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Total domatic number of triangulated planar graphs
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?
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??

Abstract

In [3], Goddard and Henning conjectured that every simple triangulated
planar graph on at least four vertices has a 2-coloring such that every vertex
has neighbors in both color classes. We give several equivalent and stronger
reformulations of the conjecture and present some partial results that might
serve as starting points for further investigations.

1 Introduction

Given an undirected graph G = (V,E), a subset S of vertices is called a dominating

set if every vertex of G has at least one neighbor both in S and in V − S. The total
dominating number or total domatic number of G is the maximum number of
pairwise disjoint total dominating sets in G. The domatic number of G is denoted by
dt(G).
The starting point of our investigations is the following conjecture of Goddard and

Henning [3].

Conjecture 1. dt(G) ≥ 2 for every simple triangulated planar graph G on at least 4
vertices.

The conjecture can be rephrased in terms of colorings: it states that the vertices of
a simple triangulated planar graph on at least 4 vertices can be colored by two colors
such that every vertex of G has neighbors in both color classes. Such colorings are
usually called 2-coupon colorings in the literature.
It is worth mentioning that the statement is not necessarily true if either simplicity

or maximality is dropped, see Figure 1. Heggernes and Telle [5] showed that deciding
if the total domatic number of a graph is at least 2 is NP-complete.
The conjecture was veri�ed for several special classes of graphs. Nagy [4] gave a

proof for Hamiltonian graphs, while Goddard and Henning [3] proved the conjecture
for the dual of Hamiltonian graphs. They also gave a proof for graphs with only
odd-degree vertices.
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(a) Simplicity is needed (b) Maximality is needed

Figure 1: Examples showing that the conditions of the conjecture are necessary

2 Equivalent forms and strengthenings

Let G be a triangulated planar graph. For a vertex v, each triangle containing v
has an edge not containing v. We call the cycle consisting of these edges the wheel
de�ned by vertex v.

Figure 2: The dashed edges form the wheel de�ned by v

Statement 1. Let G = (V,E) be a simple triangulated graph on at least 4 vertices.

Then there exists a bipartite subgraph H = (V, F ) of G such that F contains at least

one edge from every wheel of G.

Claim 1. Conjecture 1 and Statement 1 are equivalent.

Proof. Let G be a triangulated graph. Suppose �rst that it has a 2-coupon coloring.
Then

F = {uv ∈ E | u and v are in di�erent color classes}
de�nes a bipartite subgraph of G that contains at least one edge from each wheel.
Now suppose that there exists a bipartite subgraph that meets the requirement.

Color the vertices in one of the classes to be black, and the vertices in the other class
to be white. This way we get a 2-coupon coloring of the original graph.
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A natrual strengthening of Statement 1 would be the following.

Statement 2. Let G = (V,E) be a simple triangulated graph on at least 4 vertices.

Then there exists a forest in G containing at least one edge from each wheel.

Remark 2. If Statement 2 holds, then Statement 1 also holds.

We will need the following folklore observation.

Claim 3. A connected planar graph is bipartite if and only if each of its faces have

an even number of edges.

Proof. Necessity is straightforward, we prove su�ciency. Suppose that the graph is
not bipartite and thus there exists a cycle C of odd length. We show that there exists
an odd face. The proof goes by induction on the number of faces in the interior of C.
If C is a face, then we are done. If C is not a face, then there exists a face f in the
inner side of C having at least one common edge with C. f does not contain every
edge of C, since G is connected. Let C ′ be the symmetric di�erence of the edge sets
of C and f . As C is odd, either f is an odd face or C ′ is an odd cycle containing less
faces in its inner side than C.

Statement 3. Let G = (V,E) be a simple triangulated graph on at least 4 vertices.

Then there exists a subgraph H ′ = (V, F ′) having the following two properties.

1. F ′ contains exactly one edge from each face of G.

2. There are no isolated vertices in H ′.

Claim 4. If Statement 3 holds, then Statement 1 also holds.

Proof. Let H ′ = (V, F ′) be the subgraph required by Statement 3. We show that
H = (V,E − F ′) is a subgraph required by Statement 1. H is a bipartite graph by
Lemma 3, as each of its faces have 4 edges. Take a wheel v1v2 . . . vk de�ned by a vertex
v. As v is not an isolated vertex in H ′, there exists a vertex vi such that vvi ∈ F ′. As
F ′ contains exactly one edge from each face, vivi+1 ∈ E − F ′.

