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Globally rigid components in two-dimensional
generic frameworks

Tibor Jordán?

Abstract

We show that the maximal globally rigid subgraphs of a graph in R2 can be
determined in polynomial time.

1 Introduction

A d-dimensional framework (G, p) is called globally rigid in Rd if every other d-
dimensional framework (G, q), with the same graph and same edge lengths, is con-
gruent to (G, p). We say that a graph G is globally rigid in Rd if every d-dimensional
generic1 framework with underlying graph G is globally rigid in Rd. For d = 1, 2
combinatorial characterizations and corresponding deterministic polynomial time al-
gorithms are known for (testing) global rigidity. The existence of such a characteriza-
tion (or algorithm) for d ≥ 3 is a major open question. For more details on globally
rigid graphs and frameworks see e.g. [7].

A maximal (with respect to inclusion) globally rigid subgraph of G is called a
globally rigid component of G in Rd. The globally rigid components are induced
subgraphs. Since K2 is globally rigid, every edge of G belongs to some globally rigid
component of G. It is a folklore result in rigidity theory that a graph on at least three
vertices is globally rigid R1 if and only if it is 2-connected. Therefore the globally
rigid components of G in R1 are the maximal 2-connected subgraphs of G, together
with the (K2 subgraphs of) the cut-edges of G. They are easy to find in linear time.

In this note we show that the globally rigid components in R2 can also be found in
polynomial time2. This result has implications concerning the so-called globally rigid
subgraph number of a graph G, denoted by grn∗(G), which is a new parameter that
was introduced recently in [2]. By definition grn∗(G) is the maximum d so that G
contains a subgraph H on at least d+ 2 vertices that is globally rigid in Rd. Based on
the list of globally rigid components in R2, we can decide whether grn∗(G) ≥ 2 holds
for a given graph G. Note that grn∗(G) ≥ 1 if and only if G contains a cycle.

?Department of Operations Research, ELTE Eötvös Loránd University, and the MTA-ELTE
Egerváry Research Group on Combinatorial Optimization, Eötvös Loránd Research Network
(ELKH), Pázmány Péter sétány 1/C, 1117 Budapest, Hungary. e-mail: tibor.jordan@ttk.elte.hu

1A framework (G, p) is said to be generic if the set of its d|V (G)| vertex coordinates is algebraically
independent over the rationals.

2There was an informal remark in [1] about the existence of such a polynomial time algorithm,
without proof.
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2 The algorithm for determining the globally rigid

components

From now on we focus on the two-dimensional case d = 2. Recall the definition of the
two-dimensional rigidity matroid R2(G) of a graph, defined on the set of edges of G,
and some basic notions (see e.g. [6] for more details). Let r2(G) denote the rank of (the
edge set of) G in this matroid. An edge e of G is an M-bridge if r2(G−e) = r2(G)−1
holds. We say that a subgraph H of G is an M-circuit if the edge set of H is a minimal
dependent set in R2(G). Thus an edge e is an M -bridge if and only if it belongs to no
M -circuit of G. A graph G with at least two edges is called M-connected if for every
pair e, f of its edges there is an M -circuit H which contains both edges.

The following characterization of globally rigid graphs in R2 (the equivalence of (i),
(ii), and (iii) below) is from [4]. As it was noted in [5], (iii) is in fact equivalent to
(iv). In the analysis of our algorithm we shall rely on (iv).

Theorem 2.1. [4] Let G be a graph on at least four vertices. The following assertions
are equivalent.
(i) G is globally rigid in R2,
(ii) G is 3-connected and redundantly rigid in R2,
(iii) G is 3-connected and M-connected in R2,
(iv) G is 3-connected and contains no M-bridges in R2.

We call a vertex set S ⊆ V in a graph G = (V,E) a vertex separator if G − S is
disconnected. Let G be a graph and let S be a vertex separator in G. Let C1, C2, . . . Ct

denote the connected components of G−S. We say that the subgraph of G on vertex
set Ci ∪ S, for some 1 ≤ i ≤ t, is an extended component of S in G. Observe that if
S is a minimal separator then every extended component is connected. We shall only
consider minimum (and hence minimal) separators of size at most two.

It will be convenient to call a graph large if it has at least four vertices and small
otherwise. The small globally rigid graphs are K2 and K3.

Algorithm GRC

The input is a connected graph G = (V,E) on at least four vertices. Let G = {G} be
the initial collection of large subgraphs of G and let E = ∅ be the initial collection of
selected edges.

Repeat the following as long as possible:

(a) If there is a graph H ∈ G which contains a non-empty set F of M -bridges then
replace H in G by the graph H − F and add the edges of F to E .

(b) If there is a graph H ∈ G which is not 3-connected then choose a minimum vertex
separator S in H and replace H in G by the large extended components of S in H.
Furthermore, add the edges of the small extended components to E .

