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A note on the path-matching formula

András Frank? and László Szegő??

Abstract

As a common generalization of matchings and matroid intersections, W. H.
Cunningham and J. F. Geelen introduced the notion of path-matchings. They
proved a minmax formula for the maximum value of a path-matching. with
the help of a linear algebraic method of Tutte and Lovász. Here we exibit a
simplified version of their minmax theorem and provide a purely combinatorial
proof.

1 Introduction

W. H. Cunningham and J. F. Geelen in [3] and [4] introduced the notion of path-
matchings as a common generalization of the weighted matching problem and the
weighted matroid intersection problem.

They proved that this problem is solvable in polinomial time via the ellipsoid
method [6]. They also proved the total dual integrality of the corresponding linear
system.

Cunningham and Geelen defined a path-matching as follows. Let G = (V,E) be an
undirected graph and T1, T2 disjoint stable sets of G, we call this two sets the terminal
sets of G. We denote V − (T1 ∪ T2) by R. Let M1 and M2 be two rank r matroids on
T1 and T2, respectively. A basic path-matching is a subset K of edges E such that the
subgraph GK = (V,K) is a collection of r disjoint paths, all of whose internal nodes
are in R, linking a basis of M1 to a basis of M2, together with a perfect matching of
the nodes of R not in any of the paths. An independent path-matching with respect to
M1,M2 is a set K of edges such that every component of the subgraph GK = (V,K)
having at least one edge is a simple path from T1 ∪R to T2 ∪R, all of whose internal
nodes are in R, and such that the set of nodes of Ti in any of these paths is independent
in Mi, for i = 1 and 2. The value of a path-matching is defined to be the number
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of the edges contained in it plus the number of its one-edge-components in R, that
is, each one of these edges counts twice (these edges are called matching edges. For
example the value of a basic path-matching is r + |R|.

If M1 and M2 are free matroids, then we refer to a basic path-matching as a perfect
path-matching and to an independent path-matching as a path-matching.

A pair of subsets I1 ⊆ T1 ∪ R, I2 ⊆ T2 ∪ R is called stable if no edge of G joins a
node in I1 − I2 to a node in I2 or a node in I2 − I1 to a node in I1. We denote by
c(G) the number of components of G having an odd number of nodes. For a subset
S of nodes of G, G[S] denotes the subgraph of G induced by S.

W. H. Cunningham and J. F. Geelen in [3] proved the following theorem with the
help of a certain generalization of Tutte-matrix.

Theorem 1.1. (Maximum path-matching formula)

max
Mpath−match.

val(M) =

min
(I1,I2) stable pair

|T1 ∪R− I1|+ |T2 ∪R− I2|+ |I1 ∩ I2| − c(G[I1 ∩ I2])

Corollary 1.2. |T1| = |T2| = k. There exists a perfect path-maching if and only if

|I1 ∪ I2|+ c(G[I1 ∩ I2]) ≤ n for all stable pairs (I1, I2).

As a consequence of the TDI-ness Cunningham and Geelen derived the following
formula in the case of independent path-matchings in [4].

Theorem 1.3. (Maximum independent path-matching formula)

max
M indep.p−m.

val(M) = |R|+

min
(I1,I2) stable pair

r1(T1 − I1) + r2(T2 − I2) + |R− (I1 ∪ I2)| − c(G[I1 ∩ I2])

Corollary 1.4. r(M1) = r(M2) = r. There exists a basic path-maching if and only if

r1(T1 − I1) + r2(T2 − I2) + |R− (I1 ∪ I2)| ≤ r + c(G[I1 ∩ I2])

for all stable pairs (I1, I2).

In this note we provide a simplified characterization for the existence of a per-
fect path-matching. This form is a direct extension of Tutte’s theorem on perfect
matchings and permits us to provide a combinatorial proof by mimicking Anderson’s
simple proof on Tutte’s theorem [1]. Then we prove a simplified form of the maximum
path-matching formula. Our proofs can easily be extended to the case of basic and
independent path-matchings.
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2 A simplified form of the maximum path- match-

ing formula

We define a cut separating the tarminal sets T1 and T2 to be a subset X ⊆ V such
that there is no path between T1 −X and T2 −X in G−X. (See Figure 1.)

From now on we denote by oddG(X) the number of connected components of G−X
which are disjoint from T1∪T2 and have an odd number of nodes. Let OddG(X) denote
the union of these components. If it does not cause misunderstanding, then we omit
the index.