One can rephrase the Goddard-Henning conjecture in the dual graph as well.

Conjecture 2. G∗ = (V ∗, E∗) is the dual of a simple triangulated graph on at least

4 vertices if and only if G∗ is a 3-regular 2-edge-connected planar graph on at least 4
vertices.

Claim 5. Conjectures 1 and 2 are equivalent.

Proof. Clearly, G∗ is 3-regular if and only if its dual is triangulated. It is also straight-
forward to verify that a cut consisting of one edge corresponds to a loop edge in the
dual, and a cut consisting of two edges corresponds to a pair of parallel edges.
Finally, by 3-regularity and using Euler's formula,

f ∗ = m∗ − n∗ + 2 = 3n∗/2− n + 2 = n∗/2 + 2,
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where f ∗, m∗, and n∗ denote the number of faces, edges and vertices of G∗. Thus the
dual of G∗ has at least 4 vertices if and only if 4 ≤ n∗/2 + 2, i.e. G∗ has at least 4
vertices.

Let f be a face of a planar graph and e be an edge not in f . We say that an edge
e leaves f if e has at least one endpoint on f .

Statement 4. Let G∗ = (V ∗, E∗) be a 3-regular 2-edge-connected planar graph of

on at least 4 vertices. Then there exists a subgraph H∗ = (V ∗, F ∗) in G∗ with the

following two properties.

1. H∗ does not contain any odd cut of G∗.

2. For every face f of G∗, H∗ contains an edge e leaving f .

Claim 6. Statements 1 and 4 are equivalent.

Proof. We show that given a subgraph H = (V, F ) that meets the requirements of
Statement 1, the edges corresponding to F in the dual of G form a subgraph H∗

required by Statement 4, and vice versa. It is worth noting that H∗ is not necessarily
the same as the dual graph of H.
As cycles of a planar graph correspond to inclusionwise minimal cutsets in the dual

graph, H is bipartite if and only if H∗ does not contain any odd cut of G∗. Moreover,
an edge from a wheel de�ned by v in G corresponds to an edge that leaves the face
that corresponds to v in the dual graph of G. Hence H contains at least one edge
from each wheel if and only if for every face of G∗, H∗ contains at least one edge that
leaves that face.

Statement 5. Let G∗ = (V ∗, E∗) be a 3-regular 2-edge-connected planar graph on at

least 4 vertices. Then there exists a subgraph H̄∗ = (V ∗, F̄ ∗) in G∗ with the following

two properties.

1. H̄∗ intersects every odd cut of G∗.

2. For every face f of G∗, H̄∗ does not contain all the edges leaving f .

Claim 7. Statements 4 and 5 are equivalent.

Proof. If H∗ meets the requirements of either of the statements, the complementer
subgraph in G∗ meets the requirements of the other.

A 2-factor of a graph G = (V,E) consists of disjoint cycles covering V . We can
formulate a su�cient condition for the Goddard-Henning conjecture with the help of
2-factors. The motivation for such a reformulation is the fact that the existence of
2-factors in which certain cycles (usually short cycles) are not allowed is a well-studied
area in graph theory.

Statement 6. Let G∗ = (V ∗, E∗) be a 3-regular 2-edge-connected planar graph on at

least 4 vertices. Then there exists a 2-factor not containing any of the faces.
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Claim 8. If Statement 6 holds, then Statement 4 also holds.

Proof. Let H∗ = (V ∗, F ∗) be the 2-factor containing none of the faces of G∗. Every
cut of G∗ has an even number of common edges with every cycle in H∗. Therefore
H∗ does not contain any odd cuts of G∗.
Let f = v1v2 . . . vl be a face of G∗. As F ∗ does not contain f , there must exist a

vertex vi such that vivi+1 /∈ F ∗. Moreover, every vertex has degree 2 in H∗, so there
is an edge in F ∗ starting from vi that leaves f .

Statement 6 can easily be rephrased as a statement about perfect matchings.

Statement 7. Let G∗ = (V ∗, E∗) be a 3-regular 2-edge-connected planar graph on at

least 4 vertices. Then there exists a perfect matching containing at least one edge from

every face.

Claim 9. Statements 6 and 7 are equivalent.

