Triangle-free Eulerian planar graphs are friendly

Kristóf Bérczi* and Zoltán Paulovics ${ }^{\star \star}$

Abstract

In [7], Shafique and Dutton proved that every simple triangle-free Eulerian graph has a friendly partition. We give a simple algorithmic proof for the statement in planar graphs. The proof also implies that every triangle-free planar graph has a weak internal partition.

1 Introduction

Let $G=(V, E)$ be a simple undirected graph. For a set $A \subseteq V$ and vertex $v \in A$, the number of neighbours of v in A is denoted by $d_{A}(v)$. A partition of the vertex set into two disjoint non-empty parts V_{1} and V_{2} is friendly (also called internal or satisfactory in the literature) if every vertex has at least as many neighbors in its own part as in the other part, that is, $d_{V_{i}}(v) \geq\left\lceil d_{V}(v) / 2\right\rceil$ for every $v \in V$ and $i=1,2$. Consequently, a graph is called friendly if it has a friendly partition, otherwise it is non-friendly (note that this is different from the notion of unfriendly partitions).

The notion of friendly paritions was introduced by Gerber and Kobler [5]. Shafique and Dutton [7] showed that neither friendly nor non-friendly graphs have a forbidden subgraph characterization. Bazgan, Tuza and Vanderpooten [1] proved that the problem of deciding if a graph is friendly or not is NP-complete.

From the positive side, there are special graph classes for which the problem becomes tractable. Shafique and Dutton [7] characterized friendly (3,4)-regular graphs. They also showed that if a graph G has a maximum-degree vertex not adjacent to any degree 2 vertex then its line graph is friendly if and only if G is not a star, and that the line graph of a graph having two non-adjacent vertices of maximum degree is always friendly. Gerber and Kobler [6] gave a polynomial time algorithm for graphs of bounded clique-width. Bazgan et al. [2] showed that the problem is solvable on graphs of bounded tree-width.

Regular graphs are also well-investigated. A conjecture due to DeVos [4] states that for every r, all but finitely many r-regular graphs have friendly partitions. The conjecture is known to be true for $r=2$ (folklore), 3, 4 and 6 [7]. For a comprehensive overview of known results on friendly paritions, see [3].

The starting point of our investigations is the following result.

[^0]Theorem 1 (Shafique and Dutton [7]). Every simple triangle-free Eulerian graph is friendly.

There are only a few results about friendly paritions in planar graphs. For every positive integer n, there exist non-friendly planar graphs on n vertices. Indeed, let G be the graph obtained from a cycle of length n by adding all chords from one of its vertices. Then G is clearly planar, and it is not difficult to see that it has no friendly partition. However, the complexity of deciding if a planar graph is friendly is still open.

Given two functions $a, b: V \rightarrow \mathbb{Z}_{+}$, a partition if the vertex set into two non-empty parts V_{a} and V_{b} is an (a, b)-partition if $d_{A}(v) \geq a(v)$ for each $v \in V_{a}$ and $d_{B}(v) \geq b(v)$ for each $v \in V_{b}$.

Instead of deciding the existence of an (a, b)-partition, one might be interested in finding one that maximizes the number of vertices that have at least the required number of neighbours in their own part.

Max satisfying decomposition

Input: A simple undirected graph $G=(V, E)$ and two functions $a, b: V \rightarrow \mathbb{Z}_{+}$.
Output: A nontrivial partition $\left(V_{a}, V_{b}\right)$ of V maximizing the number of satisfied vertices v, i.e. those with $d_{V_{a}}(v) \geq a(v)$ if $v \in V_{a}$ and $d_{V_{b}}(v) \geq b(v)$ if $v \in V_{b}$.

Theorem 2 (Bazgan, Tuza and Vanderpooten [2]). MAX SATisfying DECOMPOSITION admits a polynomial-time approximation scheme in planar graphs.

An inclusionwise minimal cut of a planar graph corresponds to a cycle in the dual graph. Hence in a 2 -edge-connected planar graph the problem of finding a friendly partition is equivalent to finding a cycle in its dual which contains at most half of the edges of every face.

Let $G=(V, E)$ be a simple Eulerian planar graph. Note that G is necesarily 2-edge-connected. The dual of G is a -not necessarily simple- bipartite planar graph in which every vertex has degree at least 3 . If in addition G is triangle-free, then the minimum degree in the dual graph is at least 4.

By the above, Theorem 1 for planar graphs follows from the following theorem.
Theorem 3. Let $G=(V, E)$ be a bipartite planar graph with minimum degree at least 4. Then G has a cycle which contains at most half of the edges of every face.

Our aim is to give a simple algorithmic proof of Theorem 3. As we will see, the proof also implies the existence of weak internal partitions in simple triangle-free planar graphs.

2 Proof of Theorem 3

Let $G=(V, E)$ be a bipartite planar graph with minimum degree at least 4. Take a cycle $C=v_{0} v_{1} \ldots v_{q}$ where $v_{i} v_{i+1}$ is the second edge around v_{i} from $v_{i-1} v_{i}$ in a counterclockwise order for $i=1, \ldots, q-1$. Such a cycle can be found algorithmically
by starting from an arbitrary vertex v and edge $v v^{\prime}$, and always continuing through the second edge from the edge through which we reached the actual vertex in a counterclockwise order. As the number of vertices is finite, at some point we will reach a vertex that was already visited before. Let v_{0} be this vertex. Then the segment of our walk between the two occurrences of v_{0} form a cycle satisfying the above condition (see Figure 1 for an example).

Figure 1: Output of the algorithm
We claim that C contains at most half of the edges of every face.
Claim 4. If C contains two consecutive edges $x y$ and $y z$ of a face F then $y=v_{0}$.
Proof. Recall that the graph has minimum degree at least 4. If $y \neq v_{0}$, then by the choice of C the edges $x y$ and $y z$ are non-neighboring edges on y, that is, there is at least one further edge between them in both directions. This contradicts the fact that $x y$ and $y z$ are edges of the same face F.

Claim 5. C contains at most one pair of consecutive edges of every face F.
Proof. Assume x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$ are two triples of consecutive vertices of F for which all of the edges $x y, y z, x^{\prime} y^{\prime}$ and $y^{\prime} z^{\prime}$ are contained in C. By Claim 4, this is only possible if $y=y^{\prime}=v_{0}$, that is, the two triples coincide.

The following claim is the key observation of the proof.
Claim 6. Let F be a face of the graph. Then

$$
|C \cap F| \leq \begin{cases}\left\lfloor\frac{\lfloor F \mid}{2}\right\rfloor & \text { if } v_{0} \notin F, \\ \left\lfloor\frac{|F|+1}{2}\right\rfloor & \text { if } v_{0} \in F .\end{cases}
$$

Proof. Assume first that $|F|=2$, that is, F consists of a pair of parallel edges between two vertices, say x and y. If C contains both edges of F, then by Claim $4 x=y=v_{0}$, a contradiction. Hence $|C \cap F| \leq 1$.

For $|F| \geq 3$, Claim 5 implies that $C \cap F$ consists of independent edges if $v_{0} \notin F$, and of independent edges plus probably a single path of length two if $v_{0} \in F$ (see Figure 2). Hence the claim follows.

The graph is bipartite, hence $|F|$ is even. By Claim 6, $|C \cap F| \leq\left\lfloor\frac{|F|+1}{2}\right\rfloor=\frac{|F|}{2}$, concluding the proof of the theorem.

Figure 2: Illustration of Claim 6

3 Weak internal partitions

A partition of the vertex set into two disjoint non-empty parts V_{1} and V_{2} is a weak internal partition if $d_{V_{1}}(v) \geq\left\lfloor d_{V}(v)\right\rfloor$ for $v \in V_{1}$ and every $v \in V$ and $d_{V_{2}}(v) \geq$ $\left\lceil d_{V}(v)\right\rceil$ for $v \in V_{2}$.

Assume now that $G=(V, E)$ is a 2-edge-connected triangle-free, but not necessarily Eulerian planar graph. For such graphs, the algorithm of Section 2 does not necessarily provide a friendly partition: if F is a face with $|F|$ being odd and $v_{0} \in F$ then $|C \cap F|$ might be $\left\lfloor\frac{|F|+1}{2}\right\rfloor$.

However, if F is such a face then C contains two consecutive edges of F and these edges are both incident to v_{0}. That is, there is at most one odd face violating the condition $|C \cap F| \leq \frac{|F|}{2}$, and for such a face we have $|C \cap F|=\frac{|F|+1}{2}$. Thus we get the following.

Theorem 7. Every simple triangle-free planar graph has a weak internal partition.

Acknowledgement

The authors are supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). Kristof is supported by the Hungarian National Research, Development and Innovation Office - NKFIH grant K109240.

References

[1] C. Bazgan, Z. Tuza, and D. Vanderpooten. Complexity and approximation of satisfactory partition problems. In International Computing and Combinatorics Conference, pages 829-838. Springer, 2005.
[2] C. Bazgan, Z. Tuza, and D. Vanderpooten. Degree-constrained decompositions of graphs: bounded treewidth and planarity. Theoretical Computer Science, 355(3):389-395, 2006.
[3] C. Bazgan, Z. Tuza, and D. Vanderpooten. Satisfactory graph partition, variants, and generalizations. European Journal of Operational Research, 206(2):271-280, 2010.
[4] M. DeVos. Open problem garden, 2009.
[5] M. U. Gerber and D. Kobler. Algorithmic approach to the satisfactory graph partitioning problem. European Journal of Operational Research, 125(2):283-291, 2000.
[6] M. U. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoretical Computer Science, 299(1-3):719-734, 2003.
[7] K. H. Shafique and R. D. Dutton. On satisfactory partitioning of graphs. Congressus Numerantium, pages 183-194, 2002.

[^0]: *Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117, MTA-ELTE Egerváry Research Group (EGRES). Email: berkri@ cs.elte.hu
 **Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. Email: zoli.paulovics@ gmail.com