Odd(X)

X

 T1  T2

Figure 1: A cut X separating T1 and T2

Theorem 2.1. In G = (V,E) there exists a perfect path-matching if and only if
|T1| = |T2| = k and

|X| ≥ oddG(X) + k for all cuts X. (1)

Theorem 2.2. (Maximum path-matching formula 2)

max
Mpath-matching

val(M) = |R|+ min
Xcut

(|X| − oddG(X))

In this note we prove Theorem 2.1, then we derive Theorem 2.2. It is clear that,
if T1 = T2 = ∅, then we get Tutte’s theorem and Berge-Tutte-formula immediately.
(Recall the definition of the value of a path-matching.) As Cunnigham and Geelen
showed in [4], Menger’s theorem on the number of node-disjoint paths can be proved
through a simple construction from Corollary 1.2, and so from Theorem 2.1:

Suppose we are given a graph (G′ = V ′, E′) whose nodeset is partitioned into sets
T ′1, T

′
2, R with |T ′1| = |T ′2| = k. We wish to find, if possible, k node-disjoint path from

T ′1 to T ′2. The construction is the following: form a new graph G by adding, for every
r ∈ R nodes r1, r2 and edges rr1, rr2, r1r2, and put T1 := R1∪T ′1, T2 := R2∪T ′2, where
Ri denotes {ri : r ∈ R}. Then there exists a perfect path-matching of G with respect
to terminal sets T1, T2 if and only if the desired paths exist in G′.

Menger’s Theorem states that the disjoint paths exist if and only if there is no set
S that separates T ′1 from T ′2 in G′ and has cardinality less than k. The necessity of
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this condition is obvious. If G′ does not contain the desired k paths, then there exists
cut X separating T1 and T2 in G such that

|X| < (k + |R|) + oddG(X).

X ∩R is a separating set in G′ with cardinality less than k.
Of course, Corollary 1.2 and Theorem 2.1 are equivalent. Theorem 2.1 implies

Corollary 1.2 in this way: if (1) does not hold for the cut X, then a stable pair,
which violates the condition of Corollary 1.2, can be found in the following way:
I1 ∪ I2 := V −X, I1 ∩ I2 := the union of the components of G−X which are entirely
in R.

Our proof can be extended to prove the following theorems by using basic matroidal
methods.

Theorem 2.3. In G = (V,E) there exists a basic path-matching if and only if r(M1) =
r(M2) = r and

r1(T1 ∩X) + r2(T2 ∩X) + |R ∩X| ≥ r + oddG(X)

for all cuts X.

Theorem 2.4. (Maximum independent path-matching formula 2)

max
M indep.path−m.

val(M) = min
Xcut

r1(T1 ∩X) + r2(T2 ∩X) + |R ∩X| − oddG(X).

Theorem 2.3 implies Edmonds’ theorem on the maximum cardinality of a common
independent set of two matroids [5]. Theorem 2.4 contains Brualdi’s theorem [2] as a
special case.

A cut X is trivial if X = T1 or X = T2. A cut X is defined to be tight if |X| =
odd(X) + k, that is, the condition (1) is satisfied by equality.

A graph G = (V,E) is said to be factorcritical if it is connected and, for every
Y ⊆ V and|Y | ≥ 2, G − Y has at most |Y | − 1 number of components with odd
number of nodes.

Proof of Theorem 2.1
Necessity of (1). Let us consider a perfect path-matching M . Let P1, P2, . . . Pk be

denote the k paths, and let α be the number of the Odd(X) components which are
traversed by some Pi, and let β be the number of Odd(X) components which are not
traversed by any Pi. For a path Pi, let ti denote the number of Odd(X) components
which are traversed by Pi.

It is clear, that

k + α + β ≤
k∑

i=1

(ti + 1) + β ≤ |X|,

for all cuts X. (Remark: if cut X is tight, then an odd component K is traversed
either by one path in a perfect path-matching M , or there is only one matching edge
leaving K in M .)
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The proof of sufficiency goes by induction on |R|+ |E|. When |R| = 0, |E| ≤ 1 the
theorem is obviously true.

CASE 1: There does not exist any nontrivial tight cut.
If k = 0, then every cut which has cardinality one is nontrivial and tight, hence

k > 0. Let us consider an edge e = uv with u ∈ T1. Let G′ denote G − e. If the
condition (1) is satisfied in G′, then we are done by induction. Suppose now that G′

does not satisfy (1), that is there is a cut X in G′ so that |X| < oddG′(X) + k. Since
|X| ≥ oddG(X) + k, v is in an odd component of G−X or is in a path from T1 −X
to T2 − X and in both cases u ∈ T1 − X. In the first case oddG(X) + k ≤ |X| <
oddG′(X) + k = oddG(X) + 1 + k, so |X| = oddG(X) + k, X is tight and nontrivial.
(Figure 2a.) In the second case |X| < oddG′(X) + k. X + u and X + v is a cut in
G, so |X + u| ≥ oddG(X + u) + k = oddG′(X) + k, and the same is true for X + v.
(Figure 2b.) We get |X + u| = oddG(X + u) + k and |X + v| = oddG(X + v) + k, so
they are tight cuts. If none of them is nontrivial, then k = 1, X = ∅, and this case
can be checked easily.