Proof. As G∗ is 3-regular, a subgraph is a 2-factor if and only if the complementer
subgraph is a perfect matching. Clearly, a subgraph contains none of the faces if and
only if the complementer subgraph contains at least one edge from every face.

The following �gure summarizes the statements of this section. For this, let G be
a simple triangulated planar graph on at least 4 vertices and let G∗ denote its dual.
Note that G∗ is a 3-regular 2-edge-connected planar graph on at least 4 vertices.
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G has total domatic
number at least 2.
(Conjecture 1)

There exists a
bipartite H = (V, F )
subgraph of G such
that F contains at
least one edge from
each wheel of G.
(Statement 1)

There exists a forest
in G containing at
least one edge from

each wheel.
(Statement 2)

There exists a
subgraph

H ′ = (V, F ′) of G
such that F ′ contains
exactly 1 edge from
each face of G and H ′

does not have any
isolated vertices.
(Statement 3)

There exists a
subgraph

H∗ = (V ∗, F ∗) in G∗

that does not contain
any odd cut of G∗,
and for every face of
G∗, H∗ contains an
edge e leaving that
face. (Statement 4)

There exists a
subgraph H∗ of G∗

that intersects every
odd cut of G∗ and for
every face f in G∗,
H∗ does not contain
all the edges leaving
f . (Statement 5)

There exists a
2-factor in G∗ that
does not contain any
of the faces of G∗.
(Statement 6)

There exists a perfect
matching in G∗,

containing at least
one edge from each
face. (Statement 7)
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3 An approach based on quadrangulated subgraphs

Let H be a hypergraph. The incidence graph of H is a bipartite graph with one
of its classes corresponding to the vertices of H, and the other class corresponding to
the hyperedges of H. Then ve is an edge in the incidence graph if and only if the
hyperedge e contains vertex v in H. A hypergraph is called planar if its incidence
graph is planar. A vertex coloring of a hypergraph by two colors is proper if all of
its hyperedges contain vertices from both color classes.
The following theorem is due to Dvorák and Král [1].

Theorem 10. Let H = (V,E) be a planar hypergraph with at most 2 hyperedges of

size 2. Then H has a proper vertex coloring with two colors.

By using Theorem 10, we could verify the following.

Theorem 11. Let G be a simple triangulated graph. If there are at most two vertices

of degree at most 4, then td(G) ≥ 2.

Proof. Recall that the dual G∗ is a 3-regular 2-edge-connected planar graph. Thus, by
Petersen's theorem, there exists a perfect matching M in G∗. By deleting the edges
corresponding to M from G, we get a graph G′ such that all of its faces contain 4
vertices. We call such graphs quadrangulated. Note that for each vertex v, we deleted
at most half of the edges starting from v, thus there are at most two vertices in G′ of
degree 2 and none of the vertices has less than two neighbors.
By Claim 3, G′ is a bipartite graph. Let S1 and S2 be the two classes of G′. G′

is the incidence graph of two hypergraphs: let H1 be the hypergraph de�ned on the
vertex set S1 with hyperedges S2, and H2 be the hypergraph de�ned on the vertex set
S2 with hyperedges S1. As the original graph contains at most two vertices of degree
at most 4, both of these hypergraphs have at most two hyperedges of size 2. Hence
by Theorem 10, H1 and H2 has proper 2-colorings. Take the union of these colorings
c. I.e. on the vertices of S1, c is de�ned by a proper coloring of H1, whereas on the
vertices of S2, c is de�ned by a proper coloring of H2. The coloring c thus obtained is
a 2-coupon coloring of G′, and so it is also a 2-coupon coloring of the original graph
G.

Not every simple quadrangulated graph has a 2-coupon coloring, see Figure 3 for
an example. Theorem 11 shows that Conjecture 1 holds whenever the triangulated
planar graph in question has a spanning quadrangulated subgraph containing at most
two vertices of degree 2. Unfortunately, it is not always possible to �nd such a
quadrangulated subgraph. However, the proof of the theorem only uses the fact that
both hypergraphs H1 and H2 determined by the quadrangulation have proper vertex
colorings. Hence it is natural to formulate the following stregthening of Conjecture 1.

Conjecture 3. Every simple triangulated graph G on at least 4 vertices has a spanning

quadrangulated subgraph G′ for which dt(G
′) ≥ 2.