If no graph in G satisfies the properties required by (a) or (b), then terminate.
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Theorem 2.2. The subgraphs of G in G at the termination of Algorithm GRC are
the large globally rigid components of G. The number of iterations is bounded by a
polynomial function of the size of G.

Proof. The graphs in G during the execution of the algorithm are large. When the
algorithm terminates, every graph in G is large, 3-connected, and contains no M -
bridges. Thus they are all globally rigid, by the implication (iv) → (i) in Theorem
2.1. Furthermore, for every large globally rigid component K of G we have that
there exists a graph H in the final G which contains K as a subgraph, and no proper
subgraph of K ever occurs in G. These properties follow from the fact that G contains
G at the beginning, and that no edge or vertex of K can be removed from K by the
steps of the algorithm, since – by the implication (i) → (iv) of Theorem 2.1 – in the
subgraph H that contains K as a subgraph no edge of K is an M -bridge and for
every separator S of size at most two of H the subgraph K is contained by one of the
extended components of S. These observations imply that the subgraphs of G in G
at the termination of Algorithm GRC are exactly the large globally rigid components
of G.

In order to bound the number of iterations first we claim that (although the graphs
in G may not be edge-disjoint), the number of new copies of an edge e = uv ∈ E
created by the algorithm is at most 2|V | − 6. These copies are created if and only if
step (b) is applied to a separator S = {u, v} of size two of some graph H ∈ G. In
this case each large extended component C of S in H, which is added to G, inherits
a new copy of e. For a fixed edge e consider the collection Ce of the sets V (C) − S
over all such extended components over all those steps that involve S. The key point
is that Ce is a so-called laminar family: for each pair X, Y ∈ Ce we have X ∩ Y = ∅,
or Y ⊂ X, or X ⊂ Y . It is well known (and easy to show) that a laminar family of
sets on some ground-set K of size k, which does not contain the empty-set and the
whole set K, has at most 2k − 2 members. Now the size of the ground-set of Ce is at
most |V | − 2, which gives the desired inequality

|Ce| ≤ 2|V | − 6. (1)

To finish the proof we first determine an upper bound on the size of the final
collection G ∪ E , where we consider E as a multiset (i.e. it may contain several copies
of the same edge). Since each member of this collection has at least one edge, (1)
implies |G ∪ E| ≤ |E|(2|V | − 5). Since every iteration creates at least two smaller
graphs out of some graph H ∈ G, the number of iterations (the number of internal
vertices of the corresponding rooted tree) is at most |E|(2|V | − 5). This completes
the proof.

If the set G of the large globally rigid components is available then it is straightfor-
ward to find the small globally rigid components. The components on three vertices
correspond to those K3 subgraphs of G which are not subgraphs of some graph in G.
The components on two vertices are those K2’s (i.e. edges) of G which do not belong
to some globally rigid component of size at least three.

Since (a) and (b) can be executed in polynomial time by searching for the M -
bridges (for a quadratic algorithm see e.g. [1]) and small separators (for a linear time
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algorithm see e.g. [3]), respectively, it follows that the globally rigid components can
be found in polynomial time. The running time can be improved in various ways. For
example, just like the M -bridges, the triconected components of a graph can be found
simultaneously, see [3]. Theorem 2.2 also implies a polynomial upper bound for the
number of globally rigid components of a graph, which is probably not best possible.
We do not consider these improvements in this note.

2.1 Examples

Let us analyse the steps of Algorithm GRC on two specific input graphs. First consider
the 3-connected graph G1 of Figure 1. In the first iteration the set F of the three
M -bridges of G1 (in the middle) are added to E and G1 is replaced by G1 − F . Since
G− F is disconnected (i.e. the smallest vertex separator is the empty-set), the next
iteration replaces G1−F by its connected components, each of which is an M -circuit
on six vertices. The next iterations decompose these M -circuits along their vertex
separators of size two, and hence they will be replaced in G by the corresponding
large extended components, i.e. four copies of K4 − e in total. Since each edge of
K4 − e is an M -bridge, all the edges in these graphs will then be added to E . So the
final collections are G = ∅ and E = E(G1).

Figure 1: The graph G1 with no large globally rigid components.

Next consider the M -connected and 2-connected graph G2 of Figure 2. It has four
vertex separators of size two, and hence after the next four iterations G may consist
of three copies of K4 − e, one copy of K4, and one copy of K3,3 + e. Since the latter
two graphs are 3-connected and M -connected, the remaining iterations will remove
the three copies of K4 − e from G and add their edges to E . Thus collection G at
termination consists of K4 and K3,3, the two large globally rigid components of G2.

3 Acknowledgements

This work was supported by the Hungarian Scientific Research Fund grant no. K135421.

EGRES Quick-Proof No. 2021-01



Tibor Jordán: Globally rigid components in two-dimensional generic frameworks 5

Figure 2: The graph G2 with two large globally rigid components.
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