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The globally rigid complete bipartite graphs

Tibor Jordán⋆

Abstract

Let d be a positive integer. We prove that a complete bipartite graph Km,n

on at least three vertices is globally rigid in Rd if and only if m,n ≥ d+ 1 and
m+ n ≥

(
d+2
2

)
+ 1.

1 Introduction

The goal of this note is to give a short proof for the following theorem, which appeared
in the handbook chapter [6] without proof. A different proof (of sufficiency) can be
found in [3]. We follow the terminology and notation of [6].

Theorem 1.1. [6, Theorem 63.2.2] A complete bipartite graph Km,n on at least three
vertices is globally rigid in Rd if and only if m,n ≥ d+ 1 and m+ n ≥

(
d+2
2

)
+ 1.

The condition requiring that the graph has at least three vertices, which was not
part of the original statement in [6], is needed to exclude the trivial case when the
graph is K2 = K1,1. This graph is globally rigid in Rd for all d ≥ 1.
The proof relies on some central results of rigidity theory. To prove sufficiency,

we need the following three theorems. The rigid complete bipartite graphs were
characterized by W. Whiteley.

Theorem 1.2. [8] A complete bipartite graph Km,n, with m,n ≥ 2, is rigid in Rd if
and only if m,n ≥ d+ 1 and m+ n ≥

(
d+2
2

)
.

We say that a graph G is vertex-redundantly rigid in Rd if G− v is rigid in Rd for
all v ∈ V (G). The next result is due to S. Tanigawa.

Theorem 1.3. [7] Let G be a graph. If G is vertex-redundantly rigid in Rd then it is
globally rigid in Rd.

The d-dimensional edge splitting operation replaces an edge of graph G with a new
vertex joined to the end vertices of the edge and to d− 1 other vertices. R. Connelly
proved that this operation preserves global rigidity in the following sense.
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Theorem 1.4. [2] Let G be a graph obtained from Kd+2 by iteratively adding edges
or performing d-dimensional edge splitting operations. Then G is globally rigid in Rd.

In the proof of necessity we shall use the following theorems. We say that a graph
G is redundantly rigid in Rd if G− e is rigid in Rd for all e ∈ E(G). The following two
necessary conditions for global rigidity are due to B. Hendrickson.

Theorem 1.5. [5] Let G be globally rigid in Rd. Then either G is a complete graph
on at most d+ 1 vertices or G is (d+ 1)-connected and redundantly rigid in Rd.

A further necessary condition, which is valid for complete bipartite graphs, was
shown by R. Connelly, see also [4].

Theorem 1.6. [1] Let d ≥ 3 be an integer. Then no complete bipartite graph Km,n,
with m,n ≥ d+ 2 and m+ n =

(
d+2
2

)
is globally rigid in Rd.

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1: We first prove sufficiency. Let us consider Km,n with
m,n ≥ d+ 1 and m+ n ≥

(
d+2
2

)
+ 1. If the stronger lower bound m,n ≥ d+ 2 is also

satisfied, then we can use Theorem 1.2 to deduce that the deletion of any vertex gives
rise to a rigid graph in Rd. Hence Km,n is globally rigid in Rd by Theorem 1.3, and we
are done.

So we may assume thatm = d+1, in which casem+n ≥
(
d+2
2

)
+1 gives n ≥

(
d+1
2

)
+1.

First suppose that n =
(
d+1
2

)
+ 1. In this case the graph can be obtained from Kd+2

by a sequence of d-dimensional edge splitting operations as follows. Let us denote
the vertices of Kd+2 by {v0, v1, . . . , vd+1}. By splitting every edge vivj of Kd+2 with
1 ≤ i < j ≤ d + 1, in any order, so that the new vertex created by the splitting is
always connected to the vertices vℓ, 1 ≤ ℓ ≤ d+ 1, we obtain the graph Kd+1,(d+1

2 )+1.

Thus global rigidity in Rd follows from Theorem 1.4.
If n is greater than

(
d+1
2

)
+ 1, then Kd+1,n can be obtained from Kd+1,(d+1

2 )+1 by

repeatedly adding vertices of degree d+ 1. This operation can also be interpreted as
adding a new edge and then performing an edge split. So by applying Theorem 1.4
again, we obtain that Kd+1,n is globally rigid in Rd. This proves sufficiency.

We next prove necessity. Let Km,n be a complete bipartite graph which is globally
rigid in Rd, with m + n ≥ 3. Theorem 1.5 implies that either Km,n is a complete
graph on at most d+ 1 vertices, or it is (d+ 1)-connected. In the former case we must
have m = n = 1, which contradicts the assumption m + n ≥ 3. In the latter case
m,n ≥ d + 1 follows. Theorem 1.2 then gives m + n ≥

(
d+2
2

)
, for otherwise Km,n is

not even rigid in Rd. We are done if the inequality is strict, so it remains to consider
the case when m + n =

(
d+2
2

)
, and to show that it is impossible. If m,n ≥ d + 2,

then we must have d ≥ 3. Since Km,n is globally rigid in Rd, Theorem 1.6 implies
that this cannot hold. Finally, if m = d+ 1, then a simple computation shows that
m · n = d(n+m)−

(
d+1
2

)
, which means that Km,n is minimally rigid in Rd. But it is

not possible by Theorem 1.5. This completes the proof.
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