The approach sketched above raises the following question: given a hypergraph
H = (S, E) whose incidence graph is quadrangulated and planar, when does H admit
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Figure 3: A quadrangulated graph without two disjoint dominating sets

a proper vertex coloring? For answering this question, we de�ne a new graph whose set
of vertices corresponds to E as follows: two vertices -corresponding to two hyperedges
of H- are connected if they are opposite vertices of a face -which is a square- of the
incidence graph of H. We denote the graph thus obtained by GH = (E , F ) (by abuse
of notation, the vertex set of the new graph is also denoted by E). Note that F may
contain parallel edges. It can be veri�ed that H has a proper vertex coloring if and
only if GH has a spanning even subgraph, that is, a subgraph in which every vertex
has a positive even degree.
The existence of such subgraphs can be characterized by using a result of Frank,

Seb® and Tardos [2] on `-congruent orientations. Given a graph G = (V,E) and a
function ` : V → Z+, an orientation of G is called `-congruent if %(v) ≡ `(v) (mod 2)
holds for the degree %(v) of every vertex v ∈ V .

Theorem 12 (Theorem 5b, [2]). A simple graph G = (V,E) has an `-congruent
orientation for which %(v) ≥ `(v) for every v ∈ V if and only if eG(X)−oG(X) ≥ `(X)
for X ⊆ V , where eG(x) denotes the number of edges with at least one endpoint in

X and oG(X) denotes the number of components C of G−X for which e(C) 6≡ `(C)
(mod 2).

Theorem 13. A simple graph G = (V,E) has a spanning even subgraph if and only

if 2iG(X) + dG(X) ≥ 2|X|+ ōG(X) holds for every set X ⊆ V , where iG(X) denotes

the number of edges with both endpoints in X, dG(X) denotes the number of edges

with exactly one endpoint in X and ōG(X) denotes the number of components C of

G−X for which dG(C) is odd.

Proof. Subdivide each edge e by a new vertex ve into two edges e′ and e′′. The sets
of new nodes and edges are denoted by VE and E+. We de�ne V + := V ∪ VE. The
graph thus arising is denoted by G+ = (V +, E+). Let `(v) be 2 for v ∈ V and let
`(ve) be 0 for e ∈ E. We claim that G has a spanning even subgraph if and only if
G+ has an `-congruent orientation with % ≥ `.
Indeed, given a spanning even subgraph of G, de�ne an orientation of G+ by orient-

ing e′ and e′′ away from ve if e is contained in the subgraph and toward ve otherwise.
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As the subgraph is even and spanning, we get an `-congruent orientation of G+ with
% ≥ `. To see the other direction, observe that in each `-congruent orientation of
G+, e′ and e′′ are both oriented either away from ve or toward ve. The subgraph of
G corresponding to edges e for which both e′ and e′′ are oriented away from ve is a
spanning even subgraph of G.
By Theorem 12, G+ has a proper orientation if and only if eG+(Y )−oG+(Y ) ≥ `(Y )

for Y ⊆ V +. If Y containts exactly one endpoint of an original edge e ∈ E, then we
may assume that ve /∈ Y as leaving it out from Y will only result in a more strict
inequality. Let X := Y ∩ V . Then eG+(Y ) = 2iG(X) + dG(X), and the de�nition
of ` implies oG+(Y ) = ōG(X) and `(Y ) = 2|X|. This concludes the proof of the
theorem.

If the minimum degree in the graph is at least 2, then it su�ces to require the
inequality for stable subsets.

Theorem 14. A simple graph G = (V,E) with minimum degree at least 2 has a

spanning even subgraph if and only if dG(X) ≥ 2|X| + ōG(X) holds for every stable

set X ⊆ V , where dG(X) denotes the number of edges with exactly one endpoint in X
and ōG(X) denotes the number of components C of G−X for which dG(C) is odd.