�� ��

Odd(X)

X

e

u v

 T T1 2

Figure 2

G-e

����

X

e
1 T  T2

vu Odd    (X)

Figure 3

CASE 2: There exists a nontrivial tight cut.
Let us consider a maximal nontrivial tight cut X. It is clear that every component

of G − X, which are in entirely in R, is factorcritical (specially odd). Indeed, in an
odd component is not factorcritical, then let us put its maximal cut with maximum
deficiency into X. Furthermore, if there exists a component with even number of
nodes, then let us put a single node of it into X, we get a bigger nontrivial tight cut
in G.
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Let us contract each component of OddG(X) to a node. It will not cause misun-
derstanding if we denote these nodes by OddG(X) as well.

The left-hand side of G is the induced subgraph by the nodes: Odd(X)∪ (X−T1)∪
(T1 − X) ∪ {the nodes that can be reached along a path from T1 − X in G − X}.
Similarly the right-hand side of G is induced by Odd(X)∪ (X −T2)∪ (T2−X)∪{the
nodes that can be reached along a path from T2 − X in G − X}. (Figure 3.) Note
that these two graphs have common nodes.

1 TT

2

O
dd

(X
)

X

2

T1

X

T

O
dd(X

)

Figure 4

Claim 2.5. On the left-hand side there exists a perfect path-matching respect to ter-
minal sets T ′1 = (T1 −X) ∪Odd(X), T ′2 = X − T1.

Proof. |T ′1| = |T ′2| because of the tightness of X. If X ∩R 6= ∅, then we can apply the
inductive hypothesis. If X∩R = ∅, then T1∩X 6= ∅ and T2∩X 6= ∅ (X is nontrivial!)
hence we can apply the inductive hypothesis.

Consequently if |Y | ≥ oddleftside(Y ) + (k − |T1 ∩ X| + oddG(X)) for every cut Y
on the left-hand side, then there exists a perfect path-matching on the left-hand side
with respect to the new terminal sets T ′1 and T ′2. (We denote by oddleftside the odd
operator on the left.)

Let us suppose that there exists a cut Y such that |Y | < oddleftside(Y ) + k − |T1 ∩
X|+ odd(X). (See Figure 4.) We get

|Y |+ |T1 ∩X| − |Odd(X) ∩ Y | < oddleftside(Y ) + odd(X)− |Odd(X) ∩ Y |+ k,

that is, Z = (T1∩X)∪(Y −Odd(X)) is a cut in G after replacing Odd(X) components
for which (1) does not hold. It is trivial that Z is indeed a cut in G. 2

We can see similarly that on the right-hand side there exists a perfect path-matching
respect to terminal sets T ′′2 = (T2 −X) ∪Odd(X), T ′′1 = X − T2.

It is easy to get a perfect path-matching of G from the perfect path-matching M1 on
the left and the perfect path-matching M2 on the right. Recall that the components
of Odd(X) were factorcritical so we can complete M1 ∪M2 suitably (by the two facts
about factorcritical graphs mentioned after this proof) and we are able to replace
even circuits by matching easily. And now we finished the proof of Theorem 2.1 (See
Figure 5.) 2
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At the last step of the above proof we used the following two facts about factorcrit-
ical graphs. For every node, there exists a matching covering all the nodes but one.
For every two nodes, there exists a path between them such that there exists a per-
fect matching on the nodes not in the path. These facts followed from the induction
hypothesis.

Proof of Theorem 2.2 Let us suppose that |T1∪R| = l ≥ k = |T2∪R|, minXcut(|X|−
odd(X)) = m. Let us add l− k nodes to T2, and let us put an edge between all these
nodes and every node in T1 ∪ R. Let us add k − m nodes to R and put an edge
between all these nodes and every node in V ∪ {all the new nodes}. We added
(l − k) + (k −m) = l −m new nodes to G. Let G′ denote the obtained graph. If a
cut Y of G′ does not contain at least one new node, then it must contain T ′1 or T ′2,
thus: |Y | − oddG′(Y ) ≥ l.

A cut X of G together with the new nodes form a cut of G′. So minY cut |Y |−odd(Y )
= m+(l−m) = l, consequently there exists a perfect path-matching M in G′ and the
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value of such a path-matching: val(M) = |R∪{new nodes in R′}|+l = |R|+k−m+l.
E ∩M is trivially a maximal path-matching in G. 2
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