 2. By Lemma 2.12 there exist k − 1 vertex-disjoint
paths from u ∈ N(s) ∩ C1 to v ∈ N(s) ∩ C2, and for the union Q of these paths we
have that each component D 6= C1, C2 of G−K is a component of G−Q by Lemma
2.11. Thus C is a component of G−Q and, since K ⊆ Q− {u, v}, either K = N(C)
or K = N(C) + q holds for some q ∈ Q−{u, v}. This proves K ∈ K, as required.

Before stating our bound on the running time we note that by inserting a pre-
processing step, which works in linear time, we can make the input graph sparse,
and hence reduce the running time, as follows. Let G = (V,E) and k be the in-
put of our problem. Let n = |V | and m = |E|. It was shown in [2] and [18] that
G = (V,E) has a spanning subgraph G′ = (V,E ′) with |E ′| ≤ k(n − 1) satisfying
κ(u, v,G′) ≥ min{k, κ(u, v,G)} for each pair u, v ∈ V . It can be seen that by replac-
ing G by G′ we do not change the k-deficient fragments (or their deficiencies) and
that for any augmenting set F the graph G+ F is k-connected if and only if G′ + F
is k-connected. Thus we can work with G′ and assume that m = O(kn). Note also
that d(s) = O(kn) in any extension G + s of G we work with in the algorithm. By
using these facts and efficient network flow algorithms for the basic operations (such
as finding admissible splittings, checking whether an edge is k-critical, etc) we can
conclude with the following theorem.

Theorem 5.3. Given a graph G = (V,E) and a positive integer k, our Algorithm
finds an optimal augmenting set with respect to k. If ak(G) ≥ 10(k − l + 2)3(k + 1)3

then the running time is O(n5). Otherwise the running time is O(ckn
3).

5.1 Corollaries

Our main results (Theorems 4.27 and 4.34) imply (partial) solutions to several related
conjectures. The extremal version of the connectivity augmentation problem is to find,
for given parameters n, k, t, the smallest integer m for which every k-connected graph
on n vertices can be made (k + t)-connected by adding m new edges. Several special
cases of this problem were solved in [16] and it was conjectured that (at least if n is
large enough compared to k) the extremal value for t ≥ 2, k ≥ 2 is dnt/2e (or bnt/2c,
depending on the parities of n, k, t). Since b∗(G) − 1 ≤ n, the min-max equality of
Theorem 4.34 shows that if n is large enough and t ≥ 2 then the ak(G) is maximised
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if and only if G is (almost) k-regular. This proves the conjecture (when n is large
compared to k), by noting that such (almost) regular graphs exist for k ≥ 2.

A different version of this problem, when the graphs to be augmented are k-regular,
was studied in [8]. It was conjectured there that if G is a k-regular k-connected graph
on n vertices, and n is even and large compared to k, then G can be made (k + 1)-
connected by adding n/2 edges. If G is k-regular, b(K) ≤ k for any cut of size k. Thus
if n is large enough, we have max{b(G) − 1, dt(G)/2e} = n/2. Now the conjecture
follows from Theorem 4.27.

A similar question is whether ak(T ) = d(
∑

v∈V (T )(k− d(v))+)/2e holds when graph

T is a tree, where x+ = max{0, x} for some number x. It is known that the minimum
number of edges needed to make a tree k-edge-connected (or an arborescence k-edge-
or k-vertex-connected) is determined by the sum of the (out)degree-deficiencies of its
vertices. As above, using the fact that b∗(G)− 1 ≤ n, Theorem 4.34 implies (when n,
and hence also ak(T ), is large compared to k) that if k ≥ 3 then ak(T ) = dt(T )/2e.
That is, ak(T ) is determined by the total deficiency of a family of pairwise disjoint
subsets of V (T ). Since T is a tree, each member X of this family induces a forest.
This implies that there exists a vertex v ∈ X with k−d(v) ≥ k−n(X). Therefore we
can find a family consisting of singletons with the same total deficiency. This yields
an affirmative answer to our question provided k ≥ 3 and n is large compared to k.
Note that the answer is negative for k = 2.

Frank and Jordán [7, Corollary 4.8] prove that every (k − 1)-connected graph G =
(V,E) can be made k-connected by adding a set F of new edges such that (V, F )
consists of vertex-disjoint paths. They conjectured that such an F can be found
among the optimal augmenting sets as well. We can verify this, provided ak(G) is
large enough. In this case we may use the min-max formula of Theorem 4.27. If
ak(G) = dt(G)/2e then an optimal augmenting set is obviously a collection of vertex-
disjoint paths. If ak(G) = b(G)−1, then a careful analysis of the forest augmentation
method shows that we can find an optimal augmenting set F satisfying dF (v) ≤ 2 for
all v ∈ V . Since F is a forest, it induces vertex-disjoint paths, as claimed.
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[8] E. Győri, T. Jordán, How to make a graph four-connected, Mathematical Pro-
gramming 84 (1999) 3, 555-563.

[9] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a
linear graph. I, J. Soc. Indust. Appl. Math. 10, 1962, 496–506.

[10] T.-s. Hsu, On four-connecting a triconnected graph, Journal of Algorithms 35,
202-234, 2000.

[11] T. Ishii and H. Nagamochi, On the minimum augmentation of an l-connected
graph to a k-connected graph, Proc. SWAT 2000 (M.M. Halldórsson ed.) Springer
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