Proof. By Theorem 13, a requested subgraph exists if and only if 2iG(X) + dG(X) ≥
2|X|+ ōG(X) holds for every set X ⊆ V .
Assume that X spans an edge e and let v be one of the end vertices of e. By leaving

out v from X, the left side decreases by dG(v). Regarding the right side, there are at
most dG(v)−1 components C of G−X with dG(C) being odd such that there is an edge
from v to C. If there are at most dG(v)−2 of them, then ō(X−v) ≥ ō(X)−dG(v)+2
clearly holds. If there are exactly dG(v)− 1 such components, these components and
v will form a single component C ′ of G − (X − v) with dG(C ′) being odd, hence
ō(X−v) ≥ ō(X)−dG(v)+2 again. That is, the right side decreases by at most dG(v),
hence the inequality for X − v implies the one for X. This shows that it su�ces to
require the inequality for stable sets.

Let us now return to the case of triangulated planar graphs. According to Theorem
14, we can decide if the hypergraphs H1 and H2 have proper vertex colorings. Hence a
possible way of verifying Concejture 3 (and so Conjecture 1) would be to show that a
triangulated planar graph always has a quadrangulated subgraph for which GH1 and
GH2 satisfy the conditions of Theorem 14.
Closing this section, we mention the following stronger conjecture formulated by

Goddard and Henning [3] on planar triangulations without degree 3 vertices.

Conjecture 4. If G is a simple triangulated graph with all its vertices having degree

at least 4, then G admits three disjoint total dominating sets.

4 An approach based on 2-factors

Theorem 15. Let G be a simple triangulated graph of order n ≥ 4. If G has a 2-
factor with none of its cycles having length congruent to 2 modulo 4, then the total
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v1 v2 v3
v4

v5

v4k-1
v4k

v1 v2 v3
v4

v5

v4k
v4k + 1

v1 v2 v3
v4

v5

v4k+2
v4k+3

v4k+1

Figure 4: Alternating colors in pairs on cycles of length not congruent to 2 modulo 4

dominating number of G is at least 2.

Proof. If the 2-factor consists of one cycle, then Theorem 3 in [4] proves the claim.
Suppose that there are at least two cycles in the 2-factor. First note that by alternating
colors in pairs, any cycle of length not congruent to 2 modulo 4 can be colored in a
way such that there is at most one vertex with a monochromatic neighborhood, see
Figure 4.
Contract each cycle to a single vertex. G is connected, hence there exists a tree T

in the contracted graph. Choose T to have a minimal number of degree one vertices.
Let E(T ) denote the edges of the original graph that were mapped to T . We show
a 2-coupon coloring in the subgraph de�ned by the union of the 2-factor and E(T ).
(See Figure 5 for an example.) Choose a root vertex r from the degree one vertices
in T .
We color the cycle C0 corresponding to r �rst. Choose a vertex v in C0 such

that there exists a uv edge in E(T ). We color C0 such that only v may have a
monochromatic neighborhood and assign u the missing color.
After this, we iteratively color a child of a cycle that is already colored. We start

by coloring cycles that do not correspond to leaves in T . Suppose that C1 is such a
cycle, and let C2 be a child of C1 and v1v2 be the edge in E(T ) such that v1 ∈ C1

and v2 ∈ C2. Let c1 be a coloring of C1 such that only v1 may have a monochromatic
neighborhood. There might be a vertex (but only one) in C1 that already has a
�xed color, but this does not cause any problem as the role of the two colors can be
interchanged in c1 if necessary. Color v2 in a way that provides v1 the missing color.
Now we color cycles that correspond to leaves but have at least 4 vertices. Let C

be such a cycle. By Theorem 2 in [4] there exists a 2-coupon coloring c of C. Again,
if there is a vertex in C that already has a color, then we might need to �ip the colors
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g

f

e

u

v

v1

v2

Figure 5: 2-coupon coloring corresponding to a 2-factor: the dashed edges form a
2-factor, E(T) consists of the edges of e, f and g.

of c.
Finally, we need to color cycles corresponding to leaves of T and having only 3

vertices. Let uvw be such a cycle, where v is the only vertex that may already have
a color. Suppose it is colored to black. There exists a face vwx where x 6= u. If x
is colored to black, then color w and u to white. If x is colored to white, then color
w to white and u to black. The only remaining case is when x does not have a color
yet. In this case, there must be a face xyz corresponding to a leaf of T . These two
leaves have a closest common ancestor t. As t is of degree at least 2 in T , we have
t 6= r. So t must have degree at least 3. By adding the edge corresponding to vx to
T and removing the �rst edge of the tv path, we get a tree T ′ having fewer degree 1
vertices than T , contradicting the choice of T .